
Mobile Agent-Based Services for View Materialization
�

Kyriakos Karenos
�

George Samaras
�

Panos K. Chrysanthis
�

Evaggelia Pitoura
�

cs98kk2@cs.ucy.ac.cy cssamara@cs.ucy.ac.cy panos@cs.pitt.edu pitoura@cs.uoi.gr
�

Department of Computer Science, University of Cyprus, Nicosia, Cyprus
�

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
�

Department of Computer Science, University of Ioannina, Ioannina, Greece

Mobile agents are ideal for mobile computing environments because of their ability to
support asynchronous communication and disconnected data processing. In this paper,
we present a prototype set of extensible mobile-agent based services that allow the defini-
tion, materialization, maintenance and sharing of views created over remote web-accessible
datasources, called ViSMA (Views Supported by Mobile Agents). ViSMA’s primary goal
is to support the customization and personalization of views by mobile users carrying
lightweight devices of various connectivity and resources such as portable computers and
PDAs. It achieves efficient view customization by localizing the materialization of view
fragments of a complex view within different mobile agents which monitor each other’s
movement in order to minimize communication costs. ViSMA has been fully implemented
over a mobile agent platform and tested using three alternative mobile client types.

I. Introduction

Data accessing in the recent years has been affected
by three major trends: the vast amount of avail-
able sources, the increase of mobile and wireless
clients and the need to support personalization and
customization. Current information systems are built
across several datasources and, in their majority, fre-
quently request access to distributed data. Gathering
data in a centralized manner usually introduces in-
creased processing costs and makes poor use of net-
work resources as mobile clients increase the distance
and change the connectivity between the access loca-
tion and the location of the data. An effective strategy
for confronting these problems with respect to dis-
tributed datasource access has been proven to be the
use of mobile agent technology, which considerably
improved system performance [11].

Mobile and wireless computing itself, introduces
additional restrictions to network resource availabil-
ity and it is characterized by frequent disconnections
and delays. Device variability in computational power
and resources is a factor that hinders the process of
building generic systems to work effectively within
diverse contexts. In addition, specific user require-
ments need to be taken under consideration both with
respect to the requested data (i.e., personalization of

�
This work was partially funded by the Information Soci-

ety Technologies program of the European Commission, Future
and Emerging Technologies under the IST-2001- 39045 SeLeNe
project and the IST-2001- 32645 DBGlobe project.

data) as well as the functionality provided over these
data (i.e., customization of services).

Views provide a functional and flexible answer to
multi-source data collection and are quite appropri-
ate for defining personalized data sets. View materi-
alization in mobile computing [13, 22] introduces a
number of challenges although a primary concern that
is frequently stressed is keeping the views as close as
possible to the mobile user [19]. Additionally, support
must be provided for thin clients and finally it should
be possible to dynamically add new datasources to the
view.

New tools that can meet the presenting challenges
must become available to users. ViSMA is one such
system that provides the functionalities of defining,
materializing and maintaining views over multiple
datasources1 by taking advantage of mobile agent
technology with additional features to support mobile
and wireless clients. The role of mobile agents in
ViSMA is twofold: Firstly, views are carried within
mobile agents called View Agents [8] and may relo-
cate themselves to reduce the distance from users that
frequently request them. Secondly, they are used for
migrating to a remote data source and locally execute
update propagation and query materialization opera-
tions, relieving remote clients and local datasources

1ViSMA integrates any datasource that can export a
relational/object-relational interface, which is the assumption of
JDBC/ODBC connectivity. In the examples used in this paper,
we consider the datasource to be a relational database thus the
terms ‘datasource’ and ‘database’ are used interchangeably.

32 Mobile Computing and Communications Review, Volume 8, Number 3

from performing this task while saving precious net-
work resources.

The ViSMA system is fully implemented in Java,
which is suitable for the development of mobile-agent
based applications mainly due to its platform indepen-
dence. We have also used Voyager ORB [12] to be the
mobile agent platform. The Extensible and Flexible
Library (XXL) [2, 21] was used to instantiate the rela-
tional database functions executed by the agents. We
have also utilized Tracker [15], an efficient location
management system, to enable agent coordination and
communication. We have implement three alterna-
tive client components that aim at supporting clients
of variant resource availability, namely, the ViSMA
Light Client Applet, the ViSMA Servlet Engine and
the ViSMA Client Agent.

The rest of this paper is structured as follows:
We first provide a general overview of Mobile-Agent
technology (Section II). We then describe the archi-
tecture for the ViSMA system in detail (Section III)
and clearly define the system’s services and the func-
tionality provided by the ViSMA middleware (Sec-
tion IV). We also describe ViSMA’s materialization
scheme, which is based on the concept of the Data
Holders and illustrate how view mobility is achieved.
We conclude with a discussion of ViSMA’s feature
(Section V) and future work (Section VI).

II. Mobile-Agent Technologies

Mobile Agents emerge from incorporating active com-
putations with objects and making them mobile in or-
der to accomplish tasks in a highly dynamic and het-
erogeneous environment such as a mobile computing
one. They are defined as processes dispatched from a
source computer to accomplish a specified task [3, 6].
Each mobile agent is a computation along with its own
data and execution state. After its submission, the
mobile agent proceeds autonomously and indepen-
dently of the sending client. When the agent reaches
a server, it is delivered to an agent execution environ-
ment. Then, if the agent possesses necessary authenti-
cation credentials, its executable parts are started. To
accomplish its task, the mobile agent can transport it-
self to another server, spawn new agents, or interact
with other agents. Upon completion, the mobile agent
delivers the results to the sending client or to another
server.

By letting mobile hosts (clients) utilize mobile
agents, the burden of a computation is shifted from the
resource-poor mobile hosts to the fixed network. Mo-
bility is inherent in the model; mobile agents migrate

not only to find the required resources but also to fol-
low mobile clients. Finally, mobile agents provide the
flexibility to adaptively shift load to and from a mo-
bile host depending on bandwidth and other available
resources.

II.A. Mobile-Agent Platforms

Several mobile agent platforms have been proposed.
Java-based platforms have dominated both in research
and in commercial applications due to the inherent ad-
vantages of Java, namely, platform independence sup-
port, highly secure program execution, and small size
of compiled code. These features of Java combined
with its simple database connectivity interface (JDBC
API) that facilitates application access to relational
databases over the Web at different URLs make the
Java approaches very attractive for our implementa-
tion of web database connectivity.

The Java-based mobile agents platforms include
IBM Aglets Workbench [5], Recursion Software
Voyager [12], Mitsubishi’s Concordia [20], IKV++
Grasshopper [1] and General Magic’s Odyssey [6].
While all these systems provide the basic functionality
expected from such mobile platforms, they differ sig-
nificantly in their system architecture, the communi-
cation mechanism employed, the additional function-
ality they provide and their performance. Any of these
mobile-agent platforms can support our proposed sys-
tem. However, we have chosen to use Voyager due to
the facts that (i) it is a commercial product used cur-
rently in real applications and (ii) it provides relative
good performance, as shown in [4, 10].

II.B. Location Management: Tracker

Tracker [15] is a distributed location management
middleware which has the ability to manage the loca-
tion of mobile agents that travel autonomously across
the Internet in search of useful information. Being
MASIF compliant [9] and based on Java, Tracker is
independent of the semantics of any particular Java
based mobile agent platform and able to integrate with
each one of them seamlessly. Major advantages of this
middleware include: (a) the ability to manage the lo-
cation of any mobile agent and (b) allowing agents to
locate other agents, independently of their native exe-
cution environment.

Tracker provides two classes: the TrackerAgent
and the TrackerRegistry. By extending the abstract
class � � � � � 	 � � � 	 � � , a Tracker enabled agent can be
created. Upon its creation, this agent is registered
to the � � � � � 	 � � 	 � � � � � � of the local node. The

Mobile Computing and Communications Review, Volume 8, Number 3 33

local � � � � �
 �
 � � � � � � informs the proper nodes
(i.e., their � � � � �
 �
 � � � � � �) about the presence
of the new agent. During a move of a Tracker-
enabled agent from one node to another, the agent
itself (or its proxy) informs the destination-node’s
� � � � �
 �
 � � � � � � about its arrival. This is the re-
sponsibility of the agent and the appropriate method is
part of the TrackerAgent’s definition. In turn, the des-
tination node’s � � � � �
 �
 � � � � � � , informs the ap-
propriate nodes about the arrival of the agent based
on the current location mechanism. As soon as this
procedure finishes and again in accordance with the
current location mechanism, all appropriate nodes are
informed about the departure of the agent in order to
delete it. Now in any node, a user can ask the local

� � � � �
 �
 � � � � � � for the location of any agent by
simply using the agent’s name.

III. Architecture

In order to allow the creation and maintenance of dis-
tributed views we have designed a multi-tier agent-
based architecture. The architectural components are
distinguished based on their placement and function-
ality (Figure 1) to: Server Side Components, Data-
source Side Components and Client Side Components.

Server side components are the agents that form
the core of the system. Typically, they reside at
a centralized location called collectively, the ViSMA
Server. In our current implementation, we assume an
enterprise-wise ViSMA server, that is, there is a single
ViSMA server that supports all users and applications
within an enterprise or computing environment. As
we will discuss in Section V, we are currently extend-
ing ViSMA to support cross-enterprise interactions by
configuring ViSMA Servers in a P2P-like system.

Datasource side components are agents generally
reside at a datasource location (e.g., at a remote
database server location) or are created at the ViSMA
server but migrate and execute the bulk of their oper-
ations at one or more datasource location.

Client side components represent the interface be-
tween a user and the ViSMA middleware thus, need
to be accessible by the user. Therefore, they may
be located at the users machine or to an intermedi-
ate location known to the user transparently with re-
spect to the ViSMA server. Client side components
generally need to interact only with the Server side
agents but not directly with the database side agents.
Note, though that it is possible and feasible in specific
application contexts, for a client side agent (e.g., the
ViSMA agent client) to directly contact another agent

without requesting mediation from the ViSMA Server
since all agents can be located via Tracker.

In ViSMA, agents are distinguished into either mo-
bile or stationary. A mobile agents may move from
one network node to another in order to complete a
predefined task while a stationary agent migrates once
to a specific node, remains (“parks”) at that location
and periodically execute its task according to the ap-
plication requirements.

Wherever mobile agents need to execute, a Mobile
Agent Platform needs to be installed (i.e., the Voyager
server). For the data source side, this is practically the
sole system requirement since all remaining function-
ality is dynamically deployed. At the server side, the
Voyager server is integrated with a web server used for
two basic purposes: (i) remote class loading by agents
(via HTTP) and (ii) for providing the web interface to
web browser users.

Servlet Engine Light Applet ViSMA
Agent

Personal
Agent.

Data Holder

View
Agent

Voyager Server

Web
Server

DBInfo
Agent

View
Evaluator

Monitor

Assistant

Voyager Server

JDBC

Data source

Client Side Components

Data source Side
Components

Interface

VDA

Metadata

Server Side
Components

TRACKER

TRACKER

TRACKER

Figure 1: ViSMA Architecture

III.A. Server Side Components

The ViSMA Server can be characterized as a “dic-
tionary” in terms of meta-data on participating data
sources and created views. With respect to views,
metadata include the view definition as well as the cur-
rent location of the mobile agent carrying the view.
The ViSMA server consists of four types of agents:
View Dictionary Agent, View Agent, Data Holder and
Personal Agent.
View Dictionary Agent (VDA): The basic agent at the
Server side is the View Dictionary Agent. The VDA
is the central communication and coordinating agent,

34 Mobile Computing and Communications Review, Volume 8, Number 3

which is contacted by users, or agents receiving re-
quests via a well-defined ViSMA user-access (service)
interface.

Figure 2 shows a high level definition of the VDA
interface. This is divided into three sections compris-
ing a WSDL-like definition of basic system-offered
services. The first section represents a set of system-
defined object types, used as service parameters in-
cluding view definition, view actual data and data-
source access information. The second section pro-
vides a sample set of exchanged messages definitions
such as a view creation message. The last section is
a set of definitions involving the system operations
themselves that make use these messages.

It should be noted that any message passing pro-
tocol can mediate the exchange of messages between
the client applications and the VDA. Remote Process
Calls (RPC, e.g., Java RMI [17]) as well as Web Ser-
vices technologies [18] provide excellent implemen-
tation solutions.

View Agent (VA): The View Agent is another key agent
of the ViSMA architecture. A VA is a mobile agent
that is created when a user defines a view to be ma-
terialized and it is initialized by the VDA. A VA is
responsible for creating, materializing and maintain-
ing a view. A VA allows for its materialized view to
be queried by external entities. Therefore, sub-views
can be derived from a VA view. For sharable views,
its materialized data are available and can be accessed
by all ViSMA clients. Since a VA is a mobile agent
this data can be carried with it as it moves. Therefore,
view migration is achieved.

Data Holder Agent (DH): Data Holders are mobile
agents. When a VA is created, it initializes and dis-
patches a number of DHs to support it in the material-
ization and maintenance of its view. The DHs created
by a VA are configured in a hierarchy with the VA as
the root. Each DH in the hierarchy is responsible for
handling an individual view fragment. At its creation
time, a DH receives the definition of a view fragment
for which it is responsible. The VA is responsible to
combine the fragments and produce the final view. Ef-
fectively, DHs form the structure of the materialized
view.

Personal Agent (PA): The Personal Agent is a mo-
bile agent that is used for creating personalized, non-
shareable sub-views. It derives its sub-view from the
view of a VA and maintains its sub-view by only is-
suing user queries to the VA. The PA may communi-
cate directly with its client and may move as its client
moves.

<types>
<schema>

<complexType name=" ViewDefinition ">
</complexType >
<complexType name=" ViewResultSet ">
</complexType >
<complexType name=" DatasourceInfo ">
</complexType >

</schema>
</types>

<message name=" GetAvailableDatabases ">
</message>
<message name=" GetAvailableViews ">
</message>
<message name=" AvailableDatabasesResponse ">
</message>
<message name=" GetAvailableViews ">
</message>
<message name=" ShareableViewResponse ">
</message>
<message name=" DeleteView ">
<part name="identification" type="long"/>
</message>
<message name=" DeletionResponse ">
</message>
<message name=" GetViewData ">
<part name=" viewname " type="string"/>
</message>
<message name=" DataRetrievalResponse ">
</message>
<message name=" RegisterDatasource ">
<part name=" param " type=" visma :DatasourceInfo "/>
</message>
<message name=" CreatePersonalizedView ">
<part name=" def " type=" visma :ViewDefinition "/>
</message>
<message name=" CreateShareableView ">
<part name=" def " type=" visma :ViewDefinition "/>
</message>

<portType name=" vismaPortType ">
<operation name=" DatasourceRegistration ">
<input message=" tns :RegisterDatasource "/>
<output message=" tns :RegistrationResponse "/>

</operation>
<operation name=" ClientInitialization ">
<input message=" tns :GetAvailableDatabases "

name=" ClientInitInput"/>
<output message=" tns :AvailableDatabases "

name=" ClientInitOutput "/>
</operation>
<operation name=" ShareableViewCreation ">
<input message=" tns :CreateShareableView "/>
<output message=

" tns :ShareableViewCreationResponse "/>
</operation>

</portType >

Figure 2: Basic WSDL-like Service Description

Mobile Computing and Communications Review, Volume 8, Number 3 35

III.B. Datasource Side Components

The datasource side components are two mobile
agents, namely, DB Info Agent and View Evaluator
Agent, and two stationary agents, namely, Assistant
Agent and Monitor Agent.
Assistant Agent: The Assistant Agent is a station-
ary agent that maintains a pool of connections to
the data source to serve visiting agents [11]. These
agents provide transparent connectivity between data-
sources and agents that require access to the data-
sources. Changes to a datasource connectivity settings
need only made known to the Assistant Agent.
DB Info Agent: The DB Info Agent migrates to the
remote datasource site, collects its metadata (schema
and data types), sends them to the VDA and finally
self-destructs.
Monitor Agent: The Monitor Agent is another sta-
tionary agent created and dispatched to a datasource
site by some DH to enable view maintenance. A
Monitor Agent “parks” at the remote site and period-
ically re-queries the datasource and sends changes to
the DH. Thus, DH may receive simultaneous updates
from multiple Monitor Agents.
View Evaluator Agent (VEA): Another fundamental
agent is the View Evaluator Agent. A VEA is a mo-
bile agent that is sent by a DH to travel from one data-
source to another to collect the data required for the
materialization of the view fragment that the DH is
responsible for. A VEA combines the collected data
as soon as possible at their retrieval sites in order to
minimize the size of its transported data while at the
same time incrementally materializes the view frag-
ment. Access to the datasources is provided by each
local Assistant Agent. A VEA needs not be destroyed
upon completion of a materialization. On the contrary,
it can be reused to re-execute the materialization plan
whenever necessary.

III.C. Client Side Components

A client component can be any entity that can con-
tact the VDA directly or indirectly (e.g., via a gateway
which translates user requests to VDA calls). We have
implemented three alternative types of base clients,
each of which can support mobile users with differ-
ent capabilities. These alternatives are: ViSMA Client
Agent, Light Applet and ViSMA Servlet Engine.

The ViSMA Client Agent provides each user with a
private mobile agent that can interact in a P2P manner
with other agents. A ViSMA client Agent can submit
a query to a VA without any VDA intercession while
it interacts with VDA in order to create views and re-

trieve metadata on existing views. The ViSMA Client
Agent assumes that the user device has adequate com-
putational resources to host the mobile agent platform
such as the case of laptop and notebook machines.

The second client type is Applet-based and enables
any user with any Java supporting browser to down-
load a light applet GUI to interact with the VDA. In
this case, VDA also accepts queries to views. It for-
wards any query to the appropriate VA and returns to
the client the response of the VA. The applet does not
require a mobile agent platform to be installed on the
device and does not require administrative privileges.

Finally, for users with no Java support or with re-
source restrictions, the ViSMA Servlet Engine is pro-
vided. The Servlet engine is a middleware compo-
nent that accepts standard HTTP requests and replies
in standard HTML. It only assumes a simple web
browser which nowadays is available on almost any
relatively low resource mobile devices such as PDAs
and Smart Phones.

IV. System Services

In this section we will illustrate the functionality of
the system using a concrete example. Consider the
following distinct databases in a medical information
system. For simplicity, we assume that each of the
following databases is represented as a single table
(Figure 3). In this schema, “PatientID” is the pri-
mary key for “Pa Hospital”, “Ni Hospital” and “Doc-
torDB” and is represented in the same way (i.e., same
type) in all tables. “Medication” is a foreign key in
“DoctorDB” that references the primary key of “Phar-
macyDB.”

Consider a doctor who visits two separate hospi-
tals in Cyprus for patient treatments, one in Paphos
(“Pa Hospital”) and one in Nicosia (“Ni Hospital”).
The hospital databases are updated several times a day
regarding the condition of patients. The doctor also
maintains her own database (“DoctorDB”) to keep
track of the treatments related to her personal patients.
“DoctorDB” database is also located in Nicosia but
managed by different database management system
than “Ni Hospital.” The “PharmacyDB” is in Pitts-
burgh, USA and keeps data on types of medication.

IV.A. Datasource Registration

In order for a datasource such as “Pa Hospital”,
“Ni Hospital”, “DoctorDB” and “PharmacyDB” to
be available for access, the datasource administrator
must register its location to the ViSMA system. The

36 Mobile Computing and Communications Review, Volume 8, Number 3

PatientID Pressure Temperature Pulse

PatientID LastVisit Diagnosis Medication

PatientID Condition Respiration Pressure

Medication Price Available

Pa_Hospital

Ni_Hospital

DoctorDB

PharmacyDB

Figure 3: Example Databases Schemas

datasource administrator is simply required to down-
load the datasource registration applet (or access the
corresponding Servlet page if Java is not supported)
and provide the datasource’s location in the form of a
URL or IP and the port where the data source server
is listening for connections.

A datasource administrator must also provide valid
data access codes (Figure 4, Step 1). By providing
for valid access codes, security and access control is
preserved by ViSMA. Valid codes will correspond to
users, groups or roles that encode what is visible to
the user/application and hence can be exported by a
datasource and imported by the VDA. That is, a data-
source administrator does not actually register an en-
tire datasource, but rather data views or portions of
the datasource identified by the access codes. Thus,
before registering a datasource, the administrator may
create the appropriate datasource view, define roles
and set the necessary protections.

The registration process is followed by an import
process (Steps 2 to 4): Provided the aforementioned
information, the VDA creates and dispatches an As-
sistant Agent, which migrates and connects to the
datasource using the access codes. Afterwards, the
VDA creates and dispatches a DB Info Agent to col-
lect the metadata of the datasource with the mediation
of the Assistant Agent. When a DB Info Agent returns
with the metadata, VDA creates an entry in its dictio-
nary for the datasource. In the final step (Step 5), the
VDA acknowledges the inclusion of the datasource to
the dictionary.

This two-phase strategy of registration and import-
ing, on one hand, avoids user-related errors in provid-
ing the datasource metadata needed for the dictionary
and on the other hand, allows for asynchronous oper-
ation and lets the VDA to handle other incoming re-
quests.

IV.B. View Definition

The client side components provide an easy-to-use
GUI in the form of a “wizard” which downloads

Client

DB

In
fo

DBInfo Agent

Assistant

Step 2Step 3

Step 4

Step 1

Step 5

View
Dictionary

ViSMA Applet

Figure 4: Datasource Registration

all available datasources and existing views from the
VDA and guides the user through the definition of
a new view. During this process the user select the
databases, tables and attributes to retrieve as well as
sets the restrictions on each attribute. The user can
also define which relation attributes are most impor-
tant to her and select to specifically monitor those at-
tributes for changes. View definition is assisted by
retrieving the metadata of the selected databases from
the VDA locally to each client side component.

The user can define a view to be either shareable or
private. Shareable views are visible to every client
that connect to the system while private views are
only available to the clients which have created them.
Additionally, personalized view can be defined. Per-
sonalized views are materialized subviews of existing
views created with the help of a Private Agent (PA).

ViSMA handles view definitions consisting of
project, select and join operators and combinations
of Project-Select-Join (PSJ) queries. PSJ views are
most common and, to a large extent, cover the require-
ments of the problem investigated [23]. We categorize
views into either simple or complex. A simple view
can be broken down to a sequence of PSJ operations
that actually represent a linearized query evaluation
tree. The materialization of the view represented by
this tree is achieved by a single VEA (View Evaluator
Agent). Complex views consist of at least two sim-
ple views combined with some set operator such as
“Union” or “Minus”.

Views can also be defined to extract data from a
single datasource (single views) or from multiple data-
sources (multi-views). In the latter case and for simple
view, the linearized query evaluation tree can serve as
the itinerary for the VEA responsible for materializing
the simple view.

Returning to our example, suppose that the doctor
has to leave for a conference in Athens but needs to

Mobile Computing and Communications Review, Volume 8, Number 3 37

� � � � � �
 � � � � � � � � � � � � � � � � ! " $

 � � � & ' � � (� �) * � � , - / 1 , � � ! 3 � � � 5
� � (� �) * � � , - / 1 � !)) 6 � ! 5
� � � � � � � � / � � , : 3 �) �) 5
1 < , � , = , � > � � / ? , � - , @ - !

� � B C � � (� �) * � � , - 5
� � � � � � � � 5
1 < , � , = , � > � �

E � � � �
� � (� �) * � � , - / 1 , � � ! 3 � � � G

� � � � � � � � / 1 , � � ! 3 � � �
 � �
� � � � � � � � / C ! H � � , � � � 3 G

1 < , � , = , � > � � / C ! H � � , � � � 3
 � �
� � � � � � � � / � ,) � � �) � �

K M N M N O P P Q

R � � B �

 � � � & ' 1 , (� �) * � � , - / 1 , � � ! 3 � � � 5
1 , (� �) * � � , - / 1 � !)) 6 � ! 5
� � � � � � � � / � � , : 3 �) �) 5
1 < , � , = , � > � � / ? , � - , @ - !

� � B C 1 , (� �) * � � , - 5
� � � � � � � � 5
1 < , � , = , � > � �

E � � � � 1 , (� �) * � � , - / 1 , � � ! 3 � � � G
� � � � � � � � / 1 , � � ! 3 � � �

 � �
� � � � � � � � / C ! H � � , � � � 3 G

1 < , � , = , � > � � / C ! H � � , � � � 3
 � �
� � � � � � � � / � ,) � � �) � �

K M N M N O P P Q

C B � � ' B � � � (� �) * � � , - / ' ! = * ! � , � 6 � ! 5
1 , (� �) * � � , - / 1 � !)) 6 � !

� � � � U V = � 3 6 � !)

Figure 5: Sharable View Definition

keep track of her patients while being away. She se-
lects to define a view (e.g., using the Applet-Based
Client from her laptop) called X Y Z [Y \] ^ ` a b before
leaving for her trip. This complex, multi-view ex-
pressed in an SQL-like language is defined as shown
in Figure 5. This SQL-like language is similar to the
language proposed in [8].

The c d e f g d h] i ^ i h j clause defines the set of at-
tributes to be monitored as well as the time interval
between re-querying the sources for changes on these
attributes.

IV.C. Materialization Scheme

In ViSMA, each view is associated with a view defi-
nition object stored by the VDA. This object encap-
sulates the structure of the view consisting of each in-
dividual PSJ sub-query along with the operators that
connect them. Additionally, the query definition ob-
ject contains the list of attributes to be monitored. In
our previous example (Figure 5), the two ‘select-from-
where’ clauses before and after ‘UNION’ represent
two simple view definitions (fragments) connected
with the ‘UNION’ operator whereas g a k l a \ m [n \ a of

e ` o Y p l ` [m r and s \ a p p n \ a of s t o Y p l ` [m r are the
attributes to be monitored every 5 minutes.

When a view is defined, it is pre-processed into a
number of simple view fragments to be stored in the
view definition object. The pre-processing functional-
ity of constructing the view definition object is rather
simple and is provided by the client side component.
This is feasible since all required metadata is down-
loaded locally. This also relieves the VDA from an
additional task of having to create each view defini-
tion object.

When the VDA receives and saves the view def-
inition object of a new view, it creates a VA (View
Agent) and passes it the view definition object. For
each simple view in the view definition object, the VA
creates a Data Holder (DH) to administer this simple
view. Each DH, in turn, creates a VEA and provides
a materialization plan. This is achieved using the
Query Builder component that can be programmed
to optimize a query plan given datasource-related in-
formation which can be obtained from the VDA. The
ViSMA Query Builder currently creates a plan that at-
tempts to minimize the size of data moved from one
datasource to another.

Once a VEA is created and receives its materializa-
tion plan, it travels to each datasource specified in its
plan, retrieving the requested data which is passed to
the DH at the completion of the plan. Figure 6 shows
how a simple query referencing three distinct data-
sources is materialized. In our example view defini-
tion, this plan reflects the materialization of any one of
the two ‘select-from-where’ clauses. Eventually each
DH will receive a materialized view fragment.

Each DH is also responsible for dispatching the
necessary Monitor Agents to any database that in-
cludes table attributes selected for monitoring by the
user. For the example above, Monitor Agents need to
be sent to e ` o Y p l ` [m r and s m o Y p l ` [m r , querying
the g a k l a \ m [n \ a and s \ a p p n \ a attributes respec-
tively every 5 minutes.

As mentioned in Section III, the final DH structure

38 Mobile Computing and Communications Review, Volume 8, Number 3

Client

Assistant

Step 2

Step 4

Step 1 View
Dictionary

View Agent

Data
Holder(s)

Assistant

Assistant

View Evaluator Agent

View

Step 3

View Info

Figure 6: Simple View Materialization

is tree-like (hierarchical), combining at each level a
number of DH data. As a more generic example, con-
sider the following complex query in which three sim-
ple views Q1, Q2 and Q3 are combined by UNION
and MINUS.

� � � � � 	
 � �
 � � � � �
 	 � � �

Each of the query definitions is passed to a DH.
Figure 7 shows how the DHs are structured within
a VA. Discontinued lines imply flow of data whereas
continued lines imply an operation between this DH
data and the data of the related DH. We should note
that this view data decomposition allows for an effi-
cient update of the view since individual fragments
are updated independently. Although view querying
requires view fragments managed by different DH to
be recombined to produce a reply, the recombination
overhead is primarily reduced by the ability of a VA to
cache the view and answer multiple queries using its
cache. A VA executes a recombination of the DH data
periodically and only if changes have occurred. (This
last piece of information is easily extracted from the
DHs.)

View Agent

DH (Q1Q2)

DH(Q3)

DH(Q2)

DH(Q1)

MINUS

UNION

Figure 7: View Structure Based on Data Holders

Two interrelated assumptions were made regarding
the efficiency of the VA caching: (1) In general, mate-
rialized views required by mobile clients are expected
to be highly specialized and hence relatively small and
can be stored and efficiently transported by a VA as
part of its state; and (2) given that the views maintain
limited size of data, the frequency of updates is ex-
pected to be low and localized to few datasources at
any given point in time.

As discussed just above, in the current ViSMA im-
plementation, the data of the materialized view is part
of the agent’s state. This means that the used mo-
bile agent infrastructure imposes a restriction on the
maximum size of a view. It is possible, however, to
decouple the view payload during movement and in-
tegrate it to the agent after it has completed the mi-
gration, hence alleviating any restrictions on the view
size. Currently we are working on view storing al-
ternatives (such as using XML files and communicate
them via standard HTTP) to enable larger size views
to be stored and relocated dynamically.

The materialization scheme described above pro-
vides two basic advantages deriving from mobile
agent technology. Firstly, VEAs move and execute
directly at the datasource. Therefore, they mini-
mize/eliminate the need of expensive communication
such as persistent connections or repeated creation of
ports and remote exchanged of messages. Secondly,
a view can be created and maintained while the user
is disconnected and on the move. Upon reconnection
the view is available and updated in accordance to the
monitoring parameters.

IV.D. Maintaining Views

As mentioned previously, Monitor Agents are used
to provide updates for changes occurring at the data
sources. Monitor Agents reside at the datasource to
which they connect and periodically re-query to re-
trieve the values of the attributes they monitor. Mon-
itor Agents always keep the latest values of the at-
tributes they monitor. When new values are retrieved,
a comparison is made between the last and the cur-
rent values and the view difference (� View) is cre-
ated. The Monitor Agents sends only the Delta View
(changes) to their dispatching DHs. Based on these
changes a DH can select to delete removed rows or
resend a VEA to re-materialize the view. Note that a
DH may receive updates from Monitor Agents located
at different datasources (Figure 8).

Our materialization scheme (that is, the scheme
used by DHs) extends and adapts the simple Strobe
Algorithm [23] to suit the needs of a mobile envi-

Mobile Computing and Communications Review, Volume 8, Number 3 39

Client

Assistant

View
Dictionary

View Agent

Data
Holder(s)

Assistant

Assistant

Upd
2

Upd1

Step 1

Step 1
Step 2

Step 2

Monitor Agent 1

Monitor Agent 2

Figure 8: Datasource Monitoring

ronment and mobile agent technology per se: Sim-
ple Strobe algorithm has three high level operations.
These are (i) a source evaluate(Q) operation which
evaluates the portion of query Q that is still not known,
(ii) operations performed at the data source which in-
clude update propagation and actual evaluation of a
query and (iii) operations performed at the warehouse
which include receiving the updates and performing
the necessary changes to the view.

Regarding each operation above we have made
the following adjustment: The main changes concern
the source evaluate operation. This is basically per-
formed by the VEA. A VEA is provided the com-
plete materialization plan for a query beforehand by
the DH, so it needs not calculate which part of the
query is to perform next.

Operations at a datasource become a responsibility
of different agents. As noted above, the evaluation is
performed by the VEA thus, no operation is required
by the datasource itself (i.e., the code is moved to the
source). Updates are encapsulated in update operation
messages (as with Strobe) by the Monitor Agents and
sent to the appropriate DH.

Operations originally performed by the data ware-
house are executed by each individual DH. Two basic
elements which are part of Strobe need to be repeated
here: (i) As noted above, updates are sent in the form
of update operation messages, i.e., delete and insert
operations2 . Therefore, a DH maintains an Action List
(AL). (ii) For consistency purposes, the DH maintains
a pending(Q) set of operations while a VEA is evalu-
ating a query Q.

As a concrete example, consider again our
� � � � � 	
 � � � � and the case where the temperature
of a patient in Nicosia Hospital (“Ni Hospital”) has
changed. After the lapse of the monitoring period,
the Monitor Agent will detect the change (as a dele-
tion/insertion) and send the update message to the DH

2An update is a sequence of a deletion and an insertion [23].

responsible for the simple view shown in the first part
of Figure 5. Based on our materialization scheme, the
DH will resend a VEA to the three datasources to re-
construct the updated view fragment.

It should be noted that due to the underlying lo-
cation management system, Tracker, the message ex-
change among the agents is transparent with respect
to movements of VEAs, DHs and VAs.

IV.E. View Data Retrieval

IV.E.1. Shareable and Private Views

Sharable views created can be shared among all users
of the system while private ones cannot. We have
mainly experimented on the more interesting case of
sharable views since they allow for the creation of per-
sonalized views.

A user may select to get any specific view’s lat-
est data by requesting it from the corresponding VA.
In our example, the head-doctor may want to check
on the status of the patients of the traveling doctor.
Retrieving the data from a VA is done by requesting
it either directly (ViSMA Agent client) or indirectly
through the VDA (e.g., when using the Applet Client
or the Servlet Engine). The retrieved data is presented
to the user in a format that again depends on the client
type that was used for the request. For example, the
reply to a Servlet Engine request is in pure HTML.

IV.E.2. Personalized View Creation

Users may be interested in a specific subset of some
view. In this case, the system allows the creation
of a personalized subview from an existing view in
ViSMA, which cannot be shared and which is trans-
parent with respect to the original datasources.

In our previous example, suppose that the doctor’s
assistant wants to define a view on the patients, whose
pressure rises over 120/80, viewing the results from
her PDA. Assuming that her PDA provides a simple
web browser and has limited memory, she can use the
Servlet Engine client to define the sub-view shown in
Figure 9.

� � � � � � � � � � � � � � # � � & � (() (+ , - + . /) 0 1 3 � �

� � � 5 7 � , +) 0 - + � � 9 � ; 0 ((< ; 0
� � � = /) 0 1 & � @ A + @ ; . /) 0 1 3

C D � � � � ; 0 ((< ; 0 F H I J K L J

Figure 9: Personalized View Definition

The query is sent to the VDA (Figure 10), which

40 Mobile Computing and Communications Review, Volume 8, Number 3

creates a Personal Agent that may move close to the
VA to initially query it. In general, Personal Agents
monitor the movement of VAs and their clients us-
ing Tracker and adjust their own location to minimize
communication costs. However, a Personal Agent
typically follows its user in order to reduce delays of
the accesses to the personalized view which are ex-
pected to be frequent and remotely re-query the VA
for updates which are less frequent.

Note that unlike the updating scheme of the VAs
(push-based), the Personal Agent is kept updated by
re-querying the VA (pull-based). Essentially, a Per-
sonal Agent captures a snapshot of the original view.
This function is done periodically by the Personal
Agent but it can be initiated by the user as well when
necessary.

Client

Step 2

Step 1 View
Dictionary

View Agent

Query

Observer

Step 3
Step 4

Step 5
Step 6

Personal Agt

Figure 10: Personalized View Creation

IV.F. View Mobility

Since a VA is a mobile agent, it can select to move
closer to the group of users who use it most frequently.
Since a materialized view is captured by a VA and its
supportive DHs, whenever a VA needs to move, it di-
rects its attached DHs to move along to the same lo-
cation. The relocation message is passed through in a
hierarchical manner matching the actual hierarchy of
the DHs.

To better illustrate view mobility, let us revisit our
example one last time. Suppose that the doctor con-
nects again to ViSMA upon arrival to the conference
and queries the VA responsible for the � � � � � 	
 � � � � .
By detecting the new location and/or by noticing in-
creased delays, the VA moves from Nicosia where was
originally created to Athens from where the doctor is
currently connected, at the local network (or the doc-
tor’s local machine), making request noticeably faster
and reducing network traffic. Subsequently, if the net-
work conditions are reversed or when the doctor re-
turns to Nicosia, the VA moves back to Nicosia. In
assessing its movement decisions as well as to locate
other agents, the VA uses Tracker.

IV.G. View Deletion

When a user decides to delete a view she created, she
sends a message to the VDA. The VDA will notify the
corresponding VA, which will hierarchically notify its
DHs (Figure 11).

Users may select to keep the last version within the
Personal Agent, however, generally views are consid-
ered invalid (outdated) if not deleted or updated for
a specified period of time which is customizable and
usually dependent on the type of the application for
which the views are used.

Client

Assistant

View
Dictionary

View Agent

Data
Holder(s)

Assistant

Assistant

X

X

Step 1

X

Monitor Agent 1

Monitor Agent 2

Step 2

Step 3

Step 3

Remove

Figure 11: View Deletion

V. Discussion

ViSMA is a full-fledged prototype system that pro-
vides complete functionality by covering exten-
sively all stages of the view manipulation pro-
cesses. It evolved from two previous systems, namely,
DVS [16] and VG [14], which have illustrated the ba-
sic ideas of the use of mobile agents to support web
views but had limited functionality.

A primary objective of ViSMA is the customization
and personalization of views by mobile users in an ef-
ficient manner. In ViSMA, this is provided by both
private views as well as personalized views which in-
corporate ideas from [7, 8] for customizing consis-
tency and currency: During view definition, the user
may explicitly select which columns to monitor for
changes and at what re-querying frequency. It should
be noted that an understanding of how view consis-
tency is affected by view currency customization in
a mobile agent environment as those supported by
ViSMA is provided in [8]. View customization ef-
ficiency is enhanced by the mobility of all types of
materialized views, namely, sharable, private and per-
sonalized. The responsible mobile agents can monitor
each other position and movement of clients and de-
cide their own location in order to minimize commu-

Mobile Computing and Communications Review, Volume 8, Number 3 41

nication costs.
A unique charecteristic of ViSMA is that follows

a new materialization and maintenance philosophy
based on the concept of Data Holders that capture the
structure of a materialized view. By localizing the ma-
terialization of simple view fragments composing a
complex view within Data Holders, efficient material-
ization at the level of individual view fragements can
be developed as described in the system services sec-
tion (Section IV). Further, Data Holders, being mobile
themselves allow for the View Agent to relocate any
one of the view fragments independently.

Another feature of ViSMA is system extendibil-
ity, which can be visualized in two directions: client
extendibility and functional extendibility. Client ex-
tendibility can be achieved since ViSMA architecture
allows additional types of users to have access to the
VDA via the request interface. The user side compo-
nents need only decide how the data received will be
handled (e.g., filtering the result to WML for a WAP-
enabled device). We would also like to note that non
Java-enabled clients can also be supported in ViSMA
by providing a user-friendly wizard-like GUI to assist
view and sub-view definition which also allows for in-
dividual attribute monitoring settings.

Functional extendibility is provided for developers
who may extend current agents to execute specific,
system-defined functions viewing ViSMA as an Ap-
plication Programmer Interface (API). For example
developers may supply the Query Builder with addi-
tional query plan optimizations or recode the Monitor
Agent’s update propagation method. We are currently
working on extending the enterprise-wise ViSMA to a
Multi-ViSMA system which supports cross-enterprise
interactions. A Multi-ViSMA system will consist of a
collection of distributed View Dictionaries, each ser-
vicing a set of clients and datasources. View Dictio-
naries may create ad-hoc networks and communicate
in a P2P manner thus, interconnecting different orga-
nizations.

VI. Conclusion and Future Work

Recently, data access and retrieval have presented a
number of challenges mainly due to the vastness of
available data, the particularities of mobile and wire-
less computing and the need for personalization and
customization.

In this work we present ViSMA, a functional sys-
tem that aims at assisting the dynamic definition, ma-
terialization and maintenance of database and web
views. The primary design goal is to support mobile

and wireless clients and be adaptable to the various
types of user needs depending on the device capabili-
ties and connectivity conditions.

We propose a mobile-agent based architecture on
which the system is build and describe how mobile
agents can be dynamically deployed in providing a
number of view manipulation services which are en-
hanced by view mobility as well as structured storage
of views based on the Data Holder concept. We also
highlight the fact that the system can be extended to
accept new types of clients and may adjust its agent’s
functions to implement designer specific strategies by
using PDAs and laptops.

Our first milestone in the development of ViSMA
was to produce a functional prototype. As future work
we intend to conduct an evaluation of the performance
tradeoffs concerning update efficiency versus query
and retrieval of view fragments held by multiple DHs.
Further we plan to work on enhancing the materializa-
tion plan at the Query Builders as well as experiment
with other materialization strategies and algorithms.
Finally, we shall thoroughly evaluate our system scal-
ability with respect to the type of client and the type
of query, which are a function of the view storage
scheme and the mobile agent platform capabilities.

References

[1] C. Bäumer and T. Magedanz. Grasshopper: A
Mobile Agent Platform for Active Telecommu-
nication. In Proc. of the Third Int’l Workshop on
Intelligent Agents for Telecommunication Appli-
cations, pages 19–32, August 1999.

[2] M. Cammert, C. Heinz, J. Krdmer, M. Schnei-
der, and B. Seeger. A Status Report on XXL - a
Software Infrastructure for Efficient Query Pro-
cessing. Bulletin of the IEEE Computer Soci-
ety Technical Committee on Data Engineering,
26(2):12–18, 2003.

[3] D. Chess, B. Grosof, C. Harrison, D. Levine,
C. Parris, and G. Tsudik. Itinerant Agents for
Mobile Computing. IEEE Personal Communi-
cations, 2(5):34–39, 1995.

[4] M. Dikaiakos and G. Samaras. A Performance
Analysis Framework for Mobile-Agent Sys-
tems and in infrastructure for agentsand multi-
agentSystems and Scaleable Multi-Agent Sys-
tems. In Porceedings of the FourthInt’l Con-
ference on Autonomous Agents, pages 180–187,
June 2000.

42 Mobile Computing and Communications Review, Volume 8, Number 3

[5] IBM Japan Research Group.
Aglets Workbench. Available at� � � � � � � 	
 � � � � � � � � � � � � � � ! � # � .

[6] White J.E. Mobile agents, general magic white
paper, 1996. Available at� � � � � � � $ $ $ �
 � (� 	
 � � � � ! � � 	
 � (� � .

[7] S. Weissman Lauzac and P. K. Chrysanthis. Pro-
gramming views for mobile database clients. In
Proc. of the 9th DEXA Int’l Workshop on Mobil-
ity in Databases and Distributed Systems, pages
408–413, August 1998.

[8] S. Weissman Lauzac and P. K. Chrysanthis.
Personalized Information Gathering for Mobile
Database Clients. In Proc. of The ACM Sym-
posium on Applied Computing, pages 49–56,
February 2002.

[9] D. S. Milojicic, M. Breugst, I. Busse, J. Camp-
bell, S. Covaci, B. Friedman, K. Kosaka, D. B.
Lange, K. Ono, M. Oshima, C. Tham, S. Vird-
hagriswaran, and J. White. MASIF: The OMG
Mobile Agent System Interoperability Facility.
Mobile Agents, 1477:50–67, 1999.

[10] S. Papastavrou, P. K. Chrysanthis, G. Samaras,
and E. Pitoura. An Evaluation of the Java-Based
Approaches to Web Database Access. In Proc.
of the Int’l Conference on Cooperative Informa-
tion Systems, pages 102–113, September 2000.

[11] S. Papastavrou, G. Samaras, and E. Pitoura. Mo-
bile Agents for World Wide Web Distributed
Database Access. IEEE Transactions on Knowl-
edge and Data Engineering, 12(5):802–820,
2000.

[12] Recursion Software Inc. Voyager ORB.
Available at
$ $ $ � � � � - � � � ! (� $ � � ! � � � � ! / - � � � � 0 ! 1 	
 � � � .

[13] N. Roussopoulos. Materialized Views and Data
Warehouses. SIGMOD Record, 27(1):21–26,
1998.

[14] G. Samaras, C. Spyrou, and E. Pitoura. View
Generator (VG): A Mobile Agent Based System
for the Creation and Maintenance of Web Views.
In Proc. of the 7th IEEE Symposium on Comput-
ers and Communications, pages 761–767, July
2002.

[15] G. Samaras, C. Spyrou, E. Pitoura, and M. Dika-
iakos. A Universal Location Management Sys-
tem for Mobile Agents. In Proc. of European

Wireless Conference, Next Generation Wireless
Networks: Technologies, Protocols, Services
and Applications, pages 25–28, February 2002.

[16] C. Spyrou, G. Samaras, E. Pitoura, S. Papas-
tavrou, and P. K. Chrysanthis. The Dynamic
View System (DVS): Mobile Agents toSupport
Web Views. In Proc. of the 17th Int’l Confer-
ence on Data Engineering, pages 30–32, March
2001.

[17] SUN Microsystems. Java Remote Method
Invocation Technology (Java RMI). Available at� � � � � � � # 	 0 	 � � - (� � ! � � � � ! / - � � � � # / 5 � � � � � .

[18] World Wide Web Consortium. Web Services.
Available at

� � � � � � � $ $ $ � $ 8 � ! �
 � 9 : : 9 � $ � � .

[19] O. Wolfson, A.P. Sistla, S. Dao, K. Narayanan,
and R. Raj. View Maintenance in Mobile Com-
puting. SIGMOD Record, 24(4):22–27, 1995.

[20] D. Wong, N. Paciorek, T. Walsh, J. DiCelie,
M. Young, and B. Peet. An Infrastructure for
Collaborating MobileAgents. In The First Int’l
Workshop on Mobile Agents, pages 86–97, April
1997.

[21] XXL Project. XXL: eXtensible and fleX-
ible Library. Database Research Group,
Univ. of Marburg, Germany, Available at� � � � � � � $ $ $ � � 	 � � � � 	 � � 5 � - (� = � 	 � � - �
 � / � �
? @ A � B B � .

[22] Y. Zhuge, H. Garcia-Molina, J. Hammer, and
J. Widom. View Maintenance in a Warehousing
Environment. In Proc. of ACM SIGMOD Con-
ference, pages 316–327, May 1995.

[23] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener.
Algorithms for Multi-Source Warehouse Con-
sistency. In Proc. of the 4th Int’l Conference on
Parallel and Distributed Information Systems,
pages 146–157, December 1996.

Mobile Computing and Communications Review, Volume 8, Number 3 43

