
“You May Also Like” Results in Relational Databases

Kostas Stefanidis
Dept. of Computer Science

University of Ioannina, Greece

kstef@cs.uoi.gr

Marina Drosou
Dept. of Computer Science

University of Ioannina, Greece

mdrosou@cs.uoi.gr

Evaggelia Pitoura
Dept. of Computer Science

University of Ioannina, Greece

pitoura@cs.uoi.gr

ABSTRACT
In this position paper, we consider extending relational data-
base systems with a recommendation functionality. In par-
ticular, we propose that, along with the results of each query,
the user gets additional recommended results that we call
“You May Also Like” or Ymal results. We discuss a suite
of different approaches to computing Ymal results and ex-
ploit one that uses only the database content and the query
results. Some preliminary evaluation results are also pro-
vided.

1. INTRODUCTION
The typical interaction of a user with a database system is

by formulating queries. This interaction mode assumes that
users are to some extent familiar with the content of the
database and also have a clear understanding of their infor-
mation needs. However, as databases get larger and accessi-
ble to a more diverse and less technically-oriented audience,
a new “recommendation”-oriented form of interaction seems
attractive and useful.

In this paper, motivated by the way recommenders work,
we consider “recommending” to the users tuples not in the
results of their queries but of potential interest. For in-
stance, when asking for a Woody Allen movie, we could rec-
ommend a Woody Allen biography. When looking for drama
movies produced in England with Oscar nominations, we
could also recommend similar movies with BAFTA awards.
Further, we may recommend what similar users have asked
for in the past.

We call such results “You May Also Like” or Ymal results
for short. Ymal results are useful because they let users see
other tuples in the database that they may be unaware of.

We consider three fundamentally different approaches to
computing Ymal results. The first one, termed current-

state, uses the results of the current query and the database
content. The second one, termed history-based, is similar
to traditional recommendation systems. It uses the past
history of user queries to suggest tuples that are results of

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post onservers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
PersDB 2009
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

either similar past queries or results of queries posed by sim-
ilar users. The last one, termed external sources, considers
using information from resources external to the database,
such as the web.

We focus on the current-state approach and present a
novel method for computing Ymal results. The method ex-
plores both the database schema by expanding the original
query through joins with appropriate other relations and the
database content through value correlations. We also report
some preliminary evaluation results of this method.

Extending database queries with recommendations has
also been suggested in two very recent works, namely [12]
and [7]. FlexRecs [12] proposes a framework and a related
engine for the declarative specification of the recommenda-
tion process. Here, we address a specific recommendation
process, that of suggesting results relevant to a given user
query and propose methods for generating them. Recom-
mendations in [7] are more restricted than our Ymal results
in that they are solely based on the past behavior of similar
users. There is also some relation to query relaxation (e.g.
[11]). Query relaxation addresses a different problem: ex-
tending the original query when there are not enough match-
ing results.

The remainder of this paper is structured as follows. In
Section 2, we provide a taxonomy of methods for producing
Ymal results. In Section 3, we focus on a method that
uses the current database instance and query results, while
in Section 4, we present some preliminary results of this
method. Section 5 summarizes related work and Section 6
concludes the paper.

2. YMAL RESULTS
Assume a database system D and a set of users U inter-

acting with it by posing traditional select-project-join (SPJ)
queries. Given a user u ∈ U and a query q, a typical database
system returns a set of results R(q) in the form of tuples,
possibly produced by joining several relations of D. Besides
R(q), we would like to locate and recommend to u a set
of tuples that may also be of interest to the user. We call
this set of tuples “You May Also Like” tuples or Ymal re-
sults for short. We denote this set as Ymal(q, u). As a
running example, we shall use the movies database shown
in Figure 1.

In this paper, we propose a number of approaches to com-
pute Ymal results. These approaches fall into three main
categories:

1. Current-state approaches, that exploit the content and
schema of the current query result and database instance.

Figure 1: Movies database schema example.

2. History-based approaches, that exploit the history of pre-
viously submitted queries to the database system, e.g. by
using query logs.

3. External sources approaches, that exploit resources exter-
nal to the database, such as related published results and
reports, relevant web pages, thesaurus or ontologies.

Figure 2 depicts a taxonomy of Ymal computation tech-
niques. Next, we focus on each of these categories separately
and present challenges and strategies towards the computa-
tion of Ymal results.

Current-state Approaches: We assume first, that there
is no other information available other than a query q posed
by a user u and its result R(q). Then, Ymal results can be
computed based on either (i) local analysis of the intrinsic
properties of the result R(q) or (ii) global analysis of the
properties of the database D. In both cases, we can ex-
ploit (i) the content and/or (ii) the schema of R(q) or D

respectively.
There are many directions for computing Ymal results

along these axes. For instance, in the local analysis ap-
proach, after R(q) has been computed, we examine the con-
tent of its tuples to locate common information patterns ap-
pearing in many of them. We then employ such information
to retrieve and recommend tuples of the database that do
not belong in R(q) but exhibit similar behavior. For exam-
ple, assume that u poses a query to retrieve movie titles in
which Morgan Freeman stars. Since Morgan Freeman often
acts in detective roles, the relative attribute value detective

appears many times in the result. Therefore, we recommend
to u a number of movie titles in which other actors play the
role of detective. Another option, in a schema-based ap-
proach, is to expand the tuples of the result through joins.
Intuitively, in this way, we add extra, possibly useful infor-
mation to the result and search for common patterns in the
expanded result tuples. In our example, instead of present-
ing to u only the titles of Morgan Freeman’s movies, we may
enhance the result with information about the correspond-
ing genres. Based on the most frequent genres appearing in
these expanded tuples, we recommend to u other movies of
those genres.

In the global analysis case, we base Ymal computation
on properties of D. In the content approach, we rely on the
correlation of specific attribute values as well as their selec-
tivities. For example, when querying for Walter Matthau

movies, we may also recommend a number of Jack Lemmon

movies, since these two actors often star together. Correla-
tion among relations can be used to direct the expansion of
tuples in R(q) in a schema-based view of the problem.

Hybrid methods can also be applied by combining local
and global analysis or content and schema information when
processing a query result. Table 1 shows a taxonomy of the
current-state approaches. We will examine further details of
current-state approaches in Section 3.

History-based Approaches: History-based approaches
assume that there is available information about the pre-
vious interactions of the users with the database, similar to
traditional recommenders. In this respect, there are two al-
ternatives: one could either log the results of the queries
or the queries themselves. Technically, the two approaches
are not equivalent, since the result of each query depends
on the database instance, thus, the result of executing a
logged query in the current database instance may differ
significantly from the original result. Since logging results
imposes significant overheads, for simplicity, in this position
paper, we opt for logging queries.

Given a set of queries Q and a set of users U , the utility
function f : Q × U → N , where N is a totally ordered set,
measures the usefulness of a query q ∈ Q to a user u ∈ U .
We assume that the utility f(q, u) is equal to the number of
times user u has posed the query q.

Following the usual classification of recommendation sys-
tems, we distinguish between two different approaches: (i)
query-based Ymal results (similar to content-based recom-
mendations) and (ii) user-based Ymal results (similar to
collaborative recommendations).

In the query-based approach, when a user u poses a query
q, Ymal(q, u) includes results of the logged queries qi ∈ Q,
that are the most similar to q, according to some similarity
function simq(qi, qj) between queries. For example, we may
use:

simq(qi, qj) =
∣

∣

∣
R(qi)

⋂

R(qj)
∣

∣

∣
.

Using the utility function, we can represent each query q as a
vector (f(q, u1), f(q, u2), . . . f(q, u|U|)). Then, for example,
we can use as similarity, the inner product:

simq(qi, qj) =

|U|
∑

k=1

f(qi, uk)f(qj , uk)

In the user-based approach, when a user u poses a query q,
Ymal(q, u) includes results of queries posed by those users
uj ∈ U that exhibit the most similar behavior to u. Sim-
ilar users are located via a similarity function simu(ui, uj)
between users, such as:

simu(ui, uj) =
∣

∣

∣
Q(ui)

⋂

Q(uj)
∣

∣

∣

where Q(ui) is the set of queries posed by ui. Analogously to
the queries, using the utility function, we can represent each
user u as a vector (f(q1, u), f(q2, u), . . . f(q|Q|, u)). Then,
for example, we can use as similarity, the inner product:

simu(ui, uj) =

|Q|
∑

k=1

f(qk, ui)f(qk, uj)

In a hybrid approach, we present to u the results of the
most similar queries to q out of those that were posed by
similar users. Table 2 synopsizes history-based approaches.

Finally, we note that there is an important temporal di-
mension that needs to be considered. It is often the case that
recent queries reflect better the current trends and interests

Figure 2: A taxonomy of Ymal computation techniques.

Table 1: A taxonomy of current-state approaches.

Local analysis Global analysis Hybrid analysis

Content-based Most frequent values in R(q) Most correlated values in D Combine frequent and corre-
lated values

Schema-based Direct joins through frequencies
of values in expanded R(q)

Direct joins through correlations
among relations in D

Direct joins through frequencies
in expanded R(q) and correla-
tions among relations in D

of users, thus an aging scheme that gradually degrades the
importance of queries in the log is into place.

External Sources Approaches: Up to now, we have dis-
cuss how we can locate and recommend Ymal results by
exploiting intrinsic information of the database, such as cor-
relation among attribute values and relations themselves.
However, there are cases where relationships among data
items are not captured in the database, even if present.
Nowadays, a plethora of useful, well-organized information
is available over the Web in the form of articles, reports
and reviews in collectively maintained knowledge reposito-
ries, such as Wikipedia1 and LibraryThing2. Information
retrieved from such external sources can also be used for
the computation of Ymal results.

For example, assume the database schema of Figure 1
and a query about Sofia Coppola movies. Using external
information, we could recommend a number of Francis Ford

Coppola’s movies, since he is the father of Sofia Coppola, a
relationship that is not reflected in the schema. As another
example, consider that a user poses a query that retrieves
movies of various directors. Using an external source, inter-
esting information may be inferred, e.g. that most of these
directors are Asian. In this case, we could recommend other
movies by Asian directors. Note that, the origin of directors
cannot be found in the schema, so this correlation can be
found only through external sources.

3. CURRENT-STATE APPROACHES
Current-state approaches explore the results R(q) of an

SPJ query q to direct the computation of Ymal results for
a user u. In this section, we will further examine such ap-
proaches and their application. First, we will focus on local
analysis methods and then on global analysis ones.

1http://www.wikipedia.org
2http://www.librarything.com

Local Analysis: During local analysis of a query result
R(q), we aim at discovering interesting patterns that we will
later exploit to recommend Ymal results. Such patterns
can be either found in the tuples of R(q) (content-based
approach) or in the extended tuples produced by joining
the tuples of the result with other tuples of the database
(schema-based approach).

In this work, we view interesting patterns as frequently
appearing attribute values, or combinations thereof. To
quantify attribute values appearances in R(q), we define the
value-frequencies matrix MR(q). There is one row in MR(q)

for each attribute A1, . . . , Am of R(q) and one column for
each distinct attribute value v1, . . . , vn appearing in its tu-
ples. MR(q)(i, j) contains the number of occurrences of vj

for Ai in R(q). As an example, consider a user that is in-
terested in movie titles staring Lee Phelps. In Figure 3, we
see a part of the related value-frequencies matrix. For ease
of presentation, we depict only the five most frequent values
for the attribute Role.

Policeman Detective Cop Bartender Guard

Role 36 24 23 22 13

Figure 3: Value-frequencies matrix example.

Given a query q and the corresponding value-frequencies
matrix MR(q), our goal is to present to the user a set of
Ymal results with cardinality p. Such results are computed
with regards to the most frequent attribute values in R(q) as
specified by MR(q). In particular, we locate the k elements
in MR(q) with the highest values and, for each such element,
we construct an appropriate SPJ query to retrieve interest-
ing results. For clarity in notation, we also consider the ma-
trix M ′

R(q) for which M ′
R(q)(i, j) = MR(q)(i, j) if MR(q)(i, j)

belongs to the k, k > 0, most frequent attribute values and
M ′

R(q)(i, j) = 0 otherwise. Each element contributes a num-

Table 2: A taxonomy of history-based approaches.

Query-based approaches User-based approaches Hybrid approaches

Similarities among queries Similarities among users Similarities among both users and queries

ber of Ymal results based on the function F :

F (i, j) =
M ′

R(q)(i, j)
∑

i

∑

j
M ′

R(q)(i, j)
· p

For the above example, let p = 10 and k = 2. Then, based
on F , we will recommend six movies containing the role
Policeman and four ones containing the role Detective.

When a schema-based approach is followed, we expand
R(q) prior to constructing M , so that, additional interest-
ing common patterns can be discovered. In our example, if
we expand R(q) towards the GENRE relation, we discover
other interesting information, such as, this actor mainly
stars in Drama movies. For a specific query q and its re-
sult R(q), we expand R(q) towards all possible directions
through the same number of join operations and construct
the corresponding value-frequency matrices. Then, we select
the matrix containing the most frequent value appearances
and proceed with the Ymal computation as before, based
on this matrix alone. We consider that patterns discovered
after one join operation are more relevant than patterns dis-
covered after two join operations and so on. For this reason,
when selecting which matrix to use, we also take into ac-
count the corresponding number of needed join operations
for each matrix and favor matrices with fewer joins.

Global Analysis: Global analysis aims at taking advan-
tage of database properties during the recommendation of
Ymal results. In this work, we consider that Ymal com-
putation is guided by certain statistics maintained for our
database D. Such statistics include the correlation among
the various attribute values of the database and the corre-
lation among the various relations in D.

We define the value-correlation matrix V that captures
the correlation between pairs of distinct attribute values in
each database relation. V is a (x × y × y) matrix, where
x is the number of attributes in D and y is the number
of distinct attribute values. Given a query q, we consult
the matrix V to locate attribute values correlated to the
selection predicates of q. We select the k attribute values
that are the most correlated to q. The more correlated such
a value is, the more Ymal results it will contribute. This
can be calibrated via the use of a function similar to F that
is defined based on V instead of M .

The correlation among the relations of D can be used to
direct the joining operations in a schema-based approach.
Such correlations are captured in the (z × z) relation-corre-

lation matrix A, where z is the number of relations in D.
For example, assuming that the relation CAST is strongly
correlated with the relation ACTOR, then, when querying
for specific actor names we could present roles that these
actors have portrayed.

Hybrid Analysis: Each of the methods described above
exploits different properties: local analysis is based on the
actual results of a query, while global analysis depends on

Table 3: Relation cardinalities.

Relation name Cardinality

GENRE 109.261

MOVIE 70.266

CAST 1.266.462

ACTOR 322.467

DIRECT 109.226

DIRECTOR 152.533

the whole database. As a next step, we can combine the
advantages of both approaches in a hybrid method that ex-
ploits both local and global properties. A hybrid content-
based approach is to use attribute values that are both fre-
quent and strongly correlated. To calibrate the importance
of each factor, we rely on a weighted function. Similarly,
in a schema-based approach, the joining of R(q) with other
database relations is directed using both the correlations
among the relations of the database, as well as, frequent
appearances of attribute values in those relations.

4. EVALUATION
Our evaluation objective is to demonstrate the effective-

ness of our approach for current-state methods. In particu-
lar, to show the usefulness of Ymal results, we will present
for representative queries both their R(q) and Ymal(q, u)
results. For our experiments, we use a real movie dataset
[1]. The schema of the database is depicted in Figure 1,
while Table 3 shows the cardinalities of the relations.

Local analysis: To experiment with local analysis Ymal

computation, we use the following query:

q1 : select *

from MOVIE, CAST, ACTOR

where MOVIE.m-id = CAST.m-id and

CAST.a-id = ACTOR.a-id and

ACTOR.f name = ’Lee’ and

ACTOR.l name = ’Phelps’;

A subset of R(q1) is shown in Figure 4. The part (372839 -

Lee - Phelps - M) is common in all tuples of R(q1) due
to the query selection conditions, therefore, we exclude its
attribute values from the construction of MR(q1). For k = 2,
the two most common values in the 394 tuples of R(q1) are
the values Policeman and Detective of the attribute Role

(Figure 3). For p = 3, Policeman and Detective contribute
two and one Ymal results respectively, when the content-
based approach is followed (Figure 4).

R(q1) results

m-id title year rank a-id m-id role a-id f name l name gender

4619 Abbott and Costello in Hollywood 1945 5.6 372839 4619 Detective 372839 Lee Phelps M

218015 Money to Loan 1939 6.3 372839 218015 Policeman 372839 Lee Phelps M

46730 Bride Came C.O.D., The 1941 6.8 372839 46730 Policeman 372839 Lee Phelps M

330384 Thin Man Goes Home, The 1945 7 372839 330384 Policeman 372839 Lee Phelps M

31821 Beast From 20,000 Fathoms, The 1953 6.3 372839 31821 Cop 372839 Lee Phelps M

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Ymal(q1, u) results: Content-based Approach

m-id title year rank a-id m-id role a-id f name l name gender

323813 Talented Mr. Ripley, The 1999 7 411152 323813 Policeman 411152 Manuel Ruffini M

195807 Love Letter 1998 8.2 420874 195807 Policeman 420874 Bsaku Satoh M

155070 I, Robot 2004 6.9 297823 155070 Detective 297823 Craig March M

Figure 4: Content-based local analysis for q1.

When the schema-based approach is employed, the possi-
ble directions for expansion are the relations GENRE and
DIRECT. The most common patterns are observed when
R(q1) is expanded towards the GENRE relation and are the
values Drama and Comedy that appear 216 and 120 times
respectively. The expanded tuples of R(q1) and the recom-
mended Ymal results in this case, for k = 2 and p = 3, are
the ones shown in Figure 5.

Global analysis: To experiment with content-based, global
analysis Ymal computation, we use the following query that
retrieves romance movies:

q2 : select *

from MOVIE, GENRE

where MOVIE.m-id = GENRE.m-id and

GENRE.genre = ’Romance’;

In our dataset, the attribute value Romance appears along
with other genres for the same movies as many times as
shown below:

Drama (2801) Comedy (2398) Musical (538)
Action (351) Adventure (323) Thriller (267)
Fantasy (263) Crime (263) Family (234)
War (199) Short (162) Mystery (131)

We use again k = 2 and p = 3. As we can see above, the
two mostly correlated values to Romance are Drama and
Comedy. Therefore, two drama movies and a comedy one
will be recommended. We omit the relative figure due to
space limitations.

Consider now the query:

q3 : select *

from MOVIE, DIRECT, DIRECTOR

where MOVIE.m-id = DIRECT.m-id and

DIRECT.d-id = DIRECTOR.d-id and

DIRECTOR.f name = ’Steven’ and

DIRECTOR.l name = ’Spielberg’;

In our database, the relation that is most correlated to
MOVIE is GENRE. Therefore, when computing Ymal re-
sults using the schema-based approach, we enhance R(q3)
with information about the genres of Steven Spielberg’s movies.

5. RELATED WORK
In this paper, we have proposed extending relational data-

base systems with recommendation functionality in the form
of Ymal results. In general, recommendation methods are
categorized into: (i) content-based, that recommend items
similar to those the user has preferred in the past (e.g. [16,
14]), (ii) collaborative, that recommend items that similar
users have liked in the past (e.g. [10, 6]) and (iii) hybrid,
that combine content-based and collaborative ones (e.g. [4,
5]). [3] provides a comprehensive survey of the current gen-
eration of recommendation systems. Several extensions have
also been proposed, such as employing multi-criteria ratings
[2] and extending the typical recommendation systems be-
yond the two dimensions of users and items to include fur-
ther contextual information [15].

In terms of relating recommendations and databases, there
are two very recent works [12, 7]. [12] provides a general
framework and an engine for the declarative specification of
the recommendation process over structured data. In this
paper, we focus on the specific recommendation process of
computing Ymal results related to a specific user query.
The recommendation process in [12] is specified through a
series of interconnected operators, which apart from the tra-
ditional relational operators, includes also a number of spe-
cific to the recommendation process operators, such as the
recommend operator, that recommends a set of tuples of
a specific relation with regards to their relationship with
the tuples of another relation. In our approach, we rely on
typical relational algebra operators. In [7], the focus is on
recommending SQL queries to the users of a database. The
proposed method is based on “session summaries”, i.e. the
set of tuples that contributed to some result for queries im-
posed by the user in the current session. Given a session
summary for a user u, the purpose is to compute a predic-
tion summary of tuples that may be of interest to the user
and then locate a number of queries able to retrieve the tu-
ples in it. The prediction summary is computed based on
the session summary of u and other users similar to u. The
suggested queries are retrieved from a pool of past queries
submitted by the users. Recommendations in [7] are more
restricted than our Ymal results, since they are solely based
on the past behavior of similar users.

There is also some relation with query reformulation, where
a query is relaxed or restricted when the number of results of
the original query are too few or too many respectively, and

Expanded R(q1) results

m-id title year rank a-id m-id role a-id f name l name gender m-id genre

4619 Abbott and Costello in Hollywood 1945 5.6 372839 4619 Detective 372839 Lee Phelps M 4619 Comedy

218015 Money to Loan 1939 6.3 372839 218015 Policeman 372839 Lee Phelps M 218015 Drama

46730 Bride Came C.O.D., The 1941 6.8 372839 46730 Policeman 372839 Lee Phelps M 46730 Comedy

330384 Thin Man Goes Home, The 1945 7 372839 330384 Policeman 372839 Lee Phelps M 330384 Drama

31821 Beast From 20,000 Fathoms, The 1953 6.3 372839 31821 Cop 372839 Lee Phelps M 31821 Sci-Fi

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ymal(q1, u) results: Schema-based Approach

256348 Pinocchio 2002 4 36868 256348 Pinocchio 36868 Roberto Benigni M 256348 Comedy

34306 Berlin Berlin 1998 9.7 426546 34306 Sammy 426546 Asad Schwarz M 34306 Drama

218345 Monster 200 7.4 91661 218345 Newscaster 91661 Jim R. Coleman M 218345 Drama

Figure 5: Schema-based local analysis for q1.

with automatic result ranking, where the results of a query
are restricted to the top-ranked ones, when the number of
results of the original query is very large. Such approaches
usually use the frequency of values of specific attributes in
the database to restrict or expand the result set, which is
also the basic idea of our current-state approaches in com-
puting Ymal results.

A framework for relaxing queries involving numerical con-
ditions in selection and join predicates is proposed in [11],
while the relaxation algorithm proposed in [9] produces a
relaxed query for a given query range and a desired cardi-
nality of the result set. To estimate the result size, the al-
gorithm uses multi-dimensional histograms. [13] studies the
problem of query refinement through transformations of the
selection query predicates. Transformations aim at either
relaxing the query predicates in order to increase the result
cardinality or contracting the query predicates in order to
decrease the result cardinality. A systematic approach for
the automatic ranking of query results is proposed in [8].
To estimate the rank of a result tuple, they use both work-
load and data analysis; this is similar to the history-based

and current-state approaches respectively. The main differ-
ence is that we consider recommending tuples not in the
result set, whereas [8] consider ranking the tuples in the re-
sult set. The operator frequent co-occurring term [17] can
also be used to direct query refinement in relational keyword
search. Given a keyword query q, this operator returns a set
of terms that appear frequently in the result of q and none
of them is contained in q. These are the terms that can be
employed by users to refine their queries.

6. CONCLUSIONS
In this paper, we presented a first approach to comput-

ing Ymal results and organized the various alternatives into
categories. There is a number of open issues for research.
In terms of current-state Ymal computation, we could ex-
ploit information about the importance of each relation at-
tribute. For history-based Ymal computation, we could
explore techniques based on the logging of query results
or statistics about query results instead of logging queries.
Also, in this work, we looked into selecting Ymal results
based on similarity. We could also consider other criteria,
such as presenting to the users novel, fresh or diverse infor-
mation [18].

Acknowledgment
We would like to thank Yufei Tao for providing the dataset
used in this work.

7. REFERENCES
[1] Internet Movies Database. Available at www.imdb.com.
[2] G. Adomavicius and Y. Kwon. New recommendation

techniques for multicriteria rating systems. IEEE
Intelligent Systems, 22(3):48–55, 2007.

[3] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[4] M. Balabanovic and Y. Shoham. Content-based,
collaborative recommendation. Commun. ACM,
40(3):66–72, 1997.

[5] C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as
classification: Using social and content-based information
in recommendation. In AAAI/IAAI, pages 714–720, 1998.

[6] J. S. Breese, D. Heckerman, and C. Kadie. Empirical
analysis of predictive algorithms for collaborative filtering.
In UAI, pages 43–52, 1998.

[7] G. Chatzopoulou, M. Eirinaki, and N. Polyzotis. Query
recommendations for interactive database exploration. In
SSDBM, 2009.

[8] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum.
Probabilistic information retrieval approach for ranking of
database query results. ACM Trans. Database Syst.,
31(3):1134–1168, 2006.

[9] A. Kadlag, A. V. Wanjari, J. Freire, and J. R. Haritsa.
Supporting exploratory queries in databases. In DASFAA,
pages 594–605, 2004.

[10] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker,
L. R. Gordon, and J. Riedl. Grouplens: Applying
collaborative filtering to usenet news. Commun. ACM,
40(3):77–87, 1997.

[11] N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing
join and selection queries. In VLDB, pages 199–210, 2006.

[12] G. Koutrika, B. Bercovitz, and H. Garcia-Molina. Flexrecs:
Expressing and combining flexible recommendations. In
SIGMOD, 2009.

[13] C. Mishra and N. Koudas. Interactive query refinement. In
EDBT, pages 862–873, 2009.

[14] R. J. Mooney and L. Roy. Content-based book
recommending using learning for text categorization.
CoRR, cs.DL/9902011, 1999.

[15] C. Palmisano, A. Tuzhilin, and M. Gorgoglione. Using
context to improve predictive modeling of customers in
personalization applications. IEEE Trans. Knowl. Data
Eng., 20(11), 2008.

[16] M. J. Pazzani and D. Billsus. Learning and revising user
profiles: The identification of interesting web sites. Machine
Learning, 27(3):313–331, 1997.

[17] Y. Tao and J. X. Yu. Finding frequent co-occurring terms in
relational keyword search. In EDBT, pages 839–850, 2009.

[18] C. Yu, L. V. S. Lakshmanan, and S. Amer-Yahia. It takes
variety to make a world: diversification in recommender
systems. In EDBT, pages 368–378, 2009.

