
Contextual Database Preferences

Evaggelia Pitoura
Dept. of Computer Science

University of Ioannina, Greece
pitoura@cs.uoi.gr

Kostas Stefanidis
Dept. of Computer Science and Engineering

Chinese University of Hong Kong, Hong Kong
kstef@cse.cuhk.edu.hk

Panos Vassiliadis
Dept. of Computer Science

University of Ioannina, Greece
pvassil@cs.uoi.gr

Abstract

As both the volume of data and the diversity of users accessing them increase, user preferences offer a
useful means towards improving the relevance of the query results to the information needs of the specific
user posing the query. In this article, we focus on enhancing preferences with context. Context may
express conditions on situations external to the database or related to the data stored in the database.
We outline models for expressing both types of preferences. Then, given a user query and its surrounding
context, we consider the problem of selecting related preferences to personalize the query.

1 Introduction

Personalization in databases aims at addressing the explosion of the amount of data currently available to an
increasingly wider spectrum of users by presenting to users only those items that are of interest to them. Pref-
erences have been used as a means to address this challenge through supporting the expression of user interests,
likes and dislikes [15]. Most often preferences depend on the surrounding context. For instance, the choice of
which movie to see or which place to visit may depend on the current weather, location or the people accompa-
nying the user. In this respect, user preferences are context-dependent.

Context is a general term used in several domains [3, 4, 7]. We differentiate between two general context
types: (i) internal and (ii) external context. Internal context captures conditions that involve the data items stored
in the database for which preferences are expressed. External context involves conditions outside the database.
Common types of external context include the computing context (e.g., network connectivity, nearby resources),
the user context (e.g., profile, location), the physical context (e.g., noise levels, temperature) and time [5].

In this paper, we focus on specifying contextual preferences and on selecting appropriate preferences for
personalizing a user query. In general, a contextual preference specification has two parts: a preference part that
specifies the preference and a context part that specifies the conditions under which the given preference holds.
We present a multidimensional model for expressing conditions regarding the external context that allows the

Copyright 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



mid T itle Y ear Director Genre Language Duration
t1 m1 Casablanca 1942 M. Curtiz drama English 102
t2 m2 Psycho 1960 A. Hitchcock horror English 109
t3 m3 Happy-Go-Lucky 2006 M. Leigh comedy English 118

Figure 1: Example database relation.

expression of contextual preferences at various level of detail, for example both at the level of a city or a country
[16, 17]. We also consider the preference selection problem, that is, given a set of contextual preferences and
a query, determining which preferences are the most relevant to the query. We focus on context aspects and
consider as relevant those preferences whose context is more general of that of the query. We call this problem
context resolution. Finally, we present two data structures, the preference graph and the profile tree, to support
efficient context resolution.

2 A Contextual Preference Model

Preferences express user interests, likes or dislikes. In its most general form, a contextual preference specifi-
cation CP = (C, P) is a pair, where the context specification part C expresses the conditions under which the
preference specified by P holds. In the following, we briefly review approaches to preference specification and
then focus on the specification of a multidimensional model for context. As a running example, we shall use
a single relation with schema: Movies (mid, Title, Year, Director, Genre, Language, Duration). An example
relation (instance) of Movies with three tuples is shown in Fig. 1.

Preference Specification. Preference can be specified either qualitatively or quantitatively. In the qualitative
approach, a preference P is specified as a binary relation rP over a set D of items of interest, i.e., rP ⊆D ×D
[6]. For relational databases, many alternatives exists for the domain D over which preferences can be specified,
thus allowing preferences with various granularities. Let us first assume that preferences are expressed over
tuples of a single database relation R. Then, for two tuples ti, tj ∈R, preference (ti, tj) ∈ rP , also denoted as ti
≻P tj , means that tuple ti is preferred over tuple tj . For example, for the database in Fig. 1, preference t1 ≻P t2
specifies that “Casablanca” is preferred over “Psycho”. Preference relations can be also defined over attributes
to indicate their importance or relevance. For instance, for our example database, preference Director ≻P
Duration means that the director of a movie is considered more important or more relevant than its duration.
Preferences can be also defined at the level of attribute values, for instance comedy ≻P drama indicates a
preference of comedies over dramas.

Qualitative preferences can be also specified by using conditions: for two items di, dj ∈ D, di ≻P dj ,
if Cond(di, dj), where Cond is a condition that must be satisfied for the preference to hold. For example,
preference ti ≻P tj , if ti.Y ear > tj .Y ear, expresses a preference for recent movies. We can also specify
preferences that involve tuples from more than one relation as well as conditions Cond whose evaluation is not
based solely on the values of the items involved in the preference. The latter are called extrinsic preferences. An
example extrinsic preference would be that a movie directed by M. Leigh is preferred over a movie directed by
A. Hitchcock, if there exist no Spanish speaking movies.

In the quantitative approach, a preference P is specified through a preference function fP : D → [0, 1] that
assigns to each item d ∈ D a preference degree or score fP(d) usually in [0, 1]. Larger scores indicate higher
degrees of interest, i.e., for di, dj ∈ D, fP(di) > fP(dj) ⇒ di ≻P dj . Again, there are many alternatives
regarding the domain D over which a preference function is defined. For example, quantitative preferences
defined over join conditions between two relations have been used to express the strength of the relatedness
between the two relations [12]. Function fP may be also defined using conditions, i.e., fP(d) = c, if Cond(d),
where d ∈ D, c ∈ [0, 1] and Cond is a condition. For example, preference fP(t) = 0.9, if t.Genre = drama

2



friends family alone

ALL

good bad

ALL

emotion

All

Mood

Mo Tu We Th Fr Sa Su Christmas Easter

ALL

interval

occassion

weekend holidays

All

T ime_period

weekdaysrelationship

All

Accompanying_people

Figure 2: Hierarchy schema and concept hierarchy of Accompanying people, Mood and Time period.

defined over tuples of the Movie relation assigns score 0.9 to all dramas.

A Multidimensional Context Model. We make a general distinction between internal and external context.
Internal context refers to conditions that involve data items stored in the database, for example, the fact that a
preference for a specific director is applicable under the condition that the genre of the movie is drama. External
context expresses conditions that involve information outside the database. Note that in the case of preferences
specified through conditions, the Cond part may be considered as a specification of internal context. In the rest
of this section, we focus on external context and introduce a multidimensional model for capturing it.

A variety of models for (external) context have been proposed (see for example [20] for a survey). We follow
a data-centric approach. We call context environment, CE, a set of n context parameters: CE = {C1, . . . , Cn},
where each context parameter Ci, 1 ≤ i ≤ n, captures information that is not part of the database, such as the
user location or the current weather. For our movie database, let us assume that the context environment consists
of context parameters Accompanying people, Mood and Time period. Each context parameter takes values
from a hierarchical domain, so that different levels of abstraction for the captured context data are introduced.

In particular, each context parameter has multiple levels organized in a hierarchy schema. Let C be a context
parameter with m > 1 levels, Li, 1 ≤ i ≤m. We denote its hierarchy schema as L = (L1, . . . , Lm). L1 is called
the lowest or most detailed level of the hierarchy schema and Lm the top or most general one. We define a
total order among the levels of L such that L1 ≺ . . . ≺ Lm and use the notation Li ≼ Lj between two levels
to mean Li ≺ Lj or Li = Lj . Fig. 2 depicts the hierarchy schemas of the context parameters of our running
example. For instance, the hierarchy schema of context parameter Time period has three levels: occasion
(L1), interval (L2) and the top level ALL (L3). Each level Lj , 1 ≤ j ≤ m, is associated with a domain of
values, denoted domLj (C). For all parameters, their top level has a single value All, i.e., domLm(C) = {All}.
A concept hierarchy is an instance of a hierarchy schema, where the concept hierarchy of a context parameter C
with m levels is represented by a tree with m levels with nodes at each level j, 1 ≤ j ≤ m, representing values
in domLj (C). The root node (i.e., level m) represents the value All. Fig. 2 depicts the concept hierarchies of
the context parameters of our running example. For instance, for the context parameter Time period, holidays
is a value of level interval. The relationship between the values at the different levels of a concept hierarchy
is achieved through the use of a family of ancestor and descendant functions [22]. For example, for the concept
hierarchies in Fig. 2, ancL2

L1
(Christmas) = holidays whereas descL2

L1
(weekend) = {Sa, Su}. Finally, we

define the domain, dom(C), of C as: dom(C) = ∪m
j=1domLj (C).

A context state cs of a context environment CE = {C1, . . . Cn} is an n-tuple (c1, . . . , cn), where ci ∈
dom(Ci), 1 ≤ i ≤ n. For instance, (friends, good, holidays) and (friends, All, Christmas) are context states
for our movie example. The set of all possible context states, called world CW , is the Cartesian product of the
domains of the context parameters: CW = dom(C1)× . . .× dom(Cn).

The context specification part C of a contextual preference CP = (C,P) specifies a set of context states or
situations in which P holds. C is a multi-parameter context descriptor defined as follows. A single parameter
context descriptor scod(C) of a context parameter C is an expression of the form C ∈ {v1, . . . , vl}, where vk ∈
dom(C), 1 ≤ k ≤ l. We use the notation Context(scod(Ci)) = {v1, . . . , vl}. For example, for Time period,
a single parameter context descriptor is Time period ∈ {Fr, weekend}. A multi-parameter context descriptor

3



cod is an expression of the form ∧k
j=0 scod(Cij ), 1≤ k≤ n, where ij ∈ {1, . . . , n}, scod(Cij ) is a single context

parameter descriptor for Cij and there is at most one single parameter context descriptor for each Cij . A multi-
parameter context descriptor specifies a set of context states computed by taking the Cartesian product of the
contexts of all the single parameter context descriptors that appear in the descriptor. If a multi-parameter context
descriptor does not contain descriptors for a context parameter, we assume that the values of the absent context
parameter are irrelevant. In particular, if a context parameter Ci is missing from a multi-parameter context
descriptor, we assume the default condition Ci ∈ {All}. For example, the multi-parameter context descriptor
cod = (Accompanying people ∈ {friends, family} ∧ Time period ∈ {holidays}) defines the following two
context states: Context(cod) = {(friends, All, holidays), (family, All, holidays)}.

We call profile the set of all contextual preferences (codi,Pi), available to an application. The context
Context(Pr) of a profile Pr is the union of the contexts of all context descriptors that appear in Pr, that is,
Context(Pr) = ∪iContext(codi), where (codi,Pi) ∈ P .

3 Contextual Preference Selection

Query personalization refer to the process of using preferences to adapt the results of a query based on the
interests of users as expressed through their preferences. Adaptation may be achieved through ranking the
results, selecting representative subsets of the results or using different visual or otherwise presentations of
the results. Preferences may be employed to personalize the query results either in a preprocessing or in a
postprocessing step. As a preprocessing step, user preferences are used to rewrite or augment the original query,
for example, by adding selection conditions to the query to incorporate preferences. Such selection conditions
are in general considered soft constraints as opposed to the hard constraints expressed by the selection conditions
present at the original query [10]. As a postprocessing step, user preferences are used after the execution of the
original query to personalize its results, for example by re-ranking or filtering them.

Irrespectively of when preferences are used during query processing, a common issue is which of the pref-
erences in the user profile to use for personalizing each specific query. The number of preferences to be used is
central for the success of personalization, since selecting too many preferences may result to over-specialization,
while selecting too few preferences may not be effective. Preference selection is based on the relevance between
the preference and the query. In the following, we focus on defining formally the relevance between the context
of a preference and the context of a query.

Let q be a query. We use codq to denote the multi-parameter context descriptor that specifies the context
associated with q: Context(q) = Context(codq). Such context descriptors may be postulated by the application
or be explicitly provided by the users as part of their queries. Typically, in the first case, the context implicitly
associated with a query corresponds to the current context, that is, the context surrounding the user at the
time of the submission of the query. Besides this implicit context, we also envision queries that are explicitly
augmented with multi-parameter context descriptors by the users issuing them. For example, a user may pose
an exploratory query asking for a movie to see with friends during Christmas. The context associated with a
query may correspond to a single context state, where each context parameter takes a specific value from its
most detailed domain. In other cases, it may be possible to specify the query context using only rough values,
for example, when context values are provided by sensor devices with limited accuracy. In such cases, a context
parameter may take a single value from a higher level of the hierarchy or even more than one value.

Let us first consider a simple example where the context descriptor of q is (Accompanying people ∈
{friends} ∧ Mood ∈ {good} ∧ Time period ∈ {Christmas}) that specifies a single context state csq =
(friends, good, Christmas) as the context of q. If there exist a preference in the profile whose context in-
cludes a context state cs such that cs = csq, called an exact match, then this is a relevant preference that can
be used to personalize q. Assume now that there is no exact match for csq in Context(Pr). For example,
assume that Pr includes just the first three preference specifications of Fig. 3(a). To simplify presentation, in

4



the following, we consider preferences with a single context state. Intuitively, in the absence of an exact match,
we would like to use those preferences in Pr whose context “covers” that of the query. Formally, a context
state cs1 = (c11, . . . , c

1
n) ∈ CW covers a context state cs2 = (c21, . . . , c

2
n) ∈ CW if ∀ k, 1 ≤ k ≤ n, c1k = c2k or

c1k = anc
Lj

Li
(c2k) for some levels Li ≺ Lj . In our example, the context states of p1 and p2 cover cq, whereas that

of p3 does not. It can be shown that the cover relation imposes a partial order among context states.
Although the context states of both p1 and p2 cover cq, the context state of p1 is more closely related to cq.

This is formalized through the notion of the most specific state or tight cover. Given a profile Pr and a context
state cs1, we say that a context state cs2 ∈ Context(Pr) is a tight cover of cs1 in Pr, if and only if:

(i) cs2 covers cs1 and
(ii) ¬∃ cs3 ∈ Context(Pr), cs3 ̸= cs2, such that cs2 covers cs3 and cs3 covers cs1.

We now provide a formal definition of context resolution, that is, of the process of selecting appropriate
preferences from a profile based on context.

Definition 1 (Context Resolution Set): Given a profile Pr and a contextual query q, a set RS of context states,
RS ⊆ Context(Pr), is called a context resolution set for q if (i) for each context state csq ∈ Context(q), there
exists at least one context state cs in RS such that cs is a tight cover of csq in Pr and (ii) cs belongs to RS only
if there is a csq ∈ Context(q) for which cs is a tight cover in Pr.

Note that there may be more than one tight cover of a query context state. For example, consider again
query context cq = (friends, good, Christmas) and the first four preference specifications in Fig 3(a). Both
the context states of p1 and p4 are tight covers of cq. For a set of context states to qualify as a context resolution
set, it must include at least one of them. In [17], we provide a systematic way of ranking context states based
on their distances from the state of the query. The definition of distance between two context states is based on
the path distance between their values in the corresponding concept hierarchy and on the relative size of their
domains. Distances can be used to select exactly one, i.e., the most similar, tight cover of each query state, thus,
creating the smallest context resolution sets. They can also be used to include in the context resolution set more
than one tight cover per query context state, for example, by selecting among the tight covers of a query context
state, the k (k > 1) most similar to it. This provides a means for controlling the degree of personalization.
Finally, note that for a query q and profile Pr, there may be no tight cover and thus no context resolution set. In
this case, we can either execute q as a regular query, i.e., without using any preference, or relax our requirement
for relevance and consider context states that are similar to the query state although not necessarily tight covers
of it [19]. Our usability studies have indicated that in most cases using exactly one tight cover produces slightly
more satisfying results than using more than one tight cover, whereas using preferences with relaxed context
states is better that using none.

4 Indexes for Contextual Preferences

In this section, we focus on the efficient computation of context resolution sets. One way to achieve this is
by sequentially scanning all context states of all preferences in Pr. To improve response time and storage
overheads, we consider indexing the preferences in Pr based on the context states in Context(Pr). To this end,
we introduce two data structures: the preference graph and the profile tree. The preference graph exploits the
cover relation between context states.

Definition 2 (Preference Graph): The preference graph PGPr = (VPr, EPr) of a profile Pr is a directed
acyclic graph such that there is a node v ∈ VPr for each context state cs ∈ Context(Pr) and an edge (vi,
vj) ∈ EPr, if the context state that corresponds to vi is a tight cover of the context state that corresponds to vj .

For example, Fig. 3(b) depicts the preference graph for the preferences in Fig. 3(a). Note that, when there
is at least one preference with context state (All, . . ., All), the graph has a single root. The preference graph is

5



p1: ((friends, good, holidays), P1) v1

v3 v4

(All, All, All) P7

(family, All, Easter) P6

(friends, good, All) P2 (friends, All, Christmas) P4 (All, All, Easter) P5

(friends, good, holidays) P1

v6

v2

(friends, good, Easter) P3

v7v5

p2: ((friends, good, All), P2)
p3: ((friends, good, Easter), P3)
p4: ((friends, All, Christmas), P4)
p5: ((All, All, Easter), P5)
p6: ((family, All, Easter), P6)
p7: ((All, All, All), P7)

(a) (b)

Figure 3: (a) Example set of preferences and (b) the corresponding preference graph.

AllAll

friends family All

P1 P3 P2

good All

Easterholidays All Christmas

P4

Easter

P6

Easter All

P5 P7

v1

v2 v3 v4

v5 v6 v7 v8T ime_period

Mood

Accompanying_people

Figure 4: The profile tree for the example preferences of Fig. 3(a).

acyclic, since the cover relation over context states is a partial order. The size of PGPr depends on the number
of distinct context states in Pr.

Given a context state cs and a profile Pr, the context states in Context(Pr) that are tight covers of cs are
located by a top-down traversal of the preference graph PGPr starting from the nodes in VPr with no incoming
edges. Search stops at a node v of the graph, if v is a leaf node or the context state of v does not cover cs. The
context state of a node is included in the result if (i) it is a leaf node whose context state covers cs or (ii) the
context states of all of its children do not cover cs. For example, consider the preference graph in Fig. 3(b) and
input context state cs = (friends, good, Christmas). Search starts at the root node v1 and since its context state
covers cs, it proceeds to its children. Search stops at v3 which is a leaf node and at v4 whose context state does
not cover cs. The context state (friends, All, Christmas) of v3 is returned, since v3 is a leaf node whose context
state covers cs. From v2, search proceeds to node v5 and then to leaf node v6. The context state (friends, good,
holidays) of v5 is returned, since the context state of its only child does not cover cs.

The profile tree explores common prefixes of context states in the profile. We say that a value c ∈ dom(Ci)
appears in a context state cs= (c1, . . ., ci, . . ., cn), if ci = c. The length k prefix of (c1, . . ., ck . . ., cn) is (c1, . . .,
ck). A profile tree has n+1 levels. Each one of the first n levels corresponds to one of the context parameters.
We use Cti to denote the parameter mapped to level i, ti ∈ {1, . . ., n}. The last level, level n + 1, includes the
leaf nodes.

Definition 3 (Profile Tree): The profile tree TPr of a profile Pr is a tree with n+1 levels constructed as follows.

(i) Each internal node at level k, 1 ≤ k ≤ n, contains a set of cells of the form [val, pt] where val ∈ dom(Ctk )
and pt is a pointer to a node at the next tree level, i.e., level k + 1.

(ii) Each leaf node at level n+ 1 contains one or more preference.

(iii) At the first level of the tree, there is a single root node that contains a [c, p] cell for each value c∈ dom(Ct1)
that appears in a context state cs ∈ Context(Pr).

(iii) At level k, 1 < k ≤ n, there is one node, say node vo, for each [co, po] cell of each node at level k − 1.
Node vo includes a [c, p] entry for each value c ∈ Ctk that appears in a context state cs such that cs ∈
Context(Pr) and co also appears in cs. The corresponding pointer po points to vo.

6



(iv) There is a leaf node, say node vl for each [c, p] cell of a node at level n. Pointer p points to this leaf node.
Let cs= (ct1 , . . ., ctn) be the context state formed by the values of the cells on the path from the root node
to vl. The leaf node vl contains the preferences associated with context state cs = (c1, . . ., cn).

For example, for the preferences in Fig. 3(a), the profile tree depicted in Fig. 4 is constructed. Note that
there is exactly one root-to-leaf path for each context state cs in Context(Pr). Each leaf node maintains the
preferences associated with the corresponding context state. The size of the profile tree TPr depends on the
number of common prefixes of the context states in Context(Pr) and on the assignments of context parameters
to tree levels.

The profile tree TPr supports the efficient look-up of a context state cs = (c1, . . ., cn), since at each level i
we just need to follow the pointer of the cell with value cti . If cs exists in Pr, then a single path is followed.
If an exact match for cs does not exist in Pr, the context states in Context(Pr) that cover cs are located by
a top-down, breadth-first traversal of TPr. These context states need to be processed further to identify which
of them are tight covers. In particular, at each level i of the tree, all paths of length i whose context state is
either the same or covers the prefix (ct1 ,. . . , cti) of the input context state cs are maintained as candidates. For
example, for the profile tree of Fig. 4 and input context state cs = (friends, good, Christmas), search starts from
the root node and follows the pointers of the cells with values friends and All (i.e., the same or ancestor values of
friends) to nodes v2 and v4 respectively. At the next level (level two): (i) from node v2, the pointers associated
with value good and All is followed to nodes v5 and v6 respectively, and (ii) from node v4, the pointer associated
with value All is followed to node v8. At the next level (level three): (i) from node v5, the pointers associated
with holidays and All (ii) from node v6, the pointer associated with Christmas and (iii) from node v8, the pointer
associated with All are followed. Thus, preferences P1, P2, P4, and P7, i.e., all preferences whose context state
covers that of cs, are returned.

The profile tree is in general smaller than the preference graph since it takes advantage of repetitions of
prefixes of context states. With the profile tree, exact matches are resolved by a simple root-to-leaf traversal,
while for non exact matches, multiple candidate paths are maintained. The preference graph performs similarly
for both exact and non exact matches. Note that the profile tree returns covering context states, thus, to compute
tight covers, the extra step of sorting these context states based on their distances to the query context state is
required. Finaly, note that so far, we have used the preference graph and the profile tree to locate tight covers
of a single context state. Algorithms for locating tight covers of more than one context state can be designed by
representing the context states in Context(q), using a preference graph or a profile tree.

5 Summary and Related Work
In this paper, we have briefly presented our work on contextual preferences [16, 17, 18]. Our focus is on
annotating preferences with contextual information. Context is modeled using a set of context parameters that
take values from hierarchical domains, thus, allowing different levels of abstraction for the captured context data.
A context state corresponds to an assignment of values to each of the context parameters from its corresponding
domain. Preferences are augmented with context descriptors that specify the context states in which a preference
holds. Similarly, each query is related with a set of context states. We have considered the problem of identifying
those preferences whose context states are the most similar to that of a given query. We called this problem
context resolution. To realize context resolution, we have proposed two data structures, namely the preference
graph and the profile tree, that allow for a compact representation of contextual preferences.

The research literature on preferences is extensive, see, for example, [15] for a recent survey on using
preferences in database systems. In the quantitative approach (e.g., [2, 11]), preferences are expressed using
scoring functions that assign degrees of interest to specific pieces of information. In the qualitative approach
(for example, [6, 10, 8]), preferences between pieces of information are specified directly, typically using binary
preference relations. Our model is orthogonal to the approach taken to represent preferences. Contextual prefer-
ences consider either internal [1, 14] or external context [21, 9, 13]. Work on internal context focuses mainly on

7



efficiently ranking database tuples using preferences. The main novelty of our model lies in multidimensionality
that allows flexibility in expressing preferences.

References
[1] R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In SIGMOD, 2006.

[2] R. Agrawal and E. L. Wimmers. A framework for expressing and combining preferences. In SIGMOD, 2000.

[3] C. Bolchini, C. Curino, G. Orsi, E. Quintarelli, R. Rossato, F. A. Schreiber, and L. Tanca. And what can context do
for data? Commun. ACM, 52(11):136–140, 2009.

[4] P. Brézillon. Context in artificial intelligence: A survey of the literature. Computers and Artificial Intelligence, 18(4),
1999.

[5] G. Chen and D. Kotz. A survey of context-aware mobile computing research. Technical report, Dartmouth College,
Hanover, NH, USA, 2000.

[6] J. Chomicki. Preference formulas in relational queries. ACM Trans. Database Syst., 28(4):427–466, 2003.

[7] A. K. Dey. Understanding and using context. Personal and Ubiquitous Computing, 5(1):4–7, 2001.

[8] P. Georgiadis, I. Kapantaidakis, V. Christophides, E. M. Nguer, and N. Spyratos. Efficient rewriting algorithms for
preference queries. In ICDE, 2008.

[9] S. Holland and W. Kießling. Situated preferences and preference repositories for personalized database applications.
In ER, 2004.

[10] W. Kießling. Foundations of preferences in database systems. In VLDB, 2002.

[11] G. Koutrika and Y. E. Ioannidis. Constrained optimalities in query personalization. In SIGMOD, 2005.

[12] G. Koutrika and Y. E. Ioannidis. Personalized queries under a generalized preference model. In ICDE, 2005.

[13] A. Miele, E. Quintarelli, and L. Tanca. A methodology for preference-based personalization of contextual data. In
EDBT, 2009.

[14] K. Stefanidis, M. Drosou, and E. Pitoura. Perk: personalized keyword search in relational databases through prefer-
ences. In EDBT, 2010.

[15] K. Stefanidis, G. Koutrika, and E. Pitoura. A survey on representation, composition and application of preferences in
database systems. ACM Trans. Database Syst., 36(4):To appear, 2011.

[16] K. Stefanidis and E. Pitoura. Fast contextual preference scoring of database tuples. In EDBT, 2008.

[17] K. Stefanidis, E. Pitoura, and P. Vassiliadis. Adding context to preferences. In ICDE, 2007.

[18] K. Stefanidis, E. Pitoura, and P. Vassiliadis. A context-aware preference database system. International Journal of
Pervasive Computing and Communications, 3(4):439–460, 2007.

[19] K. Stefanidis, E. Pitoura, and P. Vassiliadis. On relaxing contextual preference queries. In MDM, 2007.

[20] T. Strang and C. Linnhoff-Popien. A context modeling survey. In Workshop on Advanced Context Modelling,
Reasoning and Management, 2004.

[21] A. H. van Bunningen, L. Feng, and P. M. G. Apers. A context-aware preference model for database querying in an
ambient intelligent environment. In DEXA, 2006.

[22] P. Vassiliadis and S. Skiadopoulos. Modelling and optimisation issues for multidimensional databases. In CAiSE,
2000.

8


