
Recall-Based Cluster Reformulation by Selfish Peers

Georgia Koloniari and Evaggelia Pitoura
Computer Science Department, University of Ioannina, Greece

{kgeorgia, pitoura}@cs.uoi.gr

ABSTRACT
Recently, clustered overlays in which peers are grouped based
on the similarity of their content or interests have been
proposed to improve performance in peer-to-peer systems.
Since such systems are highly dynamic, the overlay network
needs to be updated frequently to cope with changes. In
this paper, we introduce an approach for updating a clus-
tered overlay based on local decisions made by individual
peers. We model the cluster-reformulation problem as a
game where peers determine their cluster membership based
on potential gains in the recall of their queries. We also de-
fine global criteria for the overall quality of the system and
propose strategies for peer relocation that consider different
behavioral patterns for the peers. Our preliminary experi-
mental evaluation shows that our strategies cope well with
changes in the overlay network.

1. INTRODUCTION
The popularity of file-sharing systems such as Gnutella,

Napster and Kazaa has spurred much attention to peer-to-
peer (p2p) computing. Nodes (peers) in a p2p system are
dynamic and autonomous. They have equal roles acting as
both data providers and data consumers. Each peer con-
nects to a small subset of other peers, thus logical overlay
networks are formed on top of the physical one (usually the
Internet). Queries are routed over the overlay network to lo-
cate peers that maintain relevant data. The basic challenge
lies in locating these peers and retrieving as many results
as possible, i.e. increasing the query recall, with a small
communication cost.

To address the above issue, clustering has been proposed
[1, 2, 6, 8, 4]. Clustering has been widely used in databases
to reduce the I/O cost by placing data items with similar
properties together in the hard disk, since it is expected that
similar data are accessed together. Similarly, by clustering
together peers that share the same content or have the same
interests (similar query workload), queries can locate their
results more efficiently. Once the appropriate cluster is lo-
cated, all other results are found nearby.

However, previous work mostly focused on the formation
of clusters and ignored the maintenance of the clustered
overlay, which is needed for coping with the dynamic nature
of the peers. Peers that join or leave the system constantly
and change their content and query workload frequently may
render the original clustered overlay inappropriate under the
current system conditions. One solution to the problem is
to re-apply the clustering procedure that was used to form
the original overlay from scratch taking into account the

updated state. However, this incurs large communication
costs. It also requires global knowledge about the system
state that compromises peer autonomy.

In this paper, we present an approach for handling the
maintenance issues based on decisions that each peer makes
based on local criteria. We model the problem of cluster re-
formulation as a game in which the peers are the players that
decide whether they should move to another cluster so as to
minimize an individual cost function. This cost function de-
pends on the membership cost entailed in belonging to a
cluster and the cost of evaluating the peer query workload
at remote clusters. Furthermore, we introduce global system
quality criteria to measure the performance of the system as
a whole. Similar approaches based on game-theoretic mod-
els have been proposed for creating overlays based on the
connection cost and radius of the network graph [3, 5, 7].
The novelty of our approach is that it relies on the queries
and aims at increasing their recall.

In addition, we propose strategies that the peers follow
to decide whether they need to relocate to another clus-
ter based on the above criteria, that model either selfish or
altruistic behavior. Finally, we perform a number of experi-
ments that show how our strategies help in coping with the
changes in the overlay configuration without compromising
its quality. Furthermore, our experiments show that given
(the usual assumption for clustering) that the underlying
data share some similar properties, our strategies converge
to well formed clusters for most initial system configurations.

The rest of the paper is organized as follows. In Section
2, we present the cluster reformulation problem as a game
and define the cost function and the global quality criteria.
We also discuss the convergence of the system. In Section 3,
we introduce the strategies for peer relocation and describe
how they can be applied. Section 4 presents our experimen-
tal evaluation and Section 5 refers to related research. We
conclude in Section 6.

2. RECALL-BASED CLUSTERING
We consider a peer-to-peer system with highly dynamic

autonomous nodes that share content. We use P to denote
the current set of peers. We do not assume any specific
model for the data items shared by the peers, but adopt a
rather generic approach where each data item is described
by a set of attributes (e.g., keywords for text documents).
Queries are sets of attributes. We say that a query q matches
a data item d of peer p, if its attributes are a subset of
the attributes describing d and denote the number of such
matching items as result(q, p).

978-1-4244-2162-6/08/$25.00 © 2008 IEEE ICDE Workshop 2008200

Let Q be the list of all queries in the system. Note that
a query q may appear more than once in Q. Let num(Q)
be the number of all queries in Q and num(q, Q) be the
number of appearances of query q in Q. We characterize
the importance of a peer p in the evaluation of a query q
in Q based on the results that p offers for q with regards to
the total number of available results (i.e., the recall achieved
when q is evaluated solely on p). Specifically:

r(q, p) =
result(q, p)P

pk∈P result(q, pk)
.

We also define as local workload of peer pi, Q(pi), the list
of queries that were issued by peer pi. Again num(Q(pi))
stands for the number of all queries in Q(pi) and num(q, Q(pi))
for the number of appearances of query q in Q(pi).

2.1 Individual Peer Cost
To increase the recall of their queries, peers form sets,

called clusters. The main motivation for clustering is that
inside each cluster, the evaluation of a query is cost efficient.
We model the problem of cluster formulation as a game.
Each peer represents a player in the game and its strategy
is defined by the set of clusters it joins. In particular, each
peer p chooses which clusters to join from the set of Cmax

clusters in the system, C= {c1, c2, . . . , cCmax}, thus, defining
its strategy si ⊆ C. In this paper, we let Cmax be equal to
|P |, i.e., it cannot exceed the number of peers in the system,
and assume that some clusters may be empty if needed. The
goal of the game is for each player (peer) to minimize a
cost function. The cost function for each peer p is defined
based on the recall of its local query workload. Specifically,
each peer chooses to join those clusters whose peers would
increase the recall of its local workload the most.

In other words, let P (si) be the set of peers belonging
to any cluster c ∈ si. The gain for a peer p for choosing
a strategy si is the recall of its local workload achieved by
evaluating its queries in the peers P (si). Stated differently,
the cost associated with a strategy si for a peer p is the
cost (recall) for obtaining query results from peers located
in clusters that do not belong to si, that is, for peers not in
P (si).

Clearly, this cost is minimized, if a peer joins all Cmax

clusters in the system. However, participation in a cluster
imposes communication and processing costs. Such costs
depend on the size of the cluster. The larger the size of the
cluster, the higher the cost of joining, leaving and maintain-
ing the cluster as well as for processing queries within it.
We define a monotonically increasing function θ of the num-
ber of peers belonging to a cluster, i.e., the cluster size |ci|
to capture this cost. This function depends on the cluster
topology, for instance, when all peers are connected to each
other, θ is linear, whereas in the case of structured overlays,
θ may be logarithmic.

Thus the individual cost for a peer p for choosing strategy
si is defined as follows:

pcost(p, si) = α
X

ck∈si

θ(|ck|)

|P |

+
X

qinQ(pi)

num(q, Q(pi))

num(Q(pi))

X

pj /∈P (si)

r(q, pj) (1)

The first term expresses the cost for cluster membership
and the second one the cost (in terms of recall) for obtain-
ing results from peers outside the selected clusters, that is,
the average result loss from not participating in all clusters.
Parameter α (α ≥ 0) determines the extent of influence of
the cluster participation cost in cluster formation. Finally,
factor 1/|P | is used for normalizing the cluster membership
cost.

2.2 Global Cost
We can describe any cluster configuration by the set of

strategies S = {s1, s2, . . . , s|P |} the peers in P have de-
ployed, since from this set we can derive the set of peers
belonging to each cluster in C. One way to measure the
overall quality of a cluster configuration is by evaluating the
achieved social cost (SCost), i.e. the sum of the individual
costs of all peers in P .

SCost(S) =
X

pi∈P

pcost(pi, si), (2)

where si denotes the strategy of peer pi.
We can also evaluate the overall quality of the configu-

ration from the query workload perspective, by considering
the average cost for attaining results for all queries in Q.
Then, the workload cost (WCost) is defined as:

WCost(S) = α
X

ck∈C

|ck|θ(|ck|)

|P |
+

X

qminQ

num(qm, Q)

num(Q)

X

pi,qminQ(pi)

num(qm, Q(pi))

num(qm, Q)

X

pj /∈P (si)

r(qm, pj) (3)

The first term expresses the cost of maintaining the clus-
ters. The second term expresses the cost of all queries, i.e.,
the recall of evaluating them outside the clusters of their
initiator. The main difference between the social and the
workload cost is how they assign weights to the queries. In
the social cost, each peer assigns weights to its queries based
on their frequency in its local workload, whereas in the work-
load cost, the weight assigned to each query is based on the
frequency of the query in the overall query workload. Intu-
itively, while the social cost regards all peers as equals, the
workload cost considers more demanding peers, i.e. peers
that pose more queries, as more important than low de-
manding ones.

The two cost measures are not equal in the general case.
Let us see how the two costs relate to each other. Using the
definition of individual cost, we get for the social cost:

SCost(S) = α
X

pi∈P

X

ck∈si

θ(|ck|)

|P |

+
X

pi∈P

X

qinQ(pi)

num(q, Q(pi))

num(Q(pi))

X

pj /∈P (si)

r(q, pj) (4)

The first term of SCost is equal to the first term of WCost.
Just consider that each cluster ck appears in the sum of
SCost as many times as the peers that belong to it, i.e., its
size |ck|. By simple manipulations, we get for the second
term of WCost:

X

qminQ

X

pi,qminQ(pi)

num(qm, Q(pi))

num(Q)

X

pj /∈P (si)

r(qm, pj)

201

Thus, the two terms differ only on how much the workload
of each peer is taken into account in the cost. It is easy to
see, that if peers get an equal part of the query workload,
i.e., num(Q(pi)) = num(Q(pj)), for all peers pi, pj ∈ P ,
the recall parts of the two costs are proportional, that is,
improving the social cost improves the workload cost and
vice versa.

Property 1. If for each peer pi ∈ P , num(Q(pi)) =
num(Q(p))

|P |
, the social and the workload cost measures are

proportional to each other.

2.3 System Convergence
The goal of each player (peer) is to minimize its individual

cost. The question that arises is: if we leave the players free
to play the game to achieve their goal, will the system ever
reach a stable state in which no players desire to change their
strategy (the set of clusters they belong to)? Formally, a
(pure) Nash equilibrium is a set of strategies S such that, for
each peer pi with strategy si ∈ S, and for all alternative set
of strategies S′ which differ only in the i-th component (dif-
ferent cluster sets s′i for peer pi), pcost(pi, si) ≤ pcost(pi, s

′
i).

This means that in a Nash equilibrium, no peer has an in-
centive to change the set of clusters it currently belongs to,
that is, Nash equilibria are stable.

For simplicity, in the rest of this paper, we focus on the
case where each peer belongs to only one cluster (si = cj).
So instead of pcost(pi, si), we shall write pcost(pi, cj).

It is rather simple to prove that a Nash equilibrium does
not always exist. Let us consider a simple scenario of two
peers p1 and p2. Consider now that Q(p1) consists of a single
query q1 satisfied by p2 and Q(p2) consists of q2 also satisfied
by p2. There are three possible cluster configurations for
the system, p1 ∈ c1 and p2 ∈ c2, p1 ∈ c2 and p2 ∈ c1

and p1, p2 ∈ c1 or c2 equivalently. Let us assume a linear θ
function. Then, for any value of α > 0, we can show that
none of the possible configurations is a Nash equilibrium. In
particular, since the first two configurations are symmetric
let us examine the first one. The individual costs of the two
peers are: pcost(p1, c1) = α 1

2
+ 1 and pcost(p2, c2) = α 1

2
. If

p1 moves to cluster c2 then its cost becomes pcost(p1, c2) =
α ≤ pcost(p1, c1). Thus, this configuration is not a Nash
equilibrium since p1 can reduce its cost by moving to c2.
Let us consider now the configuration in which both peers
belong to the same cluster. Their individual costs are now:
pcost(p1, c1) = α and pcost(p2, c1) = α. Peer p2 can reduce
its cost by moving to the empty cluster c2 and therefore this
configuration is not a Nash equilibrium.

3. CLUSTER REFORMULATION
Assume some initial cluster configuration. As the sys-

tem evolves, the recall achieved by this cluster configuration
may deteriorate. Changes that affect the quality of cluster-
ing include topology updates as peers enter and leave the
system, as well as changes of the peer content and the query
workload. We propose a suite of protocols to keep the clus-
tered overlay up-to-date with respect to these changes. Our
protocols are based on local relocation strategies that each
peer follows so that it moves to the most appropriate cluster
under the given system conditions. We describe first, the re-
location strategies followed by each peer and then how such
strategies are coordinated towards creating a new cluster
configuration.

3.1 Relocation Strategies
Due to updates, a peer may no longer benefit from the

clusters it belongs to. In such a case, the peer may decide
to move to a new cluster. We consider periodic strategies,
where each peer re-evaluates its cluster memberships at pe-
riods of T . We assume that each cluster has a unique iden-
tifier, cid, and that all peers in the cluster are aware of this
unique id. We also assume that the results of each query are
annotated with the corresponding cids of the clusters that
provided them.

Since a peer can not be aware of all available results for
a query in the system, we define a measure called cluster
recall as the fraction of results returned to peer p for query
q by a cluster ci to the total number of results returned
for the query. The number of these results depends on the
routing algorithm used, and if a query is evaluated against
all clusters in the system, it is equal to the total number of
results for q in the system.

Based on the behavior of each peer, we consider two types
of relocation strategies: selfish and altruistic.

3.1.1 Selfish Relocation Strategy
This strategy is governed by peer selfishness. A peer de-

termines that its current cluster is no longer suitable, when
it observes that its queries receive a low recall from it.

Since, all query results received by a peer are annotated
with the cid of the cluster they came from, each peer can
keep track of its recall with respect to all clusters in the
system. In particular, for the time period T , each peer p
incrementally updates the pcost(p, ci) for each of the clusters
ci in the system. At the end of T , each peer selects the ci

for which:

pcost(p, ci) = mincj∈C(pcost(p, cj)) (5)

The motivation behind this strategy is that a peer chooses
to move to the cluster that has yielded the most results for
its query workload. After choosing this cluster, say cluster
cnew , the peer computes a measure called individual peer
gain (pgain) as follows: pgain(p, cnew) = pcost(p, ccur) −
pcost(p, cnew), where ccur denotes the cluster the peer cur-
rently belongs to.

3.1.2 Altruistic Relocation Strategy
In contrast to selfish relocation, altruistic relocation as-

sumes that all peers act with altruism. In particular, in this
strategy, the peers decide to move to the cluster whose recall
could improve the most by this movement.

To this end, each peer keeps track of the number of re-
sults it sends to queries coming from a particular cluster. In
particular, it incrementally updates over the time frame T
the following measure for each ci:

contribution(p, ci) =

P
pi∈ci

P
qminQ(pi)

result(qm, p)
P

pj∈P

P
qminQ(pj) result(qm, p)

(6)

At the end of T , it selects the cluster cnew with the max-
imum contribution value and evaluates a new measure for
that cluster (cluster gain (clgain)) that is the increase in the
membership cost of cnew p will cause if it joins it, minus p’s
contribution to it.

3.2 Cluster Reformulation Protocol
The cluster update protocol takes place periodically. The

protocol proceeds in rounds where each round has two phases:

202

in the first phase, relocation requests are gathered, and in
the second phase, they are served. To avoid broadcasting
messages among all peers, we assume that one peer per clus-
ter acts as the cluster representative. The representatives of
each cluster do not need to be the same in all rounds of the
protocol. Note also that, it is not required that the cluster
representatives of all clusters are known to each other. If the
cluster representative forwards the request to a peer in the
cluster, the peer can then propagate it to its representative.

In the first phase of each round, each peer evaluates its
gain factor (depending on the relocation strategy applied)
and sends this value to its cluster representative. Each clus-
ter representative selects the peer with the highest gain value
in its cluster and sends a relocation request to all other clus-
ter representatives including its own cid, the cid of the clus-
ter the peer wants to move to and the value of the gain. In
the case where no peer needs to relocate, the representative
sends just a message with its cid. When all representatives
have received relocation requests from all other clusters in
the system, the second phase of the protocol begins.

In the second phase of each round, each cluster repre-
sentative sorts the relocation requests that it has received
according to their gain value. To speed-up this phase, we
try to avoid cycles due to groups of peers moving in loops
among the same set of clusters. To achieve this, we enforce
the following rule: if peer p ∈ ci moves to cj , then ci is locked
with direction leave and cj with direction join. In the same
round, no more peers can join ci or leave cj . To enforce this
condition, after the representatives have sorted the requests
in decreasing order of gain value, the first relocation request
in the list is granted. The two cluster representatives that
are involved in the request communicate with each other to
satisfy the request. Each cluster representative locks the
two clusters, i.e., it removes all other requests in the list
that involve either of them with a direction that violates
the rule. The process continues by serving the next request
remaining in the ordered list. Note that cluster representa-
tives can process their lists independently. After, all cluster
representatives have processed their lists, the protocol pro-
ceeds to the next round. The protocol ends, when the peer
representatives receive no further relocation requests.

Since each round imposes considerable overheads, we en-
force a stop condition for the protocol. In particular, before
issuing a relocation request, each peer compares its gain with
a system-defined threshold ε and issues the request, only if
the gain is larger than this threshold. Such decisions may
also be taken at the system level. Since cluster represen-
tatives exchange information about the costs of all peers in
their cluster, they can evaluate the social cost of the system.
In this case, if the difference from the original value is satis-
factory, the cluster representatives can stop the maintenance
procedure.

Finally, besides peers changing clusters, there are two spe-
cial conditions, namely deleting a cluster and creating a new
one. It is possible, for all members of a cluster to leave it,
after the application of the maintenance procedure. In this
case, the cluster is considered as an empty cluster. Regard-
ing the creation of a new cluster, consider as an example,
a scenario where the query workload in the system changes
and some peers start posing queries for a data item for which
they have no previous interest. It is possible, that the cre-
ation of a new cluster would improve recall. If the peer ob-
serves that no move to any existing cluster can improve its

Table 1: Results for fixed query workload and con-
tent

Rounds # Clusters SCost WCost

Self Alt Self Alt Self Alt Self Alt

Data and Queries in Same Category

i 9 10 10 10 0.1 0.1 0.1 0.1

ii 21 19 10 10 0.1 0.1 0.1 0.1

iii 18 20 10 10 0.1 0.1 0.1 0.1

iv 15 17 10 10 0.1 0.1 0.1 0.1

Data and Queries in Different Categories

i 84 81 90 90 0.31 0.33 0.29 0.31

ii 67 65 90 90 0.33 0.32 0.3 0.27

iii 132 129 90 90 0.36 0.33 0.3 0.29

iv 84 78 90 90 0.32 0.32 0.28 0.3

Data and Queries Uniformly Distributed

i - - 46 51 0.35 0.42 0.26 0.32

ii - - 90 89 0.27 0.37 0.23 0.29

iii - - 67 57 0.48 0.31 0.39 0.25

iv - - 76 81 0.31 0.29 0.28 0.23

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

so
ci

al
 c

os
t

rounds

selfish
altruistic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

w
ei

gh
te

d
so

ci
al

 c
os

t

rounds

selfish
altruistic

Figure 1: (left) Social Cost and (right) Workload
Cost through progressing rounds

individual cost and also that its cost has significantly been
increased since the last time period, then the peer decides
to leave its cluster and move to one of the empty clusters
in the system, automatically becoming the representative of
this cluster. It is possible that more than one peer make
this decision in the same round. However, in the following
rounds, all such peers will tend to move to just one of these
newly-formed clusters.

4. EVALUATION
We present two sets of experiments. In the first set,

we start from a random peer configuration and examine
whether the peer relocation protocol leads to the desired
cluster configuration for the given data content and work-
load. In the second set, we start from a “good” cluster
configuration for a given content and workload, and exam-
ine how well the periodic reformulation protocol adapts to
changes of the content and the workload. The peers share
Newsgroup articles belonging to 10 different categories. The
articles were preprocessed, stop words were removed from
the text, lemmatization was applied and the resulting words
were sorted by frequency of appearance. The texts are dis-
tributed among 200 peers. Queries are generated by choos-
ing a random word from the texts. We set the α parameter
equal to 1 and use a linear function (corresponding to a sys-
tem where all the peers in a cluster are fully connected) for
the θ function. Both the social and workload cost measures
reported in the experiments are normalized.

4.1 Fixed Query Workload and Content
For the data and query distribution, we consider three

different scenarios. For the first scenario, both queries and
data of a peer fall into the same category. In the second
scenario, each peer has data of a single category and queries
about data of a single but different category from its own.
In the third scenario, both data and queries for each peer are

203

selected uniformly at random from all categories. The dis-
tribution in the first two scenarios is such that ideally would
result to equal sized clusters. The queries are distributed
among the peers using a zipf distribution, thus, some peers
are more demanding than others. Let M be the optimal
number of data categories in the system for each scenario.
We consider four different cases for the initial system con-
figuration: (i) each peer forms its own cluster; (ii) peers are
randomly distributed to m = M clusters; (iii) peers belong
to m < M clusters and (iv) peers belong to m > M clusters.

Peers run the two relocation strategies for multiple rounds.
We check whether they have reached an equilibrium and if
so, what is the required number of rounds. We also provide
the achieved social and workload cost. Table 1 summarizes
our results. In the first scenario (Table 1 lines 1-4), all strate-
gies reach a Nash equilibrium rather fast (20 rounds in the
worst case). The peers form the desired number of clusters
(10). Since all data requests of a peer are contained into its
own cluster, the cost for the recall is zero, thus both the so-
cial and workload costs are equal to the cluster membership
cost. In the second scenario (Table 1 lines 5-8), again, we
reach the desired number of clusters, but since this number
is larger than the one in the first scenario, it takes more
rounds to do so. The recall factor in this case is not zero,
since there are data items from the same category a peer re-
quires that are located in different clusters. Also, since the
queries are not uniformly distributed among the peers, the
social cost differs from the workload cost. Finally, the third
scenario (Table 1 lines 9-12) does not reach convergence. In
this case, the data and query distributions are such that do
not favor the creation of clusters. Both costs exhibit larger
values than in the other two scenarios and the number of
clusters created varies widely.

A useful conclusion from this experiment is that our pro-
posed strategies can also be applied to cluster discovery. If
the distribution of queries and data allows it, our strategies
result to well-formed clusters that minimize the social cost
(thus, the recall) of the system.

We also measured the progress of the social and workload
cost during the different rounds of the relocation protocol.
We report the results for the first scenario in Fig. 1. The
more demanding peers are granted their relocation requests
first. Thus, as Fig. 1(right) shows, the workload cost de-
creases faster in the first rounds when the demanding peers
are catered, while the social cost decreases linearly through
all rounds (Fig. 1(left)).

4.2 Changing Query Workload and Content
The goal of this set of experiments is to evaluate our

strategies with regards to sustaining system quality under
changing conditions. The initial system configuration is the
clustering achieved for the first scenario of the previous set
of experiments. We maintain the number of clusters fixed
and the only change we allow is the relocation of peers to dif-
ferent non-empty clusters. We assume that the total query
workload is assigned uniformly to peers (each peer is as-
signed the same portion) and report only the social cost.
The threshold value of the gain used as a stop condition is
ε = 0.001.

We consider updates affecting peers in a single cluster, say
cluster ccur. These updates follow one of the following two
scenarios: (a) affect a varying number of peers in ccur or (b)
affect all the peers in ccur with a varying degree. For both

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers

selfish
altruistic

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated workload

selfish
altruistic

Figure 2: Social Cost for different percentages of
updated (left) peers and (right) query workload

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated peers

selfish
altruistic

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.2 0.4 0.6 0.8 1

so
ci

al
 c

os
t

percentage of updated data

selfish
altruistic

Figure 3: Social Cost for different percentages of
updated (left) peers and (right) data

scenarios, we apply our strategies until no more relocation
requests are issued and measure the social cost.

First, we consider workload updates. For the first sce-
nario, the workload of a varying number of peers in ccur

changes completely, that is, while the peers were interested
in data located in ccur, now they become interested in data
located at some other cluster cnew . For the second scenario,
the query workload of all peers in ccur changes by a varying
percentage. Figure 2 reports the social cost for each round
of the protocol for the first (Fig. 2(left)) and the second
(Fig. 2(right)) scenario. In both scenarios, for the selfish
strategy, the individual cost of the peers whose workload
change increases immediately and these peers issue requests
to move to cnew . However, there needs to be a significant
change in the peers query workload (above 50%), for im-
proving the overall social cost, since these movements would
result in increasing the individual cost of those peers whose
workload has not changed. For the altruistic strategy, the
peers from cnew that hold the data requested by peers in
ccur would start to move to ccur to cater the new workload.
However, for the peers in cnew to move, the number of peers
in ccur that need their data must become equal or larger to
the number of peers in cnew that they are currently serv-
ing. This requires a significant change in the workload of
ccur. Note that none of the scenarios achieves the initial
social cost, since by adding new peers to clusters, their size
increases along with the peer membership cost.

We now vary the data content in ccur, instead of the lo-
cal workload of its peers for both scenarios. In particular,
the data in the cluster are replaced by data belonging to a
different category. As Fig. 3 shows, the altruistic strategy
performs similar to the selfish one in the previous workload
based experiment. This is because when the content of a
peer changes, an altruistic peer no longer offers data to the
cluster it belongs to, thus, it is motivated to change cluster.
Whereas, selfish peers have no motive to leave the cluster,
since their query workload does not change and the specific
category of the data that they request is not contained in
any other cluster.

204

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1
in

di
vi

du
al

 c
os

t

percentage of changing workload

α=0
α=1
α=2

Figure 4: Influence of α

Finally, we examine the influence of parameter α. We
consider the case of peers following the selfish strategy and
evaluate the individual cost of a single peer when its query
workload gradually changes over time. As the value of α in-
creases, the membership cost becomes more expensive, thus
a larger portion of the query workload needs to change for
a peer to benefit from joining a cluster with more members
(Fig. 4).

5. RELATED WORK
Game theoretic approaches have been applied to model

the behavior of peers in p2p systems. In [3], the creation
of an Internet-like network is modeled as a game with peers
acting as selfish agents without central coordination. The
aim of the game is for each peer to choose the peers with
which to establish links. The peers pay for the creation of a
link, but gain by reducing the shortest distance to any other
peer in the system. In our approach, instead of establishing
links randomly, we consider content and query workload for
creating clusters of peers with similar properties. [5] con-
siders a more sophisticated model, in which strict bounds
are enforced on a peer’s out-degree, links are directed and
peers are allowed to express preferences regarding the choice
of their neighbors. In a way, our approach can be viewed as
setting these preferences based on recall benefits. In [7], the
authors show that allowing peers to act completely freely is
much worse than collaboration and prove that even a static
p2p of selfish peers may never reach convergence. This re-
sult is in accordance to our findings that show that in only
specific scenarios, we reach a Nash equilibrium. [9] considers
altruistic peers that decide the level of their contribution to
the system based on a utility function that depends on a
variety of parameters such as the amount of data they up-
load and download, unlike our altruistic strategy where the
choice of the cluster a peer joins depends on its contribution
to this cluster.

Recent research efforts are focusing on organizing peers
in clusters. In most cases, the authors focus on cluster for-
mation and query processing using the clusters and do not
address the adaptation of the overlay to changing condi-
tions. In [1], peers are partitioned into topic segments based
on their documents. A fixed set of M clusters is assumed,
each one corresponding to a topic segment. Knowledge of
the M centroid is global. Clusters of peers are formed in
[8] based on the semantic categories of their documents; the
semantic categories are predefined. Similarly, [2] assumes
predefined classification hierarchies based on which queries
and documents are categorized. Clustering in [6] is based
on the schemes of the peers and on predefined policies pro-
vided by human experts. Besides clustering based on peers
content, clustering based on other common features, such as
the interests of peers [4], is possible.

6. CONCLUSIONS
In this paper, we have modeled peers in a clustered overlay

as players that dynamically change the set of clusters they
belong to according to an individual cost function, which is
based on a cluster membership cost and the recall for their
local query workload. Each peer aims at minimizing its in-
dividual cost, therefore maximizing its recall. In addition,
we have defined cost criteria for measuring the global sys-
tem quality. We have proposed strategies based on different
motives behind the peers behavior (selfish or altruistic) and
showed how by following them, the peers can change the
clustered overlay to reflect the current system conditions
thus, maintain its quality under updates. Our experimental
results showed that our strategies are able to cope with the
changes and gradually correct system performance. Further-
more, they indicated that the proposed strategies can also
be used for the discovery of clusters in p2p systems, when
the underlying data distribution permits it.

There are many open issues for future work. One issue
is to derive some theoretical results regarding convergence
perhaps by considering more restricted forms of the cluster
reformulation problem. Also, practical issues such as the
maximum number of clusters that a realistic p2p system
can support and the expected look-up cost with respect to
the number of clusters and their sizes, need to be addressed.
Furthermore, there are variations to the proposed strategies
that may be worth exploring, for example, a hybrid strategy
taking into consideration both the individual cost and the
contribution measure and also variations of the game, i.e.,
with asynchronous players.

7. REFERENCES
[1] M. Bawa, G. Manku, and P. Raghavan. Sets: Search

enhanced by topic segmentation. In SIGIR, 2003.

[2] A. Crespo and H. Garcia-Molina. Semantic overlay
networks for p2p systems, technical report, computer
science department, stanford university, 2002.

[3] A. Fabrikant, A. Luthra, E. Maneva, C. H.
Papadimitriou, and S. Shenker. On a network creation
game. In PODC, 2003.

[4] M. Khambatti, K. Ryu, and P. Dasgupta. Efficient
discovery of implicitly formed peer-to-peer
communities. IJPDSN, 5(4):155–164, 2002.

[5] N. Laoutaris, G. Smaragdakis, A. Bestavros, and J. W.
Byers. Implications of selfish neighbor selection in
overlay networks. In INFOCOM, 2007.

[6] A. Loser, F. Naumann, W. Siberski, W. Nejdl, and
U. Thaden. Semantic overlay clusters within super-peer
networks. In DBISP2P, 2003.

[7] T. Moscibroda, S. Schmid, and R. Wattenhofer. On the
topologies formed by selfish peers. In PODC, 2006.

[8] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and
N. Ntarmos. Towards high performance peer-to-peer
content and resource sharing systems. In CIDR, 2003.

[9] D. K. Vassilakis and V. Vassalos. Modelling real p2p
networks: The effect of altruism. In P2P, 2007.

205

