
Mobile Networks and Applications 9, 517–528, 2004
 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Mobile Agents for Wireless Computing: The Convergence of
Wireless Computational Models with Mobile-Agent Technologies

CONSTANTINOS SPYROU and GEORGE SAMARAS
Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus

EVAGGELIA PITOURA
Department of Computer Science, University of Ioannina, GR 45110 Ioannina, Greece

PARASKEVAS EVRIPIDOU
Department of Computer Science, University of Cyprus, CY-1678 Nicosia, Cyprus

Abstract. Wireless mobile computing breaks the stationary barrier and allows users to compute and access information from anywhere
and at anytime. However, this new freedom of movement does not come without new challenges. The mobile computing environment
is constrained in many ways. Mobile elements are resource-poor and unreliable. Their network connectivity is often achieved through
low-bandwidth wireless links. Furthermore, connectivity is frequently lost for variant periods of time. The difficulties raised by these
constraints are compounded by mobility that induces variability in the availability of both communication and computational resources.
These severe restrictions have a great impact on the design and structure of mobile computing applications and motivate the development of
new software models. To this end, a number of extensions to the traditional distributed system architectures have been proposed [26]. These
new software models, however, are static and require a priori set up and configuration. This in effect limits their potential in dynamically
serving the mobile client; the client cannot access a site at which an appropriate model is not configured in advance. The contribution of
this paper is twofold. First, the paper shows how an implementation of the proposed models using mobile agents eliminates this limitation
and enhances the utilization of the models. Second, new frameworks for Web-based distributed access to databases are proposed and
implemented.

Keywords: mobile computing, mobile architectures, wireless architectures, mobile agents, client–server, wireless Web, software
models

1. Introduction

In mobile wireless computing, most of the assumptions that
influenced the definition and evolution of the traditional
client/server model for distributed computing [9] are no
longer valid. These assumptions include: (a) fast, reliable and
cheap communications, (b) robust and resource rich devices,
and finally (c) stationary and fixed locations of the participat-
ing devices. To accommodate the new computing paradigm
introduced by mobile wireless computing, various software
models have been proposed including the client/agent/server
[2,7,21,28,32], the client/intercept [12,27], the peer-to-peer,
[1,24] and the mobile agent [5,13,19,29] models. How-
ever, most of these models are static in that they have to
be set up and configured a priori, a fact that, in some de-
gree, limits their portability and usability. For example, uti-
lizing the client/agent/server for distributed database access
requires the definition and the a priori installation of a data-
base agent at all participating sites [21]. Extending such
infrastructures over the Web becomes even more cumber-
some.

In this paper, we present a general framework for dynami-
cally configuring applications to follow each of the proposed
models for wireless mobile computing. This is achieved
through the deployment of mobile agents. Such dynamic gen-

eration of various software models offers flexibility, adapt-
ability and easy of use. Furthermore, the mobile agent im-
plementation of the presented models further enhances their
applicability to mobile wireless computing making applica-
tions more light-weight, tolerant to intermittent connectivity
and adaptable to dynamically changing environments. View-
ing mobile agents not only as an emerging computational
model but as a communication paradigm as well add a new
dimension to their applicability. The proposed framework
is illustrated through a specific application, namely wire-
less web-based access to database systems. Besides serv-
ing in demonstrating our framework, this example also in-
troduces new software architectures for wireless Web-based
distributed access to databases. The dynamic installation of
the models incurs tolerable overhead measured between 9.7
and 10.1 seconds in a wireless network setting. The mobile
agent execution environments used in our implementation are
IBM’Aglets [13] and ObjectSpace’s Voyager [20] which are
both Java based frameworks for building mobile agent ob-
jects.

The remainder of this paper is organized as follows. Sec-
tion 2 defines the various software models for mobile comput-
ing and deploys them in building a Web application. Section 3
introduces a dynamic implementation of the models through
mobile agents. Section 4 presents the effect of mobile agents



518 SPYROU ET AL.

on the existing models for mobile computing, while section 5
reports on the performance of the implementation. Various
implementation issues including the choice of the implemen-
tation platform are discussed in section 6. Section 7 concludes
the paper.

2. Software models for wireless Web access to distributed
databases

2.1. Software models for mobile computing

The inadequacy of the traditional client/server model to sup-
port the wireless environment resulted in a number of new
computational models. In this section, we briefly discuss the
various models that have been proposed for wireless mobile
computing. The reader is referred to the [26] for a detailed
discussion of these models, their strengths and weaknesses.

2.1.1. Extended client/server models
Most extensions of the client/server model are based on the
introduction of stationary agents placed between the mobile
client and the fixed server. These agents alleviate the con-
straints of the wireless communication link by performing
various communication optimizations. Furthermore, the in-
troduction of agents alleviates any client-side resource con-
straints, by undertaking part of the functionality of resource-
poor mobile clients. The degree to which this is achieved
depends on the placement and functionality of the agents.

The client–agent–server model. A popular such extension
is a three-tier or client/agent/server (c/a/s) architecture [2,7,
21,28,32] that introduces a server-site agent. Such agents are
used in a variety of forms and roles. At one extreme, an agent
acts as the complete surrogate of a mobile host on the fixed
network. In this case, any communication to and from the mo-
bile host goes through the mobile host’s agent. At the other
extreme, the agent is attached to a specific service or appli-
cation, e.g., web browsing [12] or database access [21]. Any
client’s request and server’s reply associated with this applica-
tion is communicated through this service-specific agent. In
this scenario, a mobile host must be associated with as many
agents as the services it needs access to. Agents split the inter-
action between mobile clients and fixed servers in two parts,
one between the client and the agent, and one between the
agent and the server. However, while the client/agent/server
model offers a number of advantages, it fails to sustain the
current computation at the mobile client during periods of

Figure 1. The client–agent–server model.

disconnection. In addition, the agent can directly optimize
only data transmission over the wireless link from the fixed
network to the mobile client and not in the opposite direction.

The client–intercept–server model. To address the short-
comings of the client/agent/server (c/a/s) model, [12,27] pro-
pose the deployment of an agent that will run at the end-user
mobile device along with the agent of the c/a/s model that
runs within the wireline network. This client-side agent inter-
cepts client’s request and together with the server-side agent
performs optimizations to reduce data transmission over the
wireless link, improve data availability and sustain the mo-
bile computation uninterrupted. From the point of view of the
client, the client-side agent appears as the local server proxy
that is co-resident with the client. Since the pair of agents is
virtually inserted in the data path between the client and the
server, the model is also called [12,27] client/intercept/server
instead of client/agent/agent/ server model. This model pro-
vides a clear distinction and separation of responsibilities be-
tween the client- and the server-side agents. The communi-
cation protocol between the two agents can facilitate highly
effective data reduction and protocol optimization. The ex-
istence of the agent pair also facilitates adaptivity since the
two agents can dynamically divide the workload among them
based on various environmental conditions. The intercept
model provides upward compatibility since it is transparent
to both the client and the server. Legacy and existing appli-
cations can be executed as before since the agent pair shields
them from the limitations of mobility and the wireless me-
dia. This model is more appropriate for heavy-weight clients
with enough computational power and secondary storage to
support the client-side agent.

2.1.2. Mobile-agent technologies
In mobile applications data may be organized as collections of
objects, in which case objects become the unit of information
exchange between mobile and static hosts. Incorporating ac-
tive computations with objects and making them mobile leads
to mobile agents.

Besides introducing stationary agents in the path between
the mobile client and the server, mobile agents have also been
used to accomplish tasks required by mobile clients. Mobile
agents are processes dispatched from a source computer to
accomplish a specified task [5,29]. Each mobile agent is a
computation along with its own data and execution state. Af-
ter its submission, the mobile agent proceeds autonomously
and independently of the sending client. When the agent

Figure 2. The client–intercept–server model.



MOBILE AGENTS FOR WIRELESS COMPUTING 519

Figure 3. Mobile agent model.

reaches a server, it is delivered to an agent execution envi-
ronment. Then, if the agent possesses necessary authentica-
tion credentials, its executable parts are started. To accom-
plish its task, the mobile agent can transport itself to another
server, spawn new agents, or interact with other agents. Upon
completion, the mobile agent delivers the results to the send-
ing client or to another server. By letting mobile hosts sub-
mit agents, the burden of computation is shifted from the
resource-poor mobile hosts to the fixed network. Mobility
is inherent in the model; mobile agents migrate not only to
find the required resources but also to follow mobile clients.
Finally, mobile agents provide the flexibility to adaptively
shift load to and from a mobile host depending on band-
width and other available resources. Mobile-agent technol-
ogy is suitable for wireless or dial-up environments (see fig-
ure 3).

Mobile agents platforms. Several mobile agent platforms
have been proposed. They can be broadly categorized as
Java and non-Java based ones. There is an increasing in-
terest in those that are Java-based due to the inherent ad-
vantages of Java, namely, platform independence support,
highly secure program execution, and small size of compiled
code. These features of Java combined with its simple data-
base connectivity interface (JDBC API) that facilitates ap-
plication access to relational databases over the Web at dif-
ferent URLs make the Java approaches very attractive for
our implementation of web database connectivity. The Java-
based mobile agents platforms include IBM’Aglets Work-
bench [13], ObjectSpace’s Voyager [20], Mitsubishi’s Con-
cordia [31], IKV++ Grasshopper [4] and General Magic’s
Odyssey [29]. The non-Java-based systems include, for ex-
ample, TACOMA [16] and Agent Tcl [8]. While all these
systems provide the basic functionality expected from such
mobile platforms, they differ significantly in their system ar-
chitecture, the communication mechanism employed, the ad-
ditional functionality they provide and their performance. For
our purposes, namely to demonstrate the abilities and poten-
tial of mobile agents, we have chosen to use IBM’Aglets

and ObjectSpace’s Voyager. Aglets are popular in terms of
ease of programming and functionality, while Voyager, as
shown in recent studies [6], provides very good performance.
For a comprehensive comparison and quantitative perfor-
mance evaluation of the Java-based mobile agents platforms
see [6,25].

2.2. Wireless Web access to distributed databases

To demonstrate the applicability of the models, we employ
them in accessing distributed database systems through the
Web. The implementation of the models shows that all pro-
posed models outperform the current client/server approach.
In fact, in the wireless environment and for average size trans-
actions, the client/agent/server-based framework provides a
performance improvement of approximately a factor of ten
(see charts 5, 7, 8). Even for the fixed network, the gains are
about 40% (see figures 6–8). Furthermore, the current com-
mercial client/server applet-based methodologies for access-
ing database systems (using the JDBC API and JDBC drivers
API [14,15] for database connectivity [9]) offer limited flex-
ibility, scalability and robustness [22]. Within the wireless
environment, these setbacks are further exacerbated.

2.2.1. Using the client/server model
Realizing the client/server model requires the web browser to
be located at the mobile client and communicate directly with
the web server via wireless communications. When the client
requires access to a specific database, the client downloads the
appropriate database applet (DBMS-applet) to the mobile unit
form the database provider. Then, a JDBC [15] connection is
established between the client and the database server.

Limitations. Most existing approaches require to some ex-
tent the download and initiation of a JDBC driver on the client
machine [22]. The limitations of wireless communications
are aggregated by the mechanism of establishing a JDBC con-
nection. For every connection, the client must download this
JDBC driver whose size ranges between 300–500 Kb. Chart 1



520 SPYROU ET AL.

Chart 1. JDBC connection time over the wireless and fixed network. The
bandwidth of the wireless and wireline links used are 9600 Kb/s and 10 Mb/s,

respectively.

Chart 2. Client/server vs. mobile agents in the wireless environment.

shows the cost of establishing a connection and executing a
query.

2.2.2. Using the mobile agent model
The mobile agent approach is based on using mobile agents
[11,29] between the client program and the server machine
to provide database connectivity, processing and communica-
tion. In particular, an appropriate applet creates and fires a
mobile agent (or agents if necessary) that travels directly to
the remote database server.1 At the SQL server, the mobile
agent initiates a local JDBC driver, connects to the database
and performs any queries specified by the sending client [22].
When the mobile agent completes its task at the SQL server,
it dispatches itself back to the client machine directly into the
DBMS-applet from where it was initially created and fired.
Since these kind of mobile agents possess database capabili-
ties, we call them DBMS-agents or DBMS-Aglets [22]. Note
that database capabilities are dynamically acquired not at the
client but at the server. Chart 2 compares the client/server and
the mobile agent models (implemented via IBM’Aglets) over
the wireless link for the first and subsequent queries.

Advantages. By using a DBMS mobile agent (namely the
DBMS-Agent) to encapsulate all interactions between the
client applet and the SQL server machine, the client applet

1 For simplicity and clarity purposes we will refer to the “database server” as
the “SQL server”.

Chart 3. Client/server vs. client/agent/server in the wireless environment.

becomes light and portable. This is achieved by: (a) avoid-
ing the unnecessary downloading and initialization of JDBC
drivers at the client’s DBMS-applet, (b) passing the respon-
sibility of loading the JDBC driver at the SQL server to the
DBMS-agent, and (c) not using any JDBC API classes at the
client’s DBMS-applet. The effect on performance is quite
significant; this delegation of responsibility resulted in per-
formance gains of approximately a factor of four (see per-
formance evaluation in section 5, charts 5, 7 and 8). The
DBMS-agent is also independent of the various JDBC driver
implementations. The DBMS mobile agent cannot (and is not
supposed to) be aware of which JDBC driver to load when it
arrives at an SQL server. Upon arrival at the SQL server’s
context, the DBMS-agent is informed of all available JDBC
drivers and corresponding data sources. The DBMS-agent is
then capable of attaching itself to one or more of these vendor
data sources.

Limitations. An agent is fired to the database server and a
JDBC connection is established, each and every time a re-
quest is issued, thus introducing an unnecessary and undesir-
able overhead.

2.2.3. Using the client/agent/server model
Employing the client/agent/server model requires the deploy-
ment of an agent or proxy on the fixed network [21]. For
this example application, a service-specific agent, the data-
base agent, represents the client. The database agent at the
fixed network can serve multiple mobile web clients, in which
case each client has to register with the agent. All database-
related traffic to and from the mobile host goes through the
database agent.

Database connectivity is now the responsibility of the
static agent. A JDBC connection can be established and
maintained for the whole duration of the client’s applica-
tion, thus eliminating the previous limitation of creating an
agent and a connection per request. The structure, however,
is fixed requiring the a priori installation and configuration
of a database proxy. Chart 3 compares the client/server and
client/agent/server models in the wireless environment. In
fact, as is further shown in charts 5–8 (see performance eval-
uations in section 5) this approach by far outperforms the tra-



MOBILE AGENTS FOR WIRELESS COMPUTING 521

Chart 4. Client/server vs. client/intercept/server in the wireless environment.

ditional (applet) client/server approach (by a factor of ten) as
well as the other variations of the framework for direct data
access. The optimizations that can be realized by the database
agent are mostly optimizations that reduce the client or server
computational load and optimizations that minimize the com-
munication overhead only from the server to the client and
not vice versa [26].

2.2.4. Using the client/intercept/server model
Employing the client/intercept/server model [27] introduces
a database-specific agent residing at the mobile client, in ad-
dition to the database agent at the fixed network. We will
call the “database” agent at the client, client-side agent and
the database agent at the fixed network server-side DBMS-
agent. While the server-side agent at the fixed network
might serve multiple clients, the client-side agent is unique
to the client. In contrast to its server-side counterpart, the
client-side agent does not need to posses database capabili-
ties (i.e., JDBC connection capabilities). The agent pair co-
operates to intercept and control communications over the
wireless link for reducing network traffic and query process-
ing.

Functionality at the client-side agent might include var-
ious optimizations such as client-side view materialization
or caching to support disconnection and weak connectivity
[23,30] and an asynchronous-disconnected mode, to allow
queries that cannot be satisfied by the view to be automat-
ically queued when connectivity is lost and resumed when
connectivity is re-established [3,10,12].

3. Mobile agents to the rescue

To employ the proposed models, appropriate components for
each model must be configured and set up a priori for each
different application. This results in a static configuration.
Accessing a new site becomes if not impossible quite cum-
bersome prohibiting global utilization of network resources.
To access a server at a network site, the site must be appro-
priately configured in advance to include necessary software
modules. In this section, we show that combining the vari-

ous models with the capabilities provided by mobile agents
permits dynamic configuration of the various models.

3.1. Realizing the “mobile” client/agent/server model via
mobile agents

The mobile agent framework for web database access can be
incorporated with the mobile client/agent/server model. The
(server-side) agent of the client/agent/server model can be a
mobile agent dynamically created at the client, and then sent
and parked at the SQL server. This agent is maintained at
the server temporarily for the duration of the application. Be-
tween this parked agent and the remote client, another agent
carries requests and results back and forth.

Based on this variation (see figure 4), upon the first client
request, two DBMS-agents are fired from the DBMS-applet
at the client. The first one is called parked DBMS-agent and
is the client’s surrogate for database access located at the fixed
network. Its role is to “camp” at the SQL server’s agent con-
text, load the appropriate JDBC driver, connect to the data-
base, submit requests and collect and filter the answers. The
second agent is the messenger agent. The messenger agent
is responsible for carrying the requests and results back and
forth to the DBMS-applet. All requests are transmitted to the
parked DBMS-agent via the messenger agent.

This scheme is proved to be very efficient in cases where
the user issued, through the DBMS-applet, a number of con-
secutive database requests to the same remote SQL servers.
Charts 5 and 6 (see section 5) indicate a 20–30% perfor-
mance improvement over the mobile agent model. Further-
more, these two agents may own the same itinerary and thus,
if the parked DBMS-agent moves to another server the mes-
senger agent can deterministically follow it and thus dynam-
ically maintaining the client/agent/server model. An addi-
tional benefit of this approach is the ability of the messenger
agent to roam, if needed, around the network before returning
to the client. Setting up this model takes about 9.7–10.1 sec-
onds.

3.2. Realizing the “traditional” client/agent/server model
via mobile agents

The traditional client/agent/server (c/a/s) model can be ma-
terialized by letting the client communicate with the agent
through messages instead of mobile agents. This is achieved
by replacing the messenger agent with two types of mes-
sages. The first type of message, delivered from the DBMS
applet to the DBMS-agent, contains the client query and any
additional directions to the parked DBMS-agent that might
be needed. The second type of message, from the parked
DBMS-agent to the DBMS applet, contains the results of the
last query. This methodology demonstrates a true service-
specific client/agent/server application. The agent is literally
inserted into the path between the client and the server com-
municating with each other via messages.

By using a DBMS-agent parked at the server, we avoid
the reconnection cost and by using messages instead of the



522 SPYROU ET AL.

Figure 4. Materialization of the “mobile” client/agent/server model via mobile agents.

messenger agent we eliminate the time of negotiation and the
amount of data transmitted between the client and the server.

3.3. Realizing the client/intercept/server model via mobile
agents

As in the case of the client/agent/server model, we can im-
plement the client-side agent as a mobile agent. In this
case, upon the first client request, the DBMS-applet creates
two agents: the client-side agent and the server-side DBMS-
agent. The client-side agent remains at the client while the
server-side agent is dispatched to the appropriate server. The
two agents communicate and cooperate to execute various
queries/requests. Again, communication can be performed
either via agents or via messages. Both agents are maintained
for the duration of the application. Setting up this model (with
cross agent communication via messaging) takes about 9.7–
10.1 seconds.

4. Mobile agents and the client/server models: New
computing models

Realizing the various client/server variations via mobile
agents brings out new insights regarding this new distributed
computing model. Thus, Mobile agents give rise to new com-
putational models for mobile computing, which we collec-
tively call the Mobile-Agent model (see figure 3). This model
enables a high degree of flexibility as it incorporates the ad-
vantages of mobile-agent platforms. As is been shown the
Mobile Agent model is not orthogonal to the client–server
model and its extensions, since mobile agents are used to dy-
namically materialize and extend models like the C/S, C/A/S

and C/I/S. For example, the server-side agent of the C/A/S and
C/I/S model may be seen as a stationary agent, i.e., an agent
lacking the ability to migrate to other servers. One can imple-
ment these agents, however, as mobile agents that are placed
at the client and the server dynamically. Furthermore, the
server-side agent may be permitted to move within the fixed
network, “following” its associated client, to remain “near”
the client and yet within the fixed network. Once the server-
side agent starts roaming the fixed network, it can communi-
cate with the client not only via messaging but also via mobile
agents. These agents can also roam the fixed network and
connect to other servers before returning to the client, thus
enhancing the model’s flexibility. Such an approach presents
many benefits in the wireless and dial-up environments, as
well as in the world of Internet services and applications [18].

The combination of the mobile-agent model with “tra-
ditional” software models for mobile computing gives rise
to new software models. For instance, the employment of
mobile agents for client–server communication, instead of
messages, leads to the “mobile” client–server (C/S-MA),
“mobile” client–agent–server (C/A/S-MA) and “mobile”
client–intercept–server (C/I/S-MA) models.

In these cases we denote (d) as messenger agents the mo-
bile agents used by the server and the client to communicate.
In such a scenario, the client creates a messenger mobile agent
and submits it to the server machine. Upon reception, the
server processes the information presented by the messenger
agent. In a more flexible approach, a server could refine and
extend the messenger agent and then launch it to other servers
on the network. When the messenger agent finishes its task, it
returns with the results to the server. The server filters out any
unnecessary information and transmits to the mobile client



MOBILE AGENTS FOR WIRELESS COMPUTING 523

Table 1
Software models for mobile computing.

Communication Interaction modality
paradigm between clients and servers

Messaging C/S C/A/S C/I/S Mobile agent
Messenger agents C/S-MA C/A/S-MA C/I/S-MA model

only the relevant data. Such an approach entails enhancing
servers and clients with capabilities to process mobile agents,
i.e., modifying/refining their state and is, in some respect, in
accordance with current research on active networks [28].

In summary, mobile agents play a double role; they partic-
ipate into these frameworks not only as a computational unit
but as a communication mechanism as well. An extended tax-
onomy of software models for Mobile Computing, accord-
ing to the connection modality between clients and servers
(client–server, client–agent–server, etc.) and the communica-
tion paradigm employed to establish and manage connections,
is presented in table 1.

5. Performance evaluation

The performance evaluation compares the total time that is
required by a Web client to access and query a remote data-
base between the traditional (i.e., client/server) applet-based
model and the methodologies that are based on the proposed
computational models. Each of the models is dynamically
materialized via mobile agents2 as described in the previous
section. The mobile agent execution environment used to re-
alize the models is the Aglet Technology [13], developed by
IBM Tokyo, which is a Java based framework for building
mobile agent objects. To show that these models can be ef-
fectively used in the fixed network as well we performed the
same set of tests over both a wireless and a fixed network en-
vironment.

Specifically, we are interested in the time required, by
each methodology (a) to query the remote database for the
first time and (b) to complete any subsequent requests. We
consider both short (three queries) and long transactions (six
queries) between the client and the remote database. Short
or long transactions are the type of transactions generally
anticipated by Web users. For each methodology, we per-
formed the evaluation having the client accessing the Web
server via:

• a 9,600 b/s wireless dial-up connection to an Internet Ser-
vice Provider (ISP);

• a 10 Mb/s Ethernet connection (fixed network).

For each methodology and client connectivity case, we
performed the tests numerous times and from different re-
mote clients. Specifically, each set of experiments con-
sisted of more than 100 queries randomly distributed between
the seven hourly intervals composing the time span between

2 The implementation of all these frameworks can be found in http://
ada.cs.ucy.ac.cy/∼cssamara/dbms-agents

Chart 5. Mean times for 9,600 b/s client connectivity.

Chart 6. Mean times for 10 Mb/s client connectivity.

Chart 7. Short transactions graph.

9 AM and 5 PM. Each tested methodology provides two data
sets of results (observations): one for the first query and one
for the subsequent queries.

As shown in charts 5–8, the proposed software mod-
els for wireless mobile computing outperform the current
client/server approach. In the figures, the client/agent/server
model is the traditional one; i.e., communication is through
messages. As indicated by the experiments, the client/agent/
server methodology requires considerably less time than any
other methodology, while the client/server methodology sig-



524 SPYROU ET AL.

Chart 8. Long transactions graph.

Chart 9. Time needed to set up the models for the fixed and the wireless
network (the set up times are the same for all the models since only a single

agent is sent to the fixed network).

nificantly more time than any other does, except from the
fixed network case. In fact, the client/agent/server variation
provides a performance improvement of approximately a fac-
tor of ten. Even for the fixed network the gains are consid-
erable, about 40%. This brings about a positive side effect
of this work, namely the ability to effectively utilize the pro-
posed models in the fixed network as well.

Note that the performance results demonstrate only the
overheads of the proposed models and are not indicative
of their full functionality. For example, although, the
client/intercept model lacks in performance due to the ad-
ditional overhead of creating a client-side agent, it supports
compatibility, since it can be built on top of existing applica-
tions. Similarly, while communicating with messenger agents
instead of messages may be more costly, it is more flexible in
that messenger agents can perform complicated tasks.

Note that the times recorded for the first query includes
the setup time as well. We considered this appropriate since
we wanted to charge for the dynamic installation of the mod-
els. Chart 9 summarizes the time needed to set up each of
the models. For the wireless case, this time is 9.7–10.1 sec-
onds. In the wireline case, to set up the various models takes
between 2.7 and 3.2 seconds.

(a)

(b)

Figure 5. Client–intercept–server model. (a) Request. (b) Result.

6. Implementation issues

6.1. The role of the environment

Someone cannot avoid noticing the lesser performance pro-
vided by the C/I/S model compared to the C/A/S model (see
charts 5, 6). The natural question is why is that since the in-
tercept model provides more flexibility that should have been
translated into better performance. The intercept model intro-
duces a level of indirection that is not present in the C/A/S
model: the client communicates its request to the client-side
agent and then to the server-side agent. This indirection cre-
ates some delay which is not mask by any added optimiza-
tions such caching or communication protocol optimization,
simply because we have not at this stage included any.

However, the introduced delay far exceeds the anticipated.
This is the result of restrictions imposed by the Web technol-
ogy itself. Web security restrictions add a number of hidden
levels of indirection that once removed result in much better
performance. Figures 5(a) and 5(b) present the indirections
that are introduced by the Web. Once the client-side agent is
placed on the mobile unit every request arrives to the “local”
agent via the Web server (steps 1, 2, 3).

Similarly, every result is returned to the client-side agent
via the Web server which is then directed to the client applet
again via the Web server (steps A, B, C). These extra trips
significantly affect performance and are the cost of the lesser
performance provided by the C/I/S model compared to the
C/A/S model.

Fortunately, mobile agents provide unique flexibility al-
lowing alternate ways of approaching a problem. The result
of this flexibility is shown in charts 10(a) and 10(b). In the
chart the New Intercept model is shown to outperform both



MOBILE AGENTS FOR WIRELESS COMPUTING 525

(a)

(b)

Figure 6. New Intercept model. (a) First request. (b) Subsequent requests.

the C/A/S and C/I/S approaches for the first as well as the
subsequent query. This was achieved by enhancing the client-
side agent with the functionality of the DBMS-applet inter-
face (see figures 6(a) and 6(b)). Thus for a request to ma-
terialize the C/I/S model we send to the client the new and
enhanced client-side agent. Once this agent arrives at the mo-
bile unit the applet interface is killed and the interface car-
ried by the agent (which is exactly the same as the DBMS-
applet interface) pops out. Via this simple “trick” we bypass
all the restrictions of the Web and achieve direct communi-
cation between the client, the client-side agent and the server
side-agent. The result is shown in charts 10(a) and 10(b).

In similar fashion, for the case of the C/A/S model, creat-
ing the “parked” DBMS-agent on the Web server and not on
the client, achieve similar flexibility. The created on the Web
server agent is also enhanced, namely it includes the applet
interface. The client gets the user request, compose the SQL
query and alone with the other needed information submits it
via a message to the “parked” agent (at the Web server). The
“parked” agent receives the info (i.e., the Database’s URL,
the SQL query, etc.) and moves to park and execute it at the
remote destination. There it creates an agent that along with
the result carries the interface as well (see figure 7). Back
to the client, the DBMS-applet interface is killed, then the
agent displays the interface and the results, gets the new query
and goes to the server and so on and so forth. Charts 11(a)
and 11(b) compares the results of this approach with the “Mo-
bile” Client/Agent/Server model. Attempting to similarly en-
hance the “traditional” Client/Agent/Server model essentially
results into the New Intercept model.

(a)

(b)

Chart 10. Client/intercept/server vs. client/intercept/server new (a) in the
fixed environment; (b) in the wireless environment.

Figure 7. The “Mobile” client/agent/server new model.

6.2. The role of the implementation platform

In this work, so far, we have used IBM’Aglets Workbench
[13]. Aglets have mainly concentrated on functionality and
not, thus far, on performance [17]. To give an example, in
the Aglets workbench, whenever an agent is transferred to
a new destination, all the reachable objects are transported
along with it and this is done even in the cases where the



526 SPYROU ET AL.

(a)

(b)

Chart 11. Client/server vs. mobile client/agent/server vs. mobile
client/agent/server new vs. client/intercept/server new (a) in the fixed en-

vironment; (b) in the wireless environment.

agent is sent to the same destination multiple times. Other
Java-based mobile agents platforms include ObjectSpace’s
Voyager [20], Mitsubishi’s Concordia [31], IKV++ Grasshop-
per [4] and General Magic’s Odyssey [29]. While they are
all based on Java, each one of them adds its own special
implementation features that can significantly affect perfor-
mance.

In this section, we report on our experiments in implement-
ing our framework using a different agent platform, namely
Voyager. The results show that the new implementation of
our framework outperforms the applet approach even in the
case of the fixed network. After porting the Voyager platform
and port into it the DBMS-Aglet framework, we performed
the same tests under the same network/system configuration
as well as the needed statistical analysis. Worth noting is
that the porting was performed smoothly and in a timely fash-
ion.

In all approaches, for the subsequent query the Voyager
implementation by far outperforms the Aglet implementation.
For the “mobile agent” model and the “mobile C/A/S” model
approaches the performance is very close to that of the Applet
approach. The “traditional C/A/S” (see chart 12) approach,
however, outperforms the Applet approach by a factor of thir-
teen. This improvement is attributed to Voyager’s agent trans-

Chart 12. Voyager special implementation of the “Message” approach.

portation procedure. Voyager is based on RMI while Aglets
implement their own agent transport protocol (ATP). Aglets
in each and every agent transport transmit all the needed class
objects as well, while Voyager transports (following the RMI
philosophy) the needed object classes only once and on a
need-to-use base. Any subsequent request is satisfied by the
now cached at the destination objects.

The performance of the first query, however, is disappoint-
ing. In every approach, the Voyager implementation performs
the worst. This “bad” performance is the trade off for higher
flexibility. This difference in performance is attributed to the
fact that during the execution of the first query the Voyager
implementation requires the downloading (to the client) of
all the needed classes for the dynamic creation of the agent
execution environment. Aglets do not need to do that since
the required classes are preloaded to the client (the so called
aglet plug in). For the cases where we do not need to host
at the client the agent execution environment, such a case is
the traditional C/A/S model, by remotely creating the needed
agents we can achieve tremendous performance even for the
first query. Chart 12 shows the performance of such as imple-
mentation.

Implementation issues are important, especially in newly
created environments such as Mobile agent technologies. In
the particular case of chart 12 the current implementation of
IBM Aglets Workbench could not provide so readily and ef-
fectively the ability to remotely create an agent, the Voy-
ager mobile-agent platform could. This little Voyager fea-
ture, namely this ability to remotely create agents, effectively
allowed mobile agents to outperform the current applet ap-
proach in all communication platforms. The fact that this fea-
ture is not fully supported by Aglets is immaterial since (a) it
can be easily added to it and (b) we are not aiming to show
the superiority of Aglets but the power of mobile agents tech-
nology.



MOBILE AGENTS FOR WIRELESS COMPUTING 527

7. Conclusions

The challenges that a mobile computing model must meet in-
clude support for mobility, disconnections, weak connectiv-
ity, adaptivity, upward compatibility with existing and legacy
applications and support of variable types of mobile units. In
this paper, we presented a suite of software models appropri-
ate for mobile wireless computing. These models either build
on the traditional client/server model or are based on the new
paradigm of mobile agents. These two types of models are not
orthogonal, however, but they can be effectively integrated to
provide additional flexibility. In fact, we focus on how to ma-
terialize all models dynamically via mobile agents. The com-
bination of the mobile-agent model with “traditional” soft-
ware models for mobile computing gives rise to new software
models in which mobile agents play a double role; they partic-
ipate into these frameworks not only as a computational unit
but as a communication mechanism as well.

New frameworks for Web-based distributed access to data-
base systems based on the suggested software models are pro-
posed and implemented. Qualitative and quantitative analy-
sis of the implementation of these frameworks is also pre-
sented. The various implementations, each following one
of the proposed models built upon mobile agents, indicate:
(a) significant performance improvements over the traditional
client/server approach, (b) the flexibility of the mobile agent
model in dynamically configuring all other models in a cost-
effective manner and (c) the potential presented by the mobile
agent model(s).

Acknowledgements

The initial implementation of the web-based application is
due to S. Papastavrou. The code for implementing each of the
frameworks can be downloaded from http://ada.cs.
ucy.ac.cy/∼cssamara/dbms-agents

References

[1] A. Athan and D. Duchamp, Agent-mediated message passing for con-
strained environments, in: Proceedings USENIX Symposium on Mo-
bile and Location-Independent Computing, Cambridge, MA (August,
1993) pp. 103–1070.

[2] B.R. Badrinath, A. Bakre, T. Imielinski and R. Marantz, Handling mo-
bile clients: A case for indirect interaction, in: Proceedings of the
4th Workshop on Workstation Operating Systems (WWOS-IV) (1993)
pp. 91–97.

[3] D. Barbara and T. Imielinski, Sleepers and workaholics: Caching
strategies in mobile environments, in: Proceedings of the ACM SIG-
MOD International Conference on Management of Data (SIGMOD’94)
(1994) pp. 1–12.

[4] M. Breugst, I. Busse, S. Covaci and T. Magedanz, Grasshopper: A mo-
bile agent platform for IN based service environments, in: Proceedings
of IEEE IN Workshop 1998, Bordeaux, France (1998) pp. 279–290.

[5] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris and G. Tsudik,
Itinerant agents for mobile computing, Journal of IEEE Personal Com-
munications 2(5) (1995) 34–39.

[6] M. Dikaiakos and G. Samaras, A performance analysis framework for
mobile-agent systems, in: Infrastructure for Agents, Multi-Agent Sys-

tems and Scaleable Multi-Agent Systems, Proceedings of the 1st An-
nual Workshop on Infrastructure for Scaleable Multi-Agent Systems,
The Fourth International Conference on Autonomous Agents 2000,
eds. T. Wagner and O.F. Rana, Lecture Notes in Computer Science,
Vol. 1887 (Springer, 2001) pp. 180–187.

[7] A. Fox, S.D. Gribble, E.A. Brewer and E. Amir, Adapting to net-
work and client variability via on-demand dynamic distillation, in: Pro-
ceedings of the 7th International Conference on Architectural Support
for Programming Languages and Operating Systems, Cambridge, MA
(1996) pp. 160–170.

[8] R. Gray, D. Kotz, G. Cybenko and D. Rus, Agent Tcl, in: Mo-
bile Agents: Explanations and Examples, Manning Publishing, eds.
W. Cockayne and M. Zyda (1997). Imprints by Manning Publish-
ing and Prentice Hall, http://agent.cs.dartmouth.edu/
general/agenttcl.html

[9] J. Gray and A. Reuter, Transaction Processing: Concepts and Tech-
niques (Morgan Kaufman, San Mateo, 1993).

[10] R. Gruber, F. Kaashoek, B. Liskov and L. Shrira, Disconnected oper-
ations in the Thor object-oriented database system, in: Proceedings of
the Mobile Computing Systems and Applications, IEEE, Los Alamitos,
CA, USA (1995) pp. 51–56.

[11] C.G. Harrison, D.M. Chess and A. Kershenbaum, Mobile agents: are
they a good idea?, Research Report, IBM Research Division (March
1995).

[12] B.C. Housel, G. Samaras and D.B. Lindquist, WebExpress: A client/
intercept based system for optimizing web browsing in a wireless en-
vironment, Mobile Networks and Applications (MONET) 3(4), Spe-
cial Issue on Mobile Networking on the Internet (1998) 419–431. See
also Technical Report CS-TR*96-18, University of Cyprus (December
1996).

[13] IBM Japan Research Group, Aglets workbench, http://aglets.
trl.ibm.co.jp

[14] B. Jepson, Database Connectivity: The Lure of Java, Java Report (Wi-
ley Computer, 1997).

[15] B. Jepson, Java Database Programming (Wiley Computer, 1997).
[16] D. Johansen, F.B. Schneider and R. van Renesse, What TACOMA

taught us, in: Mobility, Mobile Agents and Process Migration –
An Edited Collection, eds. D. Milojicic, F. Douglis and R. Wheeler
(Addison-Wesley, Reading, MA, 1998), see also http://www.
tacoma.cs.uit.no/

[17] D.B. Lange and M. Oshima, Programming and Deploying Java Mobile
Agents with Aglets (Addison-Wesley, Reading, MA, 1998).

[18] D.B. Lange and M. Oshima, Seven good reasons for mobile agents,
Communications of the ACM 42(3) (1999) 88–91.

[19] Mobile Agents, http://www.agent.org/ and http://www.
cs.umbc.edu/agents

[20] ObjectSpace, Voyager™ technical overview, available at
http://www.objectspace.com/voyager/whitepapers/
VoyagerTechOview.pdf

[21] Oracle, Oracle Mobile Agents Technical Product Summary (June
1997), http://www.oracle.com/products/networking/
mobile/agents/html/

[22] S. Papastavrou, G. Samaras and E. Pitoura, Mobile agents for WWW
distributed database access, in: Proc. of 15th International Data Engi-
neering Conference (IEEE-ICDE’99), Sydney, Australia (March 1999).

[23] E. Pitoura and G. Samaras, Data Management for Mobile Computing
(Kluwer Academic, Dordrecht, 1998).

[24] P. Reiher, J. Popek, M. Gunter, J. Salomone and D. Ratner, Peer-to-peer
reconciliation based replication for mobile computers, in: Proceedings
of the European Conference on Object-Oriented Programming, 2nd
Workshop on Mobility and Replication (June 1996).

[25] G. Samaras, M. Dikaiakos, C. Spyrou and A. Liberdos, Mobile agent
platforms for Web-databases: A qualitative and quantitative assess-
ment, in: The Joint Symposium ASA/MA’99, 1st International Sympo-
sium on Agent Systems and Applications (ASA’99), 3rd International
Symposium on Mobile Agents (MA’99), USA (1999) pp. 50–64.

[26] G. Samaras, E. Pitoura and P. Evripidou, Software models for wire-
less and mobile computing: Survey and case study, Technical Report
TR-99-5, University of Cyprus (March 1999).



528 SPYROU ET AL.

[27] G. Samaras and A. Pitsillides, Client/intercept: a computational model
for wireless environments, in: Proceedings of the 4th International
Conference on Telecommunications (ICT’97), Melbourne, Australia
(April 1997).

[28] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie and G.J. Minden,
A survey of active network research, IEEE Communications Magazine
35(1) (1996) 80–86.

[29] J.E. White, Mobile agents, General Magic White Paper (1996),
http://www.genmagic.com/agents

[30] O. Wolfson, P. Sistla, S. Dao, K. Narayanan and R. Raj, View mainte-
nance in mobile computing, SIGMOD Record (1995) 22–27.

[31] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young and B. Peet,
Concordia: An infrastructure for collaborating mobile agents, in: Lec-
ture Notes in Computer Science, Vol. 1219 (Springer, Berlin, 1997)
http://www.meitca.com/HSL/Projects/Concordia/

[32] B. Zenel and D. Duchamp, General purpose proxies: Solved and un-
solved problems, in: Proceedings of the Hot-OS VI (1997) pp. 87–92.

Constantinos Spyrou is a Ph.D. candidate at the De-
partment of Computer Science, of the University of
Cyprus. He received his B.Sc. (May 1999) and M.Sc.
(June 2001) in computer science, from the Univer-
sity of Cyprus. He is the recipient of the award for
the best Academic progress during the years 1995–
1999 that is given jointly by the Computer Science
Department (University of Cyprus) and IBM Italia
(Cyprus Branch). His research interests include mo-
bile agents technology, Web database connectivity

and mobile data management. He has already published a number of pa-
pers on these areas in international conferences and journals.
E-mail: cspgcs1@ucy.ac.cy

George Samaras received a Ph.D. in computer sci-
ence from Rensselaer Polytechnic Institute, USA, in
1989. He is currently an Associate Professor at the
University of Cyprus. He was previously at IBM Re-
search Triangle Park, USA and taught at the Univer-
sity of North Carolina at Chapel Hill (adjunct Assis-
tant Professor, 1990–1993). He served as the lead
architect of IBM’s Distributed Commit Architecture
(1990–1994) and co-authored the final publication of
the Architecture (IBM Book, SC31-8134-00, Sep-

tember 1994). He was member of IBM’s Wireless Division and participated
in the design/architecture of IBM’s WebExpress, a wireless Web browsing
system. He recently (1997) co-authored a book on data management for mo-
bile computing (Kluwer Academic). He has a number of patents relating to
transaction processing technology and numerous technical conference and
journal publications. His work on utilizing mobile agents for Web database
access has received the best paper award of the 1999 IEEE International Con-
ference on Data Engineering (ICDE’99). He has served as proposal evaluator

at a national and international level and he is regularly invited by the Euro-
pean Commission to serve as project evaluator and auditor in areas related
to mobile computing and mobile agents. George Samaras has served as pro-
gram co-chair and program committee member on a number of conferences.
He also served on IBM’s internal international standards committees for is-
sues related to distributed transaction processing (OSI/TP, XOPEN, OMG).

E-mail: cssamara@cs.ucy.ac.cy

Evaggelia Pitoura received her B.Sc. from the De-
partment of Computer Science and Engineering of
the University of Patras, Greece in 1990 and her
M.Sc. and Ph.D. in computer science from Purdue
University in 1993 and 1995, respectively. Since
September 1995, she is on the faculty of the Depart-
ment of Computer Science of the University of Ioan-
nina, Greece. Her main research interests are data
management for mobile computing and network-
centric databases. Her publications include several

articles in international journals (including IEEE TKDE, ACM Computing
Surveys, Information Systems) and conferences (including VLDB, ICDE,
ICDCS, CIKM) and a recently published book on mobile computing. She
received the best paper award in the IEEE ICDE 1999 for her work on mo-
bile agents. She also co-authored a tutorial on mobile computing presented
in IEEE ICDE 2000. Evaggelia Pitoura has served on a number of program
committees and was program co-chair of the MobiDE workshop held in con-
junction with MobiCom 99.
E-mail: pitoura@cs.uoi.gr

Paraskevas Evripidou was born in Nicosia Cyprus
in 1959. He received the Hn.D. in electrical en-
gineering from the Higher Technical Institute in
Nicosia, Cyprus in 1981. In 1983 he joined the
University of Southern California with a scholarship
from the US Agency for International Development.
He received the B.S. in electrical engineering, M.S.
and Ph.D. in computer engineering in 1985, 1986
and 1990, respectively.

Currently he is an Associate Professor at the De-
partment of Computer Science of the University of Cyprus. From 1990 to
1994 he was on the Faculty of the Department of Computer Science and
Engineering of the Southern Methodist University as an Assistant Professor
(tennure track). His current research interests are in parallel processing, com-
puter architecture, parallelizing compilers, real-time systems, Java-powered
tools for teleworking, parallel processing with mobile agents and parallel in-
put/output and file systems.

Dr. Evripidou is a member of the IFIP Working Group 10.3, the IEEE
Computer Society and ACM SIGARCH. He is also a member of the Phi
Kappa Phi and Tau Beta Pi honor societies. He was the Program Co-Chair
and General Co-Chair of the International Conference on Parallel Architec-
ture and Compilation Techniques in 1999 and 1995, respectively.
E-mail: skevos@cs.ucy.ac.cy


