
Information Systems Vol. 22, No. 6t7, pp. 387-400, 1997

Pergamon Q 1997 Elsevier Science Ltd. All rights reserved
Printed in Great Britain -

PII: SO306-4379(97)00023-9
0306-4379/97 $17.00 + 0.00

ON RELAXING SERIALIZABILITY BY CONSTRAINING TRANSACTION
READSETS+

EVAGGELIA PITOURA~, AIDONG ZHANG~ and BHARAT BHARGAVA~

‘Computer Science Department, University of Ioannina, GR 45110 Ioannina, Greece
2Department of Computer Science, SUNY at Buffalo, Buffalo, NY 14260

3Department of Computer Sciences, Purdue University, West Lafayette, IN 47907

(Received 20 October 1995; in final revised form 17 September 1997)

Abstract - Although, concurrency control in database systems is primarily based on serializability,
many recent applications have rendered traditional serializability-based criteria inefficient or inap-
propriate. However, non-serializable executions may violate database consistency. In this paper, we
propose a new approach to ensuring the correctness of non-serializable executions. The approach is
based on relating transaction views of the database to the integrity constraints of the system. The un-
derlying concepts of view closure and view consistency are defined. Then, drawing upon this approach,
we develop a new correctness criterion for multidatabases, which are confederations of pre-existing het-
erogeneous and autonomous distributed database systems. This criterion, called view-based two-level
serializability, relaxes serializability while respecting the autonomy of local database systems and pre-
serving multidatabase consistency. We investigate the application of the criterion to various practical
multidatabase scenarios and discuss implementation issues.
0 1997 Elsevier Science Ltd. All rights reserved

Key words: Multidatabases, Concurrency Control, Transaction Management, Database Consistency,
Integrity Constraints

1. INTRODUCTION

Database concurrency control deals with the maintenance of database consistency in the pres-
ence of concurrently executing transactions based on the premise that each transaction maintains
database consistency when executed in isolation. In most database concurrency control methods,
database consistency is ensured by requiring that the resulting interleaved execution of transactions
is serializable, that is, equivalent to some serial execution of the transactions. While this approach
is attractively simple, many recent applications have rendered it inefficient or inapplicable [5, 171.
For example, in applications where transactions are long-running, such as in computer-aided de-
sign, maintaining serializability causes unbearable overheads. Besides performance considerations,
relaxing serializability is also motivated by the interactive nature of many complex applications. In
cases of applications sharing intermediate results, such as in cooperative environments or in agent-

based computing, serializable executions are not only expensive but also undesirable. However,
nonserializable executions may lead to inconsistent database states.

In this paper, we propose a new approach for ensuring correctness of nonserializable executions.
The proposed approach draws upon the observation that the view of a transaction, that is the data
it reads, plays an important role on the maintenance of consistency. The underlying concepts of
view consistency and view closure of transactions are defined by relating the transaction views to
the integrity constraints of the system. Intuitively, a transaction view is consistent with respect to a

set of data items of type D if the data of type D read by the transaction can be part of a consistent
database state, and is closed with respect to a set of constraints C if, when the transaction reads
a data item a, it also reads all data items whose values depend on a through a type C constraint.
This approach is then applied to multidatabase systems.

A multidatabase system, MDBS, is comprised of multiple distributed and possibly heteroge-
neous database systems that cooperate in an autonomous fashion [20, 151. Multidatabase systems
are getting increasingly important with the advance of internetworking and the desire to build

t Recommended by Zvi M. Kedem

387

388 EVAGGELIA PITOURA et al.

world-wide information servers. In an MDBS, concurrency control is performed at two levels, lo-
cally by the preexisting local transaction managers, LTMs, of the participating database systems,
and globally by a global transaction manager, GTM. LTMs are responsible for the correct execution
of all transactions executed at their sites. There are two types of transactions, local and global.
Local transactions access data at one site only, are submitted to the appropriate LTM, and are
executed outside the control of the GTM. Global transactions are submitted to the GTM, where
they are parsed into a number of global subtransactions, each of which accesses data stored in a
single local database. These subtransactions are then submitted for execution to the appropriate
LTM. The GTM retains no control over global subtransactions after their submission to the LTMs.
The only assumption about the execution of transactions at each local site is that it is serializable.
The autonomous nature of the LTMs greatly complicates the problem of transaction management
in a multidatabase system.

Concurrency control in MDBSs has received much attention from multidatabase researchers. In
particular, maintaining global serializability in the execution of both local and global transactions
has been well studied [3]. As observed in the proposed approaches, global serializability can be
retained by ensuring that the serialization orders of global subtransactions at all local sites are
consistent with each other. The difficulties in this regard center upon the inability of the GTM to
control the serialization order of global subtransactions at local sites due to possible indirect con-
flicts with local transactions. In general, all successful attempts for ensuring global serializability
require the enforcement of conflicting operations among global subtransactions at each local site
[7, 12, 211. The GTM can thus control the serialization order of global subtransactions by control-
ling the execution of these conflicting operations. However, enforcing conflicts may result in poor
performance if most global transactions would not naturally conflict. Relaxing global serializability
is thus a significant issue for multidatabase concurrency control [4, 16, 141.

A practical non-serializable criterion, called two-level serializability (2LSR), was introduced
in [14]. 2LSR, in addition to the assumption of serializability of transactions at each local site
provided by the LTMs, requires the serialization at the GTM level of the global transactions only.
Thus, PLSR can be easily enforced without violating local autonomy. However, 2LSR executions of
local and global transactions do not, in general, guarantee database consistency. In this paper we
use the view-based approach to ensure the correctness of 2LSR executions. Specifically, we state
and prove exact closures and consistency conditions that must be imposed on transaction views
so that 2LSR schedules preserve database consistency. These conditions are then refined for two
specific multidatabase scenarios.

The remainder of this paper is organized as follows. Section 2 describes the multidatabase model
and motivates our approach. Section 3 introduces the concept of view closure and consistency. In
Section 4, we present the formulation of view-based correctness of 2LSR schedules, and show how
some of the proposed conditions may be relaxed for practical multidatabase models. Section 5
discusses some important characteristics of the approach and implementation issues. Section 6
compares the present work with related nonserializable criteria in terms of the range of acceptable
schedules and of its applicability to a multidatabase environment. Finally, concluding remarks are
offered in Section 7.

2. RELAXING SERIALIZABILITY

In this section, we first introduce the multidatabase model and then discuss the impact of
relaxing global serializability on multidatabase consistency.

2.1. Mzlltidatabase Consistency

A multidatabase is the union of all data items stored at the participating local sites. We denote
the set of all data items in a local site LSi by Di for i = 1, m and the set of all data items in
the multidatabase by D. Thus, D = Uz”=, Di. We assume that local databases are disjoint; that
is, Din Dj = 0, i # j. Following the traditional approach, a database state is defined as a mapping
of every data item to a value of its domain, and integrity constraints are formulas in predicate

On Relaxing Serializability by Constraining Transaction Readsets 389

calculus that express relationships of data items that a database must satisfy. The consistency of
a database state is then defined as follows:

Definition 1 A database state is consistent if it preserves all integrity constraints defined in the
MDBS environment.

A transaction is a sequence of read and write operations resulting from the execution of a
transaction program. We denote the read and write operations as r(z) and w(z) (possibly sub-

scripted) or alternatively use ~(2, U) (or w(z, v)) to denote an operation which reads (or writes)

a value v from (or to) the data item z. Two operations conflict with each other if they access

the same data item and at least one of them is a write operation. The execution of a transaction
transfers a database from one consistent state to another.

The set of data items at a local site is partitioned into local data items, denoted LDi that
correspond to data items prior to multidatabase integration and global data items, denoted GDi,
that correspond to data created after the integration such that LDifIGDi = 0 and Di = LDiUGDi.
The set of all global data items is denoted GD, GD = IJE1 GDi. We distinguish two types of
transactions local and global transactions. Local transactions access data items at a single local site
and are outside the control of the GTM. Local transactions model local applications that existed
prior to the integration and thus access only local data at the corresponding component database.
Local transactions correspond also to programs written after the integration that are scheduled to
be executed without any global control for reasons of efficiency, privacy, or autonomy. In this case,

local transactions may also read global data, however, since they are only under local control, they
are unable to maintain integrity constraints that span more than one site, and thus are not allowed

to update global data. A global transaction is submitted to the GTM and reads and writes both
local and global data at multiple sites. Each global transaction is decomposed by the GTM into a

set of global subtransactions, each of which accesses data stored in a single local database. After
the submission of a global subtransaction at the local site, the GTM has no control over it.

We assume that there are not any integrity constraints that involve remote (i.e., located at
different sites) local data, or both remote local and global data, since then pre-existing local

transactions being unaware of them would provide no guarantees for their preservation. To support
these types of constraints special techniques have been proposed that are orthogonal to this paper
[19, 91. Thus, three types of integrity constraints are possible: local integrity constraints defined on
local data items at a single local site; local/global integrity constraints defined between local and

global data items at a single site; and global integrity constraints defined on global data items that
may be located at different sites.

A schedule over a set of transactions is a partial order of all and only the operations of those
transactions which orders all conflicting operations and which respects the order of operations
specified by the transactions. In a MDBS environment, a local schedule SDk is a schedule over

both local transactions and global subtransactions which are executed at the local site LSk, and
a global schedule S is a schedule over both local and global transactions which are executed in an
MDBS. A global subschedule Sp is global schedule S restricted to the set G of global transactions
in 5’. The standard assumption in multidatabase concurrency control is that each LTM ensures
the serializability of the corresponding local schedule. The correctness of a schedule in terms of
database consistency is defined as follows (cf. strong correctness [14] and semantic correctness [6]):

Definition 2 A schedule is correct if it preserves all integrity constraints that are defined in the
database system and each transaction in S reads a consistent database state.

A global schedule S is considered to be globally serializable if S is serializable [2] on the execution
of both local and global transactions. Clearly, if local and global transactions maintain all integrity
constraints defined in the MDBS environment, then a globally serializable global schedule is correct.

2.2. Motivation

To avoid the potential of poor performance which may be caused by serializability, several re-
searchers have suggested methods of relaxing it. In the case of multidatabases, many researchers

390 EVAGGELIA PITOURA et al.

[4, 141 have proposed that the GTM, instead of enforcing global serializability, enforces seriahz-
ability of the global subschedule, that is of only the global transactions. Enforcing serializability
of the global subschedule is straightforward since global transactions, in contrast to local transac-
tions, are under the control of the GTM. Specifically, in [14], the following intuitive non-serializable
criterion, termed two-level serializability is proposed:

Definition 3 A global schedule is two-level serializable, denoted PLSR, if its global subschedule
and local schedules are serializable.

However, as shown by the following example, 2LSR schedules may be incorrect. Note, that
inconsistencies may result even when there are no local transactions that read global data and no
local/global integrity constraints.

Example 1 Consider an MDBS consisting of two local database systems, where data items a, b,
c are at LSr, and d is at LSz. Let a, b, c, and d be local data items and the integrity constraints
be a > 0 + b > 0, c > 0 -+ b > 0 and d > 0. The following two global transaction programs pl, p2
and one local transaction program pi are submitted:

Pl : c=l
if d > 0 then b = 1

p2 : if a > 0 then d = b else d = 1
pi: a=1

if c 5 0 then b = 1
Starting from a consistent database state a = b = c = - 1, d = 1, consider the following execution:

Sr : wL(a, lh(a, lb-z@, -lh(c, lh(c, I),
S2 : wa(d, -l)rr(d, -1).

Although the schedule is 2LSR, the resulting database state a = 1, b = -1, c = -1, d = -1 is
inconsistent. cl

The question we pose is whether we can enforce any conditions on the data read by global
transaction so that consistency is maintained. Studying the above example, we see that the global
transaction resulting from the execution of pz reads inconsistent data (a = 1, and b = -1). Thus,
we may conclude that enforcing consistency of the readset of global transactions would suffice. In
fact, as proven in Section 4, this is the case when there are no local transactions that read global
data. However, this condition proves insufficient, in the presence of such local transactions. The
following example is illustrative.

Example 2 Consider an MDBS consisting of two local database systems, where data items a, b,
c are at L&, and d is at LS2. Let c be a local data item, a, b, d be global data items, and the
integrity constraints be a > 0 + b > 0 and d > 0 + b > 0 and c > 0. The following two global
transaction programs pl, pz and one local transaction program pi are submitted:

pl: d=l
b=l

pz: a=1
if d < 0 then b = 1

pr,: if a > 0 then c = b else c = 1
Starting from a consistent database state a = b = d = -1, c = 1, consider the following 2LSR
execution:

Sr :~2(a,l)rL(a,l)~L(b,-l)~l(b,l)w~(c,--1),
S2 : wb-4 lh(d, 1).

Again, an inconsistent database state a = 1, b = 1, c = -1, d = 1 is produced. 0

In the above example, both global transactions read consistent data. It turns out, that besides
consistency of the readset, appropriate closure conditions are also necessary, since transactions
may make false assumptions about values of data they do not read (as ps above does for the value
of b). In the following sections, we will formally define and prove exact conditions that must be
placed on the views of global transactions to ensure that two-level serializable global schedules will
preserve database consistency. These conditions will be only placed on global transactions, thus
respecting the autonomy of local transactions and sites.

On Relaxing Serializability by Constraining Transaction Readsets 391

3. TRANSACTION VIEWS

Let t be a transaction. The read set of t, denoted RS(t), is the combination of the set of

local data items read by operations in t (denoted RL(t)) and the set of global data items read by
operations in t (denoted RG(t)).

3.1. View Closure

Let ci be an integrity constraint that is defined on a set of data items {di, dl}. Let O(ci)
denote the set of data items in ci. Thus, we have D(q) = {di, dl}. Let In(d) denote the
set of data items which share a common integrity constraint with data item d. Clearly, if ci is

the only integrity constraint that is defined in the database, then In(dl) = {dz,dl}. In(da) =
{dl,ds, dl}, and In(di) = {dl, . ..di_i.di+i, d } for all i = 3,l. We now introduce the 1
concepts of the closure of data items and of transactions which are view-closed on a given set of

data items.

Definition 4 Let D = {dl, dl} be a set of data items. The closure of D, denoted cl(O), is the

smallest set such that the following conditions are satisfied:

l D c d(D).
l If d E cl(D), then In(d) c cl(D).

Definition 5 A transaction t is view-closed with respect to a set of data items D that it reads if,

for any d E cl(D), d E RS(t).

A transaction t is global view-closed if it is view-closed with respect to the global data items that
it reads. A transaction t is site view-closed if, at each local site LSk (1 5 k <_ m), it is view-closed

with respect to the data items that it reads in D,; that is, for any data d E Dk that it reads and

all data d’ E cZ({d}) such that d’ E Dk, d’ E RS(t).
The size of closure sets can be reduced dramatically if a more elaborate definition of closure is

provided. The definition should be such that the closure cl(a) of a data item a includes only those

data items whose values are restricted by a. Take, for instance, the constraints a < b and c < b.
By Definition 4, b E cl(a), c E In(b) thus c E cl(a), although given the value of a we can make no

assumptions about the value of c.

A possible way to refine Definition 4 is by takiig into consideration the type of constraints
when computing closures cl(D), instead of invariantly including in cl(D) all items in In(d) for
each d E cl(D). To reduce the size of closure sets, we can also utilize our knowledge of the

value of the data item a. For instance, take a constraint between data items a and b of the form
a > 0 -+ b > 0. If the value of a read by a transaction t is negative, we do not have to include
b in t’s view closure. Thus, some data in the view set are only conditionally read based on the

values of items already read. Finally, many techniques proposed in the context of optimizing the
processes of constraint evaluation and validation [S] can be applied directly to optimize the size of

closures. Constraint subsumption [lo] is such a case. Let {Cl, Cz . . . , Cn} be a set of constraints.
An additional constraint C is subsumed by Ci, Cz . . . , C, if, whenever C is violated then so is at

1eastoneCi E {Ci,Cs..., Cn}. Thus, given that Ci, Cz . . . , C,, hold, we do not need to check the

validity of C. Note, that constraint subsumption is independent of data and data modifications.
Applying this idea to the definition of closures, D(c) is not included in the the closure cl(a) of a
data item a when c is subsumed by constraints already in cl (a).

3.2. View Consistency

Let DS be the database state of 2). The restriction of DS to data items in D C ‘D is denoted by
DSD. DSD is consistent if there exists a consistent database state DS1, such that DSf = DSD.
Note, that for the consistency of a restriction DSD of a database state, it does not suffice to require
that all integrity constraints that can be evaluated by the data in D evaluate to true. Take for
instance, V = {a, b, c}, the subset D = {a, c} and the constraints a > 0 + b > 0 and b > 0 + c < 0.

392 EVAGGELIA PITOURA et al.

The restriction DSD, a = 1, c = 1, of a database state is not consistent although given data in
D no constraint can be evaluated. As another example, take the constraints a = 1 + b = 1 and
c = 2 + b = 2, and the restriction a = 1, c = 2 of a database state to D = {a, c}.

Let read(t) denote the database state seen as a result of the read operations in t and read(tD)
denote the database state of D seen as a result of the read operations in transaction t.

Definition 6 The view of a transaction t is consistent if read(t) is consistent.

In the MDBS environment, the consistency of various views of transactions is defined as follows:
A transaction t is local view consistent at LSi if read(tLDi) is consistent. A transaction t is global
view consistent if read(tGD) is consistent.

4. VIEW-BASED CORRECTNESS OF 2LSR SCHEDULES

In this section, we impose conditions on the view of global transactions so that 2LSR schedules
maintain database consistency. The resulting schedules are called view-based two-level serializable
global schedules. We will first define conditions for the general case that provides more autonomy,
that is for the case where autonomous local transactions are allowed to read global data and also
read and write local data related through integrity constraints with global data at the same site.
Then, we will show how these conditions can be relaxed for other practical database models.

4.1. Background

To develop our criteria we will use the theory advanced in [18]. For completeness we include
here the basic lemmas that we subsequently use. Let {DSl}t{D&} denote that, when transaction
t executes from a database state DS1, it results in a database state D&. Without loss of generality,
whenever we say {D&}t{DS 2 , we assume that it is possible for t to be executed from DS1. The }
conditions required to ensure that the execution of a transaction preserves the consistency of the
state of a set of data items are specified as follows [14]:

Lemma 1 Let t be a transaction and D C V. Let {DS~}t{DS~} and DS1 be the database state
in which t can be executed. If DSf U read(t) is consistent, then 0S.f is consistent.

We may now relate the consistency of a database state to the execution of transactions. The
state associated with a transaction in a schedule is a possible state of the data items that the
transaction may have seen. Let T~(D, S) denote the set of transactions in a schedule S that have
at least one write operation on some data item in D E ‘D. Let S be a schedule and D s 23 such
that (ST)D is serializable, where T~(D, S) C T. Let t 1, t, be a serialization order of transactions
in (S7)0 and DS1 be a database state from which S starts. The state of the database before the
execution of each transaction, with respect to data items in D, is defined as follows:

state(ti, D, S, DSI) = “”
ifi=l

state(ti_1, D, S, DS1)D-WS(tf-~) U write(tE’_,), if i > 1

Note that read(tf) C state(ti, D, S, OS). Lemma 1 is used to develop the conditions under which
each transaction in a schedule reads a database state that is consistent with respect to a set of
data items [13]:

Lemma 2 Let D G 73, S be a schedule, and {DS~}S{DSZ}. If,

l (Sr)D is serializable with serialization order tl , t,, where ~~(0, S) s T,
l if state(t, D, S, DSI) is consistent, then read(t) U state(t, D, S, D&) is consistent for all

t, t E T~(D, S), and
l DSf is consistent,

then state(ti, D, S, DSI) is consistent for all ti,i = 1, n.

On Relaxing Serializability by Constraining Transaction Readsets 393

The above lemma can be modified for the special case where the data items over which integrity

constraints are defined are disjoint. To do so we use the following lemma that relates the consistency

of the database state to the consistency of its disjoint subsets [18]:

Lemma 3 Let Cl, CL be the conjunction (A) of integrity constraints, where Ci is defined over
the set of data items in Qi C 2) for all i = 1, 1 and Qi n Qj = 8 for all i # j. Let &I C Qi and

DS be a database state of V. DSQ:, for all i,i = 1 , 1, is consistent if and only if Ui=, DSQ: is
consistent.

Using the above lemma, we get from Lemma 2 the following corollary [13]:

Corollary 1 Let Cl, Cl be the conjunction (A) of integrity constraints, where Ck is defined over
the set of data items in QS 5 D for all k = 1, landQ~nQ~=0foralti#j. LetSbea
schedule and {D&}S{DS2}. For any k = 1,I. if

0 (F)Qk is serializable with serialization order tl, t,, where r,(Qk, S) c r,

l read(t”-” is consistent for all t, t E T~(QIE, S), and

l DSpk is co:sistent

then state(ti, Qk, S, D&) is consistent for all ti, i = 1, n.

4.2. Restricting Transaction Views in the General Case

A transaction is called an update transaction if it has at least one write operation. The following
lemma shows that for global transactions to maintain consistency of global data, they must be site

view-closed and view consistent.

Lemma 4 Let S be a ZLSR schedule. Let {DSl}S{DS2} and {DSI} be consistent. Let tl, t,
be the serialization order of the global transactions in (S g) GD. If all update global transactions are
site view-closed and view consistent then state(ti, GD, S, DSl) t 2s consistent for alt ti, i = 1, _.., n.

Proof. Since only global transactions write global data, from Lemma 2, it suffices to prove that

read(t) u state(t, GD, S, DS1) is consistent for all update global transactions when

state(t, GD, S, DS1) is consistent, We must show that there is a consistent database state DSo

such that DS,R”(t) = read(t) and DS 2” = state(t, GD, S, 0,151). Since read(t) is consistent, there

is a consistent database state OS,,, such that DSistt) = DSRStt), and since state(t, GD, S, DS1)
is consistent, there is a consistent database state DSl such that DSfD = state(t, GD, S, DSL).

Define DSzS(t) = DSzs(t) and DSr-RS(t) = DS, DD-RS(t) For the purposes of contradiction, as- .

sume that DSo is not consistent, then there must be an integrity constraint between RS(t) and
Z? - RS(t), say involving data items di E RS(t) and d2 # RS(t) which does not hold. We have the
following two cases. Case (1): both dl and dz belong to GD, then dl and dz must be consistent,
which is a contradiction. Case (2): at least one of them is a local data item, then, since there
are no remote constraints involving local data, both dl and dz must belong to the same local site.
Thus, since RS(t) is site view-closed, dz E RS(t), which is a contradiction. 0

The following lemma investigates the conditions that must be imposed on the views of global
transaction so that local and global transactions maintain the integrity constraints at each database

site.

Lemma 5 Let S be a 2LSR schedule. For a site k, let S Dk be serializable with serialization order

t1,. . . , t,. Let {D&}S{DS2} and {DSl} b e consistent. If all update global transactions are global
view-closed and view consistent, then state(ti, Dk, S, 04) is consistent for all ti, i = 1, ,.., n.

Proof. The proof proceeds as in the previous lemma. From Lemma 2, we must show that

read(t) U state(t, Dk, S, DS1) is consistent for all update global and local transactions, when

state(t, Dk, S, DS1) is consistent. If t is a local transaction, this holds, since
read(t) C stute(t, Dk, S, D&). We will now prove the formula when t is a global transaction.
IS 22-S/I-C

394 EVAGGELIA PITOURA et al.

As above, we define DSfiS(t) = DSRStt), OS:’ = state(t, Dk, S, DSl), and prove that there is

a consistent database state DSo such that DSyCt) = read(t) and DSfb = state(t, Dk, S, DS1).
Define DSP = DSP and DSFmDk = DSvmDk. For the purposes of contradiction, let assume
that DSo is not consistent, then there mus? be an integrity constraint involving dl E Dk and
ds $! Dk. Since, there are no remote constraints involving local data both dl and d2 must be
global data. We have the following three cases. Case (1): both dr and dz E RS(t) then they must
be consistent, which is a contradiction. Case(2): both dl and d2 6 RS(t), then assume, for the
purposes of contradiction, that the values for dl, d2 in DS, violate those in DSl; dl and dz can
take any value in DS,, (and thus those in DSl) unless one of them, say dl E cl({d}), for some d
in RS(t). Then, d must be a global data, otherwise we would have a remote constraint between
da and d. Since M(t) is global view-closed then dl E RS(t), which is a contradiction. Case (3):
exactly one of dl, da belongs to RS(t), then since RS(t) is global view-closed the other one must
also belong to RS(t), which is a contradiction. cl

The following corollary illustrates the conditions that must be imposed on the views of global
constraints so that local transactions read consistent data.

Corollary 2 Let S be a 2LSR schedule. Let S Dk be serializable with serialization order tl , . . . , t,.
Let {D&}S{D&} and {DSl} b e consistent. If all update global transactions are global view-closed
and view consistent, then all local transactions read consistent data.

Proof. Directly from Lemma 5, since read(t) E state(t, Dk, S, DS1). 0

Now we are ready to prove the conditions under which a 2LSR schedule is correct.

Theorem 3 Let S be a BLSR schedule. If all update global transactions are site and global view-
closed, and view-consistent then S is correct.

Proof Let DS1 be a consistent database state and {DSl}S{D,‘$}. We need to show that
all transactions in S read consistent data and that DSs is consistent. By the assumption, all
global transactions read consistent data and by Corollary 2 all local transactions read consistent
data. Thus, for all transaction ti in S, read(ti) is consistent. Now, let SD” be serializable with
serialization order tl , t,. Since, from Lemma 5, state(t,, Dk, S, DS) is consistent, there exists a

consistent database state DSs such that DSf’ = state(t,, Dk, S, DS and DSfS(t”’ = read(t,).
Thus, t, can be executed in DSs. Let {DSs b

by Lemma 1, DSDk d
tn{DS4}. Since DS, k U read(t,) is consistent,

b
is consistent. Since DS, k = DSfk, DSf” is consistent. Hence, for all

k, k = 1, m, DS, k is consistent. Similarly, DSFD is consistent from Lemma 4. For the purposes
of contradiction, assume that DSs is not consistent. Then there must be an integrity constraint
involving two data items di and d2 that is violated. If both di and ds belong to the same site,
say in LSk, then they belong to Dk and thus are consistent. Otherwise, since there are no remote
constraints involving local data, both di and da must belong to GD and thus be consistent. Hence,
S is correct. 0

4.3. Restricting tinsaction Views in the Absence of Local/Global Constraints

In this section, we restrict our model such that no local/global integrity constraints exist. We
will show that in this case we can drop the site-closure condition of the views of global transactions
and also reduce the view consistency condition to local view consistency.

Since no integrity constraints are present between local and global data items, the integrity
constraints can be viewed as Ci, Cm+i. Here, Ci for i = 1, m are the conjuncts (A) of
integrity constraints that are defined over the sets of data items in LDi for i = 1, . ..m. respectively,
and Cm+1 is the conjunct of integrity constraints that are defined over the set of data items in
GD. We now apply Corollary 1 and show that, when global transactions are local view consistent,
global transactions read consistent data.

On Relaxing Serializability by Constraining Transaction Readsets 395

Lemma 6 Let S be a 2LSR schedule with no integrity constraints present between local and global
data items. Let DS1 be a consistent database state from which S starts. If all update global
transactions in S are local view consistent, then,
(a) for all global t ransactions ti in S, read(ti) is consistent (e.g., local view consistency implies
view consistency)

0) if, in addition all update global transactions in S are global view-closed, then
state(ti, Dk, S, DS1) is consistent for all ti, i = 1, n.

Proof. (a) Let tl , t, be the serialization order of the global transactions in (Sg)GD.
Since the global transactions are local view consistent, read(tFmGD) is consistent for all
i = l,...,n. By Corollary 1, state(ti,GD, S, 04) is consistent for all i = 1,n. Since
read(tfD) E state(ti, GD, S, DSl), read(tcD) is consistent. Thus, by Lemma 3, read(&) is con-
sistent for all i = 1, n. Then (b) holds from (a) and Lemma 5. 0

The following theorem based upon Corollary 2 and Lemma 6 illustrates the conditions un-
der which 2LSR schedules preserve database consistency when there are no integrity constraints
between local and global data items.

Theorem 4 Let S be a 2LSR schedule with no integrity constraints present between local and global
data items. If all update global transactions in S are local view consistent and global view-closed,
then S is correct.

Proof. The proof is similar to that of Theorem 3. Let DS1 be a consistent database state and

{DSr}S{DS2}. W e need to show that all transactions in S read consistent data and that DSa
is consistent. By Lemma 6, all global transactions read consistent data. Following Lemma 6(b)
and Corollary 2, all local transactions also read consistent data. Thus, for all transaction ti in
S, read(ti) is consistent. Now, let SD” be serializable with serialization order tl, t,. Since,
from Lemma 6(b), state(t,, Dk, S, DS) is consistent, state(t,, LDk, S, DS) is then consistent.
Hence, there exists a consistent database state D& such that DStDk = state(t,, LDk, S, DS)

and DS~S(t”) = read(t,). Thus, t, can be executed in DSs. Let {DSs}tnbDS4}. Since
DSLDk U read(t,) is consistent, by Lemma 1, DSfDk is consistent. Since DS: ’ = DS4LDk,

E DS, Dk is consistent. Hence, for all i,i = 1,m. DStDi is consistent. Similarly, DSgD is
consistent. By Lemma 3, DSz is consistent. Hence, S is correct. 0

To illustrate the above theorem, let’s consider Example 2, where there are no local/global
integrity constraints. Since ri (d) in global transaction tl in the given global schedule is not global
view closed, Theorem 4 cannot be applied. Suppose that we now require the view of tl to be closed
as rl(d)rl(b)rl(a) and tl to be serialized after tz in S,. In this example, tl and t2 do not read and
write local data, and each global transaction would therefore transfer global data items from one
consistent state to another. Hence, the local transaction tL would read consistent global data and
result in a consistent local database state.

4.3.1. Special Case: Local Transactions do not Read Global Data

We now consider the case where local transactions are not allowed to read global data. Thus,
any transaction that wants to access global data is treated as a global transaction and is under the
control of the GTM. We prove that in this case, we do not need to impose any closure conditions
upon the view set of global transactions.

It follows from Corollary 1 and Lemma 6 that, given that global transactions are local view
consistent, local transactions read consistent data:

Lemma 7 Let S be a 2LSR schedule where local transactions do not read global data and there
are no integrity constraints present between local and global data items. Let DS1 be a consistent
database state from which S starts. If all update global transactions in S are local view consistent,
then, for all local transactions ti in S, read(&) is consistent.

396 EVAGGELIA PITOURA et al

Proof. Since SD* is serializable, SLDb is serializable for all k = 1, m. Let tr, t, be the
serialization order of the transactions in SLDk. By Lemma 6, ~-ead(t~-~~~) is consistent for all
i = 1, n. By Corollary 1, state(ti, LDk, S, DSI) is consistent for all i = 1, n. For any local
transaction ti in SLDk, since read(ti) G state(ti, LDk, S, D&), read(ti) is consistent. cl

We now are able to demonstrate that, if global transactions are local view consistent, then
2LSR global schedules preserve database consistency.

Theorem 5 Let S be a 2LSR schedule where local transactions do not read global data and there are
no integrity constraints present between local and global data items. If all update global transactions
in S are local view consistent, then S is correct.

Proof. The proof is similar to that of Theorem 3. Let DS1 be a consistent database state
and {DSI}S{D&}. W e need to show that all transactions in S read consistent data and that
DSz is consistent. By Lemma 6(a) and Lemma 7, for all transactions ti in S, read(&) is
consistent. Now, let SLDk be serializable with serialization order tl, t,. From Corollary 1,
state(t,, LDk, S, DS) is consistent. Hence, there exists a consistent database state D& such that

DSLDk = state(t,, LDk, S, DS) and DS~(t”)
Let3{DS32t,{DSd}. Since DSkDk

= read(t,). Thus, t, can be executed in D&.

Since DS, Dk = DSfDk, DS.fDk
U read(t,) is consistent, by Lemma 1, DSfDk is consistent.

is consistent. Hence, for all i,i = 1,m. DStDi is consistent.
Similarly, DSFD is consistent. By Lemma 3, DSz is consistent. Hence, S is correct. 0

To illustrate the above theorem we will use Example 1, where all data items are local and no
integrity constraints exist between different local sites. However, since both global transactions
in the given global schedule have inconsistent local views, Theorem 5 cannot be applied. If we
require that rl(a)rl(b) and rz(d) be consistent, then both WI(~) and wz(c) would be consistent.
As a result, the local transaction would not read inconsistent data, thus resulting in a consistent
local database state.

5. DISCUSSION

In this paper, we have advanced a number of criteria to ensure that 2LSR schedules maintain
database integrity constraints. In addition, our approach offers an interesting theoretical result that
relates consistency and closure properties of transactions to database consistency. The conditions
advanced define precisely the size of the readset of a global transaction that suffices to ensure the
consistency of the multidatabase. We have developed a range of conditions depending on the type
of data and constraints. The more general local transactions are, the more strict the conditions
we have to enforce on the view set of global transactions. At one extreme, if local transactions
(e.g., transactions outside the control of the GTM) are allowed to access local data related with
global data through integrity constraints and also read global data, then we must enforce both
consistency and site and global closure of the view set of update global transactions. At the other
extreme, if local transactions are allowed to access only local data that have no relation with any
global data, then local consistency of the view set of update global transactions suffices.

5.1. Applicability

We have advanced two types of conditions on the view set of update global transactions, closure
and consistency conditions. Since both conditions are imposed only upon global transactions, the
autonomy of local sites is being respected. Furthermore, as the concepts of view consistency and
view closure rest solely upon the structural properties of the integrity constraints rather than their
semantics, such restrictions can be enforced systematically. Closure conditions can be enforced
by appending to the beginning of the global transaction read operations on data items which are
included in the closure but not read by the global transaction.

The detection of inconsistency is a classical problem to which much attention has been directed
[l, 111. When an update u is executed, it may cause a change of database state ST to ST,. By
applying tests derived from the constraints, the enforcement algorithm verifies that all relevant
constraints hold in state ST,. Note that in the proposed approach, only a subset, and not the

On Relaxing Serializability by Constraining Transaction Readsets 397

whole database, is tested for consistency. Testing consistency is necessary to ensure that global

transactions produce consistent data. However, this test can be reduced to testing appropriately

defined weaker notions of consistency by taking advantage of the semantics of global transactions.

In particular, this test can be relaxed for those global transactions that still produce consistent
data even if they do not read exactly consistent data. This notion is similar to the notion of

sensitive transactions defined by Garcia-Molina [6] as transactions whose output must be based
on consistent data and as transactions whose output is seen by users. We do not have to check
for exact view consistency of non-sensitive transactions. Our approach can be used in conjunction

with methods with relaxed consistency requirements such as epsilon-serializability, and temporal
inconsistency [17] to replace the test of view-consistency with less strict tests.

One criticism of the applicability of the method may be that it is based on the premise that the
integrity constraints are explicit. We can counter this argument by noting that even in conventional
approaches, application programmers must know the integrity constraints for writing consistent

transaction programs. In particular, for multidatabases, in most cases, it is safe to ensure that the
integrity constraints are made explicit during the integration of the component databases along

with other information on the semantics of local systems. Thus, by exploiting knowledge about
the constraints we avoid the overheads associated with global serializability. Furthermore, we

must note that the enforcement of the above conditions may not require exact knowledge of the
constraints. Specifically, for the closure conditions we do not need to know the exact integrity
constraints, rather it suffices to know only the set of related data items, for instance that the data
item a is constrained by b and c but not necessarily how it is constrained.

As an alternative to system-initiated run-time tests of consistency, the proposed criterion can
be realized by writing more safe global transaction programs. Transaction programmers should
incorporate into their code the possibility of reading inconsistent local data, and for instance, block
or exit in such cases. The proposed criterion offers the theoretical basis for the correctness of these
tests and defines the exact amount of data that must be considered. For instance from Theorem 2,

to ensure correctness, a global transaction program needs to be global-view closed and local-view

consistent.

5.2. Isolation

View-based two-level serializability ensures the preservation of database consistency, however, it
does not ensure the isolation property for global transactions. In particular, global transactions may
read partial results of other global transactions through indirect conflicts with local transactions.
Although this may be undesirable for some applications, it may applicable to others such as
cooperative transactions.

For transactions that require isolation, we can use the presented criteria in conjunction with
methods that enforce global serializability, such as the ticket method [7]. We sketch briefly such an

approach. Transactions are divided in two classes, class I and class NI. Class I includes transactions
that must be isolated and NI transactions for which isolation may be relaxed. Following the ticket
method, all transactions at each local site must read and increment the value of a specific data
item, called a ticket. For transactions in NI we also use the view-based approach. Let’s assume
that optimistic concurrency control is used, where a global serialization graph is build based on the
ticket value. Specifically, an edge is added from transaction ti to transaction tj, if the ticket value
of ti at a local site is smaller than that of the ticket of tj at that site. A transaction is validated
only if no cycles occur. Using our method, we can ignore cycles among transactions in NI and still
maintain database consistency.

5.3. Performance

Closures are computed once at compile, e.g., constraint definition, time. The run time overhead
is that of reading closures and testing for consistency. One drawback of the proposed criterion is
that it may result in very large readsets for update global transactions as a consequence of imposing
closure conditions. The size of closure sets can be reduced if a more elaborate definition of closure

398 EVAGGELIA PITOURA et al.

is provided as suggested in Section 3, and the time for testing consistency can be minimized if
advanced methods for testing consistency are employed [8].

Comparing these overheads to proposed methods of enforcing global serializability [7, 12, 211,
our method still avoids creating direct conflicts between global transactions as global serializability
methods do by enforcing them to update the same data items. Thus, although readsets may
be large, readsets of different transactions may be disjoint, and thus may not cause conflicts.
Furthermore, in contrast to global serializability methods, the additional operations appended to
global transactions are read operations, which in general allow for more concurrency than write
operations. In this respect, the proposed method avoids bottlenecks and long lock waits that may
result from forcing conflicting operation in order to achieve global serializability.

Roughly speaking, our method is expected to outperform global serializability when global
transactions are independent to each other, in the sense that they read unrelated data. This
is exactly the case at which global serializability methods incur their worst overhead by forcing
unrelated transactions to conflict although they naturally do not.

6. RELATED WORK

In the previous sections we advanced certain prerequisites to the correctness of 2LSR global
schedules. In this section, these conditions will be compared with those advanced in the literature.
The correctness of 2LSR global schedules has been examined by Mehrotra et al [13] when no
local/global integrity constraints are present and for two multidatabase models, the G,, model,
where local transactions are not allowed to read global data and the G,, L, where local transactions
are allowed to read global data. In the G rw model, to avoid inconsistencies, both local and global
transaction programs are required to be fixed-structured. A transaction program is fixed-structured
if its execution from every database state results in transactions with a common structure. In the
G,,L,, to avoid inconsistencies, global transaction programs must possess no value dependencies
among their global subtransactions. A global subtransaction tj is value dependent on a set of global
subtransactions ti , tj-1 if the execution of one or more operations in tj is determined by the
values read by tl, “‘9 tj-1 s

It is illuminating to compare the range of acceptable schedules generated by the present work
with those encompassed by the above method. Let ST-2LSR denote the set of 2LSR global
schedules in which all transactions are fixed-structured; ND_2LSR denote the set of 2LSR global
schedules with no value dependencies permitted in global transactions; LV_2LSR denote the set of
2LSR global schedules in which the local views of global transactions are consistent; and LG-2LSR
denote the set of 2LSR global schedules in which the local views of global transactions are consistent
and the global view of global transactions is closed. Within the G,, model, since ST-2LSR global
schedules are correct, the fact that both local and global transactions are fixed-structured implies
that their retrievals from local sites will be consistent. However, the possession of consistent local
views by global transactions does not imply that both local and global transactions are fixed-
structured. Thus, LV-2LSR is a superset of ST-2LSR. Within the G,,L, model, the fact that a
global transaction has no value dependencies does not imply that its retrieval of global data items is
closed; nor does the converse hold true. Thus, there is no inclusive relationship between ND_2LSR
and LG_2LSR. We now compare further the above conditions in terms of their applicability in the
multidatabase environment. As pointed out by Mehrotra et al [13] it may be impractical to assume
the presence of fixed structured programs, since local transaction programs are pre-existing and
may not satisfy these restrictions. Similarly, the prohibition of value dependencies is excessively
restrictive, as many applications involve data transfer among different local database sites, resulting
in value dependencies among the subtransactions of a global transaction. In contrast, our approach
is more practical, since it affects only global transactions and the testing of local view consistency
as well as the specifications of global view closures in global transactions can be easily implemented.

Rastogi et al [18] presented additional findings relevant to the present research. That work
presented a non-serializable criterion, termed predicatewise setializability (PWSR), to be applied
in a database environment in which the integrity constraints can be grouped into Ci A . . . A Cl,
where Ci is defined over a set of data items di C D and di n dj = 8, i # j. A schedule is said to

On Relaxing Serializability by Constraining Transaction Readsets 399

be PWSR if, for all i, i = 1 , I, S*’ is serializable. That research demonstrated that a PWSR
schedule S is correct, either if all transaction programs have a fixed-structure or if S is a delayed
read schedule. A schedule S is delayed read if each transaction ti in S cannot read a data item
written by transaction tj until the completion of all tj’s operations. This theory may be applied
to an MDBS environment in which all local schedules are serializable and either both local and
global transactions are fixed-structured or all local schedules are delayed read. Clearly, the present
work has advantages over the application of PWSR in the MDBS environment, since PWSR is
applicable only if local transactions have a fixed structure or local schedules are delayed-read and
there are no local/global integrity constraints.

7. CONCLUSIONS

Enforcing serializability of transaction executions may be restrictive in terms of performance or
even inappropriate for some applications. However, by relaxing serializability, the correctness of the
database is no longer ensured. The contribution of this paper is twofold. First, we have introduced
the concept of view consistency and view closure of transactions. We believe that the relation of
these properties of transaction views to integrity constraints provides an innovative approach to
maintaining database consistency in the absence of serializability. Second, we have developed a
new correctness criterion for multidatabase systems. This new criterion uses the concept of view
consistency and view closure, to specify conditions that permit 2LSR global schedules to ensure
database consistency. The criterion respects local autonomy, since no restrictions other than
serializability need to be imposed on local schedules. We have demonstrated how this criterion
can be relaxed for special types of integrity constraints and data access patterns. Finally, we have
discussed the feasibility and applicability of the proposed criterion.

Acknowledgements - We would like to acknowledge the anonymous referees for their helpful suggestions and
constructive comments on an earlier version of this paper.

REFERENCES

(11 P. Bernstein and B. Blaustein. Fast method for testing quantified relational calculus assertions. In Proceedings
of ACM-SIGMOD International Conference on Management of Data, pp. 39-50, Orlando, FL (1982).

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Databases Systems.
Addison-Wesley (1987).

[3] Y. Breitbart, H. Garcia-Molina, and A. Silberschatz. Overview of multidatabase transaction management. The
VLDB Journal, 1(2):181-239 (1992).

[4] W. Du and A. Elmagarmid. Quasi serializability: A correctness criterion for global concurrency control in
interbase. In Proceedings of the 15th International Conference on Very Large Data Bases, pp. 347-355,
Amsterdam, The Netherlands (1989).

[5] A. K. Elmagarmid, editor. Database tinsaction Models for Advanced Applications. Morgan Kaufmann (1992).

[6] H. Garcia-Molina. Using semantic knowledge for transaction processing in a distributed database. ACM
Transactions on Database Systems, 8(2):186-213 (1983).

[7] D. Georgakopoulos, M. Rusinkiewicz, and A. Sheth. Using tickets to enforce the serializability of multidatabase
transactions. IEEE finsactions on Knowledge and Data Engineering, 6(l) (1994).

[8] P. Grefen and P. Appers. Integrity control in relational database systems - an overview. Data and Knowledge
Engineering, 10:187-223 (1993).

[9] P. Grefen and J. Widom. Integrity constraint checking in federated databases. In Proceedings of the fst IFCIS
International Conference on Cooperative Information Systems, pp. 38-47, Brussels, Belgium (1996).

[lo] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint checking with partial information. In Proceedings
of the 13th Symposium on Principles of Database Systems (1994).

[ll] A. Gupta and J. Widom. Local verification of global integrity constraints in distributed databases. In Pwceed-
ings of the ACM-SIGMOD International Conference on Management of Data, pp. 49-58, Washington, DC
(1993).

[12] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The concurrency control prob-
lem in multidatabases: Characteristics and solutions. In Proceedings of the ACM SZGMOD Conference on
Management of Data, pp. 288-297 (1992).

400 EVAGGELIA PITOURA et al.

[13] S. Mehrotra, R. Rsstogi, H. F. Korth, and A. Silberschatx. Maintaining database consistency in heterogeneous
distributed database systems. Technical Report TR-91-04, Department of Computer Science, University of
Texas at Austin (1991).

[14] S. Mehrotra, R. Rastogi, H. F. Korth, and A. Silberschatz. Non-serializable executions in heterogeneous
distributed database systems. In Proceedings of the 1st International Conference on Parallel and Distributed
Information Systems, pp. 245-252 (1991).

[15) E. Pitoura, 0. Bukhres, and A. K. Elmagarmid. Object orientation in multidatabase systems. ACM Computing
Surveys, 27(2):141-195 (1995).

[16] C. Pu. Superdatabases for composition of heterogeneous databases. In Proceedings of the International Con-
ference on Data Engineering, pp. 548-555 (1988).

[17] K. Ramamritham and P. K. Chrysanthis. A taxonomy of correctness criteria in database applications. The
VLDB Journal, 5(1):85-97 (1996).

[18] R. Rastogi, S. Mehrotra, Y. Breitbart, H. F. Korth, and A. Silberschatz. On correctness of non-serializable exe-
cutions. In Proceedings of ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pp. 97-108 (1993).

[19] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying interdatabase dependencies in a multidatabase
environment. IEEE Computer, 24(12) (1991).

[20] A. Sheth and J. Larson. Federated database systems. ACM Computing Surveys, 22(3):183-226 (1990).

[21] A. Zhang and A. Elmagarmid. A theory of global concurrency control in multidatabase systems. The VLDB
Journal, 2(3):331-359 (1993).

