
Cache Updates in a Peer-to-Peer Network of Mobile Agents

Elias Leontiadis, Vassilios V. Dimakopoulos, Evaggelia Pitoura
Department of Computer Science, University of Ioannina

Ioannina, Greece GR-45110
{ilias,dimako,pitoura}@cs.uoi.gr

Abstract

In open multi-agent systems, agents need resources pro-
vided by other agents but they are not aware of which agents
provide particular resources. We consider a peer-to-peer
approach, in which each agent maintains a local cache with
information about k resources, that is for each of the k re-
sources, an agent that provides it. However, when an agent
or a resource moves, cache entries become obsolete. We
propose a suite of cache update policies that combine pull-
based invalidation that is initiated by the agent that main-
tains the cache with push-based invalidation that is initi-
ated by the agent that moves. We study and compare vari-
ations of oblivious flooding-based push/pull along with an
informed push approach where each agent maintains a list
of the agents that have it cached. Our experimental results
indicate that a novel variation of flooding for push where
a moving agent propagates its new location to agents in its
old neighborhood achieves good cache consistency with a
small message overhead. The proposed policies are suitable
for any peer-to-peer system where peers cache information
about other peers and this information becomes obsolete.

1. Introduction

A multi-agent system is a network of software agents
that cooperate to solve problems. In open multi-agent sys-
tems, the agents that need resources provided by other
agents are not aware of which agents provide the partic-
ular resources. Most solutions to this problem are based
on a central directory that maintains a mapping between
agents and resources [14]. However, such solutions do not
scale well since the central directory becomes a bottleneck
in terms of both performance and reliability.

In [4, 5], we proposed a peer-to-peer based approach to
this resource discovery problem. Each agent A maintains a
limited size local cache in which it keeps information about
k different resources, that is, for each of the k resources,

it stores the contact information of one agent that provides
it. The agents in the cache of agent A are called A’s neigh-
bors. An agent searching for a resource uses some form of
flooding: it checks its local cache and if there is no infor-
mation for the resource, it contacts its neighbors, which in
turn contact their neighbors and so on until information for
the resource is found in some cache.

In this paper, we consider the case in which the agents
are mobile and their contact information changes. This
results in caches having incorrect information about the
agents. We propose a suite of policies for addressing cache
updates in this context. Note that to reach an agent that has
moved, there must exist at least one cache in the network
having the correct information about the agent’s new loca-
tion.

Our update policies combine pull-based invalidation that
is initiated by the agent that maintains the cache with push-
based invalidation that is initiated by the agent that moves.
We consider periodic pull where an agent periodically up-
dates its cache and on-demand pull where an agent updates
a cache entry only when the entry becomes obsolete. With
push, an agent informs other agents about its new location.
We study variations of flooding-based push where an agent
A that has moved propagates its new contact point to its
neighbors blindly, that is, even if its neighbors do not have
A in their cache.

We propose a novel variation of flooding, where agents
that receive information about other moving agents main-
tains it for a short period of time in a snooping directory.
Thus, with this method, a moving agent “infects” its old
neighbors with its new address. We compare such oblivi-
ous flooding-based push approaches with an informed push
where, in addition to its local cache, each agent A main-
tains a list, called inverted cache, of the agents that have A
as their neighbor. When A moves, it pushes its new address
only to agents in its inverted cache.

Our experimental results indicate that by fine-tuning the
related parameters, snooping directories may lead to attain-
ing the same cache consistency with plain flooding-based

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

push but with a ten-fold reduction of the message over-
head. The inverted cache method is message-cost effec-
tive as compared to the oblivious push approaches, but only
when cache replacements are infrequent.

The proposed policies are also applicable to a more
generic context in which peers (agents in our case) cache
information about the content of other peers. The problem
we study here is the general problem of updating the caches
when this information becomes obsolete, for instance when
the peers are mobile as is the case with nodes in an ad-hoc
wireless network.

The remainder of this paper is structured as follows. In
Section 2, we present the peer-to-peer architecture of the co-
operating agents as well as the search algorithms that form
the basis for maintaining cache consistency. In Section 3,
we introduce our cache consistency algorithms and in Sec-
tion 4 we report our experimental results. In Section 5, we
discuss related work. Finally, in Section 6 we offer conclu-
sions and directions for future work.

2. System model

We assume a multi-agent system with nodes/agents, pro-
viding a number of resources. To fulfill their goals, agents
need to use resources provided by other agents. To use a
resource, an agent must contact the agent that provides it.

v6 v5

v3

v4

v2:Ra v4:Rbv1

v2

cache

v6: Rc v3: Rd

cache

Figure 1. Part of a cache network, each agent vi

maintains contact information for k = 2 resources

Each agent is equipped with a private cache of size k.
In there it stores information about k different resources,
that is, for each of the k resources the contact information
of one agent that provides it. The system is modeled as
a directed graph G(V, E), called the cache network. Each
node corresponds to an agent along with its cache. There is
an edge from node v to node u if and only if agent v has in
its cache the contact information of agent u, in which case,
u is called a neighbor of v. There is no knowledge about the
size of V or E. An example is shown in Fig. 1.

In such a setting, a fundamental problem is that of re-
source location: how can an agent A, called the inquiring

agent, that needs a particular type of resource x, find an
agent that provides it?

Agent A initially searches its own cache. If it finds the
resource there, it extracts the corresponding contact infor-
mation and the search ends. If resource x is not found in
the local cache, A sends a message querying agents found
in its cache, that is, some of A’s neighbors, which in turn
propagate the query to their neighbors and so on. For per-
formance reasons, the search is usually limited to a maxi-
mum number of steps t, also known as time-to-live (TTL).
A number of different approaches to this search procedure
were proposed for example in [13, 4].

Flooding. In flooding, A contacts all its neighbors (i.e. all
the agents listed in its cache), by sending an inquiring mes-
sage, asking for information about resource x. Any agent
that receives this message searches its own cache. If x is
found in there, a reply containing the contact information is
sent back to the inquiring agent. Otherwise, the intermedi-
ate agent contacts all of its own neighbors, thus propagat-
ing the inquiring message. As the messages are sent from
node to node, a “tree” is unfolded rooted at the inquiring
agent (Fig. 2(a)). Note that the term “tree” is not accurate
in graph-theoretic terms since a node may be contacted by
two or more other nodes but helps to visualize the situation.

The most important disadvantage of flooding is the ex-
cessive number of messages that have to be transmitted, es-
pecially if t is not small. This number grows exponentially
with the network density (cache size).

Teeming. To reduce the number of messages, a proba-
bilistic variation of flooding called teeming can be applied.
At each step of teeming, if the resource is not found in
the local cache of a node, the node propagates the inquir-
ing message only to a random subset of its neighbors. We
denote by φ the fixed probability of selecting a particular
neighbor. In contrast with flooding, the search tree is not a
k-ary one any more (Fig. 2(b)). A node in the search tree
may have from 0 to k children, kφ being the average case.
Flooding is a special case of teeming for which φ = 1.

Teeming with decay. Flooding and teeming suffer from a
high percentage of duplicate messages, since intermediate
nodes may receive the same query through different paths.
To reduce this overhead, the fan out of the search in later
steps should be decreased. Thus φ should not remain con-
stant; it should rather decrease as the search progresses. In
this policy, φ is a function φ = f(s, d) where s is the cur-
rent step and d a decay parameter. We have experimented
with various decay functions and the best results were ob-
tained when φ decreases exponentially as the step increases:
φ = (1 − d)s, where d < 1.

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

v1

v2 v4

v5 v6 v3v3

v1

v2 v4

v6 v3v3

v1

v2 v4

v5 v3

(a) (b) (c)

Figure 2. Searching the cache network of Figure 1: (a) flooding, (b) teeming, (c) random paths (p = 2)

Random paths. In this algorithm, the inquiring agent
contacts p ≤ k of its neighbors. However, each intermedi-
ate node contacts only one of its own neighbors (randomly).
The search space formed ends up being p random paths un-
folding concurrently in the network (Fig. 2(c)). The algo-
rithm produces less messages than flooding or teeming but
it also needs more steps to locate a resource, in general.

3. Cache consistency algorithms

In mobile agent systems, agents or resources may change
location at will. In such an environment, some agents
will end up having invalid contact information about their
cached resources. Invalid cache entries not only require re-
newed searches for the resource, but also deteriorate the
performance of search algorithms. We propose a number
of strategies to deal with the cache consistency problem.
There are two basic categories of algorithms: push-based
ones, which are initiated by the moving agents and pull-
based ones which are initiated by the agents that have in-
valid cache entries. All proposed strategies use a combina-
tion of push and pull-based methods.

3.1. Pull

Pull-based updates are initiated by agents interested in
refreshing their caches. Whenever an agent discovers that
a cached resource has invalid contact information (i.e. the
provider of the resource has moved), it initiates a search
for the required resource. Any of the search algorithms de-
scribed in the previous section can be utilized.

In general, given that at least one agent knows the cor-
rect location of the moving agent the agent that initiates
the search should ultimately find the mover’s new location.
However, the search procedure may yield diverse results,
for two reasons. First, by the time the correct location is
communicated back to the inquiring agent, the mover may
have moved again. Second, other agents may reply with
stale contact information because their own caches have not
been updated.

In any case, invalid results require the initiation of an-
other search phase, which can lead to an excessive over-
head. We can reduce this overhead by using sequence num-

bers. Each time an agent moves, it increases its own se-
quence number by 1 and communicates it along with its
new location information. Pulling agents select the search
replies with the largest sequence number per provider.

In addition to the above on-demand pull, agents can pe-
riodically pull their entire cache from the network. This is
a prefetch operation aiming at avoiding the related search
latency when the agent will actually be in the need of a
resource. As a side effect, because periodic pulls tend
to maintain cache entries up-to-date most of the time, on-
demand pulls will also yield faster and more precise an-
swers. However, periodic pulls cannot be too frequent,
because too many pulls could cause high network traffic.
Agents should pull their cache when they realize that a large
portion is invalid.

3.2. Push

When an agent moves, it must inform at least one other
agent about its new location. This is to say that pull alone
cannot solve the consistency problem. The general idea is
that the moving agent pushes (broadcasts) a message con-
taining its new location to the network in order to inform
as many agents as possible1. Next, we present and com-
pare different strategies for implementing a push, includ-
ing oblivious and informed ones, depending on the moving
agent’s knowledge about the network.

Plain push

In plain push, the agent broadcasts a message containing its
new location. That is, it sends the message to its neighbors,
that propagate it to their neighbors and so on. Push can
be implemented using any of the algorithms presented in
Section 2.

This strategy is oblivious since the moving agent is ig-
norant of which agent needs its new location; the idea is
that by flooding the network, most of the agents that have
cached the mover will be notified. For the plain push to
inform most of the interested agents with high probability,
it will have to utilize the flooding or the teeming algorithm

1A sequence number is also included in the message in order to assist
the pull phases as discussed in Section 3.1

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

with a relatively large number of steps (so as to cover a good
percentage of the nodes in the network).

Interested agents that will not be reached by the push
will have to enter a pull phase. There is a tradeoff here; if
the push utilizes a large number of steps, the pull phase can
use some lighter search algorithm such as the random paths
or a very shallow teeming, and vice versa. In general, if
agents do not move very frequently, a push with high mes-
sage overhead is tolerable so as to allow for lighter pulls.

Push with snooping directories

Plain push can be improved if combined appropriately
with periodic pulling. The proposed strategy requires that
each agent maintains a directory of recently moved agents
(termed snooping directory).

As with the plain push algorithm, moving agents push
obliviously their new location to the network. The differ-
ence is that any agent receiving a push message stores it
in its snooping directory for a small period of time (termed
expiration time), even if the agent is not interested in the
mover.

When a pull phase is entered, agents consult their snoop-
ing directory before initiating a search. However, the snoop-
ing directory may give unreliable information if the agent
pulls after a long period of time. Thus, all agents should
pull their entire cache periodically in order to obtain pos-
sible updates. The interval between pulls should be less or
equal to the expiration time.

Agents do not have to pull information from the entire
network but pull using a small TTL instead. At the same
time, this strategy allows for more relaxed algorithms for
push, too. For example one could use a smaller flooding
depth or a stricter decay parameter as compared to plain
push. By appropriately tuning the involved parameters
(push and pull algorithms, directory size, expiration time,
pulling frequency) push with snooping directories should
be a significant improvement over plain push.

Inverted cache

A way to avoid the potentially high message overhead of the
push phase is to have some knowledge of where to send the
updates. The basic idea behind this informed push strategy
is that each agent should keep a directory of the agents to
which it is known, called inverted cache.

When the agent moves, it only needs to inform the agents
in its inverted cache; this is trivially optimal and at the same
time eliminates the pulls. However, storing a full directory
may not be always preferable. For example, popular re-
sources or agents (that are cached by many others), may
need to maintain a prohibitively large inverted cache. Thus
only a limited directory may be maintained. As a result, not
every interested agent will be updated by the moving agent,
which means that pull phases will also be needed.

The inverted cache strategy can be combined with leas-
ing. Leasing was proposed in [6] to ensure that a download
is valid for a certain (leased) period of time. In our case,
the lease duration indicates the time interval during which
the resource owner guarantees that it will notify the leaser
in case the former moves. Once the lease time expires, a
leaser has to renew the lease so as to be informed of a pos-
sible move; otherwise the resource owner has the choice of
evicting the leaser from its inverted cache.

Since the inverted cache maintains agents with valid
leases, shorter leases imply smaller space overhead on aver-
age. The value of the lease time should be based on the
movement frequency and the popularity of the agent. If
the agent is highly mobile or very popular, the lease time
should be small to keep the size of the inverted cache direc-
tory small.

When a leaser removes or replaces a resource from its
cache it must contact the resource owner so that the latter
deletes the leaser from the inverted cache. In addition, when
a leaser moves it must contact all its neighbors (resource
owners it knows about) so that the latter update the corre-
sponding contact info in their inverted caches. Thus, when
an agent moves it must contact all neighbors in its cache in
addition to the agents in its inverted cache.

The proposed algorithm is very efficient especially when
agents move frequently, since the updates become known
quickly and with minimum overhead. However, it has in-
creased memory requirements and it should be avoided in
systems were the agents frequently change their cache. In
addition, resource owners are forced to store and maintain
state information about the agents that need them.

4. Experimental Results

To evaluate the performance of the proposed cache con-
sistency protocols, we simulated a peer-to-peer network of
agent caches. Each agent owns a number of resources and
has a fixed cache size of k other agents/resources. We start
our simulation by constructing a random graph of known
agents: each agent picks k of the resources randomly and
caches their location. We designate some resources as pop-
ular and also determine the extent of this popularity. A re-
source is offered by one agent only but an agent may hold
many resources. All agents start with valid caches. Our
simulation runs for a number of rounds (turns). During each
turn, an agent may move or add/replace/remove a resource
from its cache with a given probability.

Frequent cache replacements result in fewer invalid
cache entries, so we kept the cache replacement probabil-
ity quite low. By doing so, at the end of the simulation runs,
the percentage of consistent cache entries is affected mainly
by the cache updates algorithms.

The reported experiments are for a network of 1000

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

agents owning 3000 resources for 250 turns. The popular
resources are few (2%) but they are known to many other
agents (ten times more agents on average). Table 1 summa-
rizes our parameters.

During the simulation sessions, we keep statistics regard-
ing the message overhead of the pull and push algorithms,
the percentage of cache entries that are valid at each agent,
the maximum and average directory size of the agents (in-
verted cache or snooping directory). Each experiment was
repeated 10 times and the results were averaged.

Table 1. Default simulation values

Parameter Default Value

Number of agents 1000
Number of resources 3000
Number of turns 250
Cache size k 8 resources
Percentage of popular agents 2%
Popularity factor 10x more popular
Resources per agent 1 to 8
Probability to move at each turn 0.1%
Probability to replace a cached entry 0.6%

4.1. Plain push

We experimented with a variety of algorithms for push
(i.e., plain flooding, teeming, random paths). We report our
experiments using teeming with decay, which exhibited bet-
ter results. The main factor that influences the performance
of plain push is the extent of flooding. We use the following
decay function:

φ = (1 − d)s

By varying the decay parameter d and the maximum step t,
we can control the extent of flooding. We used the values
shown in Table 2. Agents pull information using a light k-
random paths algorithms with t = 3.

Table 2. Push versions

Extent of push flooding d t

Full flooding 0.0 5
Wide flooding 0.2 5
Medium flooding 0.3 5
Narrow flooding 0.4 4

The moving frequency has only linear impact on the
message overhead and the cache quality. The important
issue in this method is the extent of flooding, since it de-
termines the percentage of agents that receive an update.
As shown in Fig. 3, a restrained push algorithm results in a

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200 220 240

turn

%
o

f
va

lid
ca

ch
e

narrow
medium
wide
full

Figure 3. Narrow plain push with on-demand pull

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

full wide medium narrow

m
es

sa
g

es

pull

push

Figure 4. Plain push with on-demand pull: Average
number of push and pull messages per move

poor cache condition at the end of the simulation. With wide
flooding, we achieve satisfactory results: more than 98% of
the cache is eventually consistent. Notice, that these results
were obtained using very low cache replacement probabil-
ities. With higher replacement probabilities cache validity
would not tend to zero.

A wider push induces increased message overhead as
shown in Fig. 4. The message overhead increases expo-
nentially with the extent of push. The pull messages de-
crease too; this is because pull messages do not propagate
further when a cache has invalid entries. That is why in
the narrow push, where the majority of the cache entries is
invalid, the pull messages are very few. Notice also that
the cache consistency percentage of wide flooding is almost
the same with full flooding, while, wide flooding has less
than half the message overhead of full flooding. Thus fine-
tuning the extent of push is important for getting balanced
performance: good cache consistency with minimum mes-
sage overhead.

The cache size k also affects the efficiency of the al-
gorithm as depicted in Fig. 5. Narrow flooding performs
poorly in sparse networks (small caches) and satisfactorily
in dense networks (large caches). However, dense networks
produce a large message traffic (exponential increase). So
in dense networks, we may restrict the extent of push to re-

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200 220 240

turn

%
o

f
va

lid
ca

ch
e

k = 4
k = 8
k = 12
k = 16

Figure 5. Plain push with on-demand pull: Cache
size affects flooding performance

duce the message overhead and still attain the same quality
of cache consistency.

4.2. Snooping

With snooping, agents periodically pull information. In
our simulation, the frequency of pull was set equal to the
expiration time of the snooping directory, namely 20 turns.
We used a very limited pull phase; we search only the 1-
hop neighborhood for recent updates. So, we expect the pull
message overhead to be small. We used the same push algo-
rithm as in plain push since it gives the best results. As with
plain push, the main parameter that affects the efficiency of
snooping is the extent of push.

As shown in Fig. 6, with the same simulation parameters,
snooping results in better cache consistency than plain push,
while the message overhead is only slightly higher (Fig. 7).
This is because, the pull phase frequently finds up-to-date
information in the snooping directory. The pull message
overhead is quite small. Thus, snooping allows us to use a
more restricted push for achieving the same cache quality.
In particular, as we can see in Figs. 3 and 6, we can use
snooping with narrow flooding instead of a plain push with
wide flooding to achieve more than 90% of valid caches.
Snooping achieves this with ten times less messages than
plain push.

4.3. Inverted cache with leasing

For these experiments, we used four values for the lease
time: small (5 turns), medium (25 turns), large (50 turns)
and very large (100 turns). We assume that agents do not
renew their lease times. Expired entries are deleted from
the inverted cache when its size becomes larger than k/2.
Thus a minimum directory of k/2 agents is always kept.
This is the only algorithm that cache replacements induce
message overhead.

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200 220 240

turn

%
o

f
va

lid
ca

ch
e

narrow
medium
wide
full

Figure 6. Snooping: Cache consistency for differ-
ent extents of push flooding

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

full wide medium narrow

m
es

sa
g

es

pull

push

Figure 7. Snooping: Average number of push and
pull messages per move

The leasing time affects the final consistency and the size
of the inverted cache directory. Figure 8 shows how we can
achieve a desired final consistency using appropriate leas-
ing values. With inverted caches, an update is propagated
with the minimum latency, since when an agent moves, it
only informs the agents in its inverted and normal cache
thus producing an 1-hop message overhead for push. How-
ever, message overhead is created by cache replacements,
as shown in Fig. 9. Still, the messages increase linearly
with the number of cache replacements. The inverted cache
size is affected by the popularity of an agent. Popular agents
have larger directories even if we use smaller leasing values
for them. Additionally, the density of the network (cache
size) affects the inverted cache size because dense networks
result in more popular agents.

4.4 Discussion

When we do not want to use any additional memory
for cache consistency, plain push is the only solution. Its
performance is satisfactory when wide flooding is utilized.
Since an agent that ends up with an invalid cache entry for
a resource can pull on demand in order to locate the owner,

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160 180 200 220 240

turn

%
o

f
va

lid
ca

ch
e

small
medium
large
very large

Figure 8. Inverted cache with leasing: Cache con-
sistency for different leasing times

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

high medium low

Cache replacement frequency

m
es

sa
g

es

replacement
pull
push

Figure 9. Inverted cache with leasing: Message
overhead for different cache replacement frequen-
cies

push can be used in dynamic peer-to-peer systems where
agents (peers) go offline frequently. However, push has an
increased message overhead when compared to the other
schemes, so it should be avoided in the case of frequently
moving agents.

The snooping method with periodic pulling is more ef-
ficient since it achieves the same cache quality with plain
push but with a narrower flooding. As indicated by our
simulation results, it may achieve the same cache consis-
tency with plain push but with a message overhead an or-
der of magnitude smaller. However, we must use addi-
tional memory (for the snooping directory) to track recently
moved agents. This directory can become large in the case
of highly mobile agents and dense networks.

The push phase of the inverted cache method induces a
small overhead since only the neighbors in the cache and
the inverted cache are contacted. Our experiments indi-
cate that this overhead is almost a hundred times less than
that of simple push. Moreover, cache updates are prop-
agated immediately since we only use 1-hop communica-
tions. However, this is the only method for which cache re-
placements produce message overhead. Replacing a cache

entry for a resource requires contacting the resource owner.
As such, the inverted cache method is unsuitable for sys-
tems with a high replacement-to-mobility ratio. Our experi-
ments demonstrate that the inverted cache method induces a
smaller message overhead than the other two methods when
this ratio is lower than 100 (that is, when we have at most
100 times more cache replacements than moves). The size
of the inverted cache directory depends on the density of
the network and the lease time and can become quite large
for popular agents. This method is not appropriate for un-
reliable open MAS, because it requires agents to be online
for maintaining a valid inverted cache and agents rely on
each other to be updated. Finally, agents waste resources
for keeping other agents informed.

5. Related work

The peer-to-peer cache network for agents was first pro-
posed in [4]. However, [4] did not consider the fact that
cache entries may become obsolete. In this paper, we focus
on this problem, that is on maintaining consistency of the
caches.

Distributed cache consistency has been the focus of
much research [9, 15, 1, 16]. In general, most of the pro-
posed solutions are based on a stateful server (i.e. a server
that keeps information about the sites that maintain the
cache entries) and thus apply some form of informed push.
Most methods assume a reliable environment and cannot be
applied directly to fully distributed and dynamic open MAS.

Our proposed methods are reminiscent of the epidemic
algorithms first proposed for replicated databases [3]. Ru-
mor spreading [10, 8] and gossip [12] methods are example
epidemic algorithms used for lazy transmission of updates
to distributed copies of a database. Both assume a peer-
to-peer model for probabilistic update propagation among
the sites that replicate files. In our case, this update may
correspond to the new location of a resource. Push/pull al-
gorithms were used in [2, 11] to make file updates known to
all the peers in highly unreliable peer-to-peer systems like
Gnutella [7].

Our algorithms differ in the following ways: (i) the up-
date that we want to propagate is the new location of a
resource/agent and not a file update or a database replica,
and (ii) we use a combination of push and pull algorithms
to achieve probabilistic cache consistency in the entire net-
work. To this end, we extend the push algorithms proposed
in [2] with two novel push methods (snooping push and in-
verted cache push) and combine them with pull to achieve
efficient hybrid push/pull strategies.

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

6. Conclusion

In this paper, we consider the problem of cache updates
in a peer-to-peer network of mobile agents. Each agent
maintains in its cache information about other agents. When
agents move, cached entries about them become obsolete.
We propose a number of update policies that combine: (i)
pull-based invalidation, that is initiated by the agent that
maintains the cache with (ii) push-based invalidation that
is initiated by the agent that moves. Both push and pull
methods use appropriate variations of probabilistic message
flooding. We propose a novel variation of push, where
agents that receive information about other moving agents
maintain it for a short period of time in a snooping directory.
Our experimental results designate that by fine-tuning the
related parameters, maintaining a snooping directory leads
to attaining the same cache consistency with plain flooding-
based push but with a ten times reduction of the message
overhead. We also compare variations of oblivious push
with an informed push approach where each agent main-
tains a list, called inverted cache, of the agents that have it
cached. Our experiments indicate that the inverted cache
method is message-cost effective when compared to the
oblivious push approaches, but only when cache replace-
ments are not frequent.

Our future plans include extending our approach for
other types of mobile peers besides mobile agents. In partic-
ular, we are interested in peer-to-peer systems where peers
are mobile nodes in an ad-hoc network. In this case, we
plan to extend our cache update policies by taking into ac-
count information about how the location changes, e.g., the
direction of a mobile peer’s movement.

References

[1] P. Cao and C. Liu, “Maintaining strong cache consistency
in the world wide web,” IEEE Transactions on Computers,
vol. 47, no. 4, pp. 445–457, Apr. 1998.

[2] A. Datta, M. Hauswirth, and K. Aberer, “Updates in highly
unreliable, replicated peer-to-peer systems,” in Proc. of
ICDCS 2003, 23rd International Conference on Distributed
Computing Systems, Providence, Rhode Island, May 2003,
pp. 76–85.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry, “Epi-
demic algorithms for replicated database maintenance,” in
Proc. of PODC 1987, 6th Annual ACM Symposium on Prin-
ciples of Distributed Computing, Vancouver, Canada, Aug.
1987, pp. 1–12.

[4] V. V. Dimakopoulos and E. Pitoura, “Performance analysis
of distributed search in open agent system,” in Proc. IPDPS
’03, International Parallel and Distributed Processing Sym-
posium, Nice, France, May 2003.

[5] ——, “A Peer-to-Peer Approach to Resource Discovery in
Multi-Agent Systems,” in Proc. CIA 2003, 8th Int’l Work-
shop on Cooperative Information Agents, Helsinki, Finland,
Aug. 2003, pp. 62–77.

[6] C. Gary and D. Cheriton., “An Effi cient Fault-Tolerant
Mechanism for Distributed File Cache Consistency,”in Proc
of SOSP 1989, the 12th ACM Symposium on Operating Sys-
tems Principles, Litchfi eld Park, Arizona, Dec. 1989, pp.
202–210.

[7] Gnutella Protocol Specifi cation, Version 0.4, in http://
www.limewire.com/developer/.

[8] R. G. Guy, P. L. Reiher, D. Ratner, M. Gunter, W. Ma, and
G. J. Popek, “Rumor: Mobile data access through optimistic
peer-to-peer replication,”in Advances in Database Technolo-
gies, ER ’98 Workshops, ser. LNCS, vol. 1552. Singapore:
Springer, Nov. 1998, pp. 254–265.

[9] A. Kahol, S. Khurana, S. Gupta, and P. Srimani, “A strategy
to manage cache consistency in a distributed mobile wireless
environment,” in Proc. ICDCS 2000, Int’l Conf. Distributed
Computing Systems, Taipei,Taiwan, Apr. 2000, pp. 530–537.

[10] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking,
“Randomized rumor spreading,” in Proc. FOCS 2000, 41st
Annual Symposium on Foundations of Computer Science,
Redondo Beach, CA, Nov. 2000, pp. 565–574.

[11] J. Lan, X. Liu, P. Shenoy, and K. Ramamritham, “Consis-
tency maintenance in peer-to-peer fi le sharing networks,” in
Proc. of WIAPP’03, 3rd IEEE Workshop on Internet Appli-
cations, San Jose, CA, June 2003, pp. 76–85.

[12] M.-J. Lin and K. Marzullo, “Directional gossip: Gossip in
a wide area network,” in Proc. EDCC-3, 3rd European De-
pendable Computing Conference, ser. Lecture Notes in Com-
puter Science, vol. 1667. Springer, Sept. 1999, pp. 364–379.

[13] D. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,”in Pro-
ceeding of the 16th ACM International Conference on Super-
computing, 2002.

[14] K. Sycara, M. Klusch, S. Widoff, and J. Lu, “Dynamic Ser-
vice Matchmaking Among Agents in Open Information En-
vironments,” SIGMOD Record, vol. 28, no. 1, pp. 47–53,
March 1999.

[15] J. Xu, X. Tang, D. L. Lee, and Q. Hu, “Cache coherency in
location-dependent information services for mobile environ-
ment,” in Proc. MDA’99, First International Conference on
Mobile Data Access, ser. LNCS, vol. 1748. Hong Kong,
China: Springer, Dec. 1999, pp. 182–193.

[16] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar, “Engineering
server-driven consistency for large-scale dynamic web ser-
vices,” in Proc. WWW 10, the 10th Int’l World Wide Web
Conference, Hong Kong, China, May 2001, pp. 45–57.

Proceedings of the Fourth International Conference on Peer-to-Peer Computing (P2P’04)

0-7695-2156-8/04 $20.00 © 2004 IEEE

	footer1:

