
A Scalable Hash-Based Mobile Agent Location Mechanism

Georgia Kastidou, Evaggelia Pitoura George Samaras

Department of Computer Science Department of Computer Science

University of Ioannina, Greece University of Cyprus, Cyprus

{georgia, pitoura}@cs.uoi.gr cssamara@ucy.ac.cy

Abstract

 In this paper, we propose a novel mobile agent
tracking mechanism based on hashing. To allow our

system to adapt to variable workloads, dynamic

rehashing is supported. The proposed mechanism scales
well with both the number of agents and the number of

moving and querying operations. We also report on its

implementation in the Aglets platform and present
performance results.

1. Introduction

 Mobile agents are processes that may be dispatched

from a source computer and be transported to remote

servers for execution. The driving force motivating mobile

agent-based computation is twofold. First, mobile agents

provide an efficient, asynchronous method for searching

for information or services in rapidly evolving networks:

mobile agents may be launched into the

unstructured network and roam around to gather

information. Second, mobile agents support intermittent

connectivity, slow networks, and light-weight devices.

 In any mobile agent system, the ability to

communicate with agents in real-time, as agents move from

one network node to another, is essential for retrieving any

data or information that they have collected, and for

supporting coordination and cooperation among them.

Communication with a mobile agent subsumes the ability

to locate it (i.e., find the node and execution environment

in which it currently resides). Locating agents efficiently is

thus an issue central to any mobile agent system.

 Mobile agents systems are highly-dynamic open

systems in which the number of agents varies considerably

over time as new agents are created and existing agents die.

A location schema in such systems should scale well with

the number of agents and their distribution and mobility.

In this paper, we present such an agent location

mechanism. Special agents, called Information Agents

(IAgents), maintain the current location of a set of mobile

agents assigned to them. The assignment of mobile agents

to IAgents is based on a system-wide hash function and

thus is very efficient. The IAgents are also mobile agents

whose location depends on the distribution of the mobile

agents that they serve. By separating between these two

issues (number and location of the IAgents), we are able to

treat each one of them differently and apply mechanisms

appropriate for each one of them.

 To allow our system to adapt to the changing number

of mobile agents and the variable system workload (i.e., the

mobility rate of the agents and the rate of requests for

communication), the number of IAgents changes over time.

In particular, when an IAgent is over-loaded, it splits its

load by creating a new IAgent. Analogously, under-loaded

IAgents are merged by assigning their load to other

existing IAgents. The process of splitting and merging

IAgents should not affect the mapping of mobile agents to

IAgents that are not involved in the process. To this end,

our hash function is extendible. Our mechanism is

independent of any specific agent-based platform since the

mapping of mobile agents to IAgents is not based on any

particular agent-naming scheme.

 We have expanded Aglets [7], a mobile agent

infrastructure, with our location mechanism. Our

performance results show that our mechanism scales well

when compared with a centralized location schema. In

particular, when configured appropriately, it takes almost

constant time to locate an agent independently of the

system workload.

 The remainder of this paper is structured as follows. In

Section 2, we provide an overview of our approach. In

Section 3, we introduce our hash function, while in Section

4, we describe rehashing: the procedure of dynamically

adjusting the hash function for load balancing. In Section

5, we present an implementation of our mechanism in

Aglets and its performance. Finally, we present related

work in Section 6 and our conclusions in Section 7.

2. Our Hash-Based Approach

2.1 Overview of our Location Mechanism

 We propose a two-tier mechanism. Special agents,

called Information Agents (IAgents), are responsible for

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

maintaining the current location of a set of mobile agents.

Which set of mobile agents is associated with each IAgent

is determined through a hash function. This mapping

changes over time as new IAgents are created or existing

IAgents are merged depending on the current system

workload.

 To locate a mobile agent A, in the first phase, we

determine which special agent (IAgent) is responsible for

maintaining the precise current location of A. This is done

by applying the hash function on A’s id. In the second

phase, the responsible IAgent is contacted.

 For our system to adapt to the changing number of

mobile agents and the varying system workload, the

number of IAgents changes over time. Specifically, when

an IAgent becomes over-loaded, it splits its load by

creating a new IAgent. Similarly, under-loaded IAgents are

merged by assigning their load to other existing IAgents.

Thus, the mapping of mobile agents to IAgents should be

dynamically adjustable as well. However, the splitting and

merging process should affect the mapping of only the

mobile agents and the IAgents that are involved in the

process. To this end, we choose a dynamic hash function.

 Another basic characteristic of our mechanism is the

maintenance of the hash function. There is a central static

agent (HAgent) that keeps the current hash function. Every

time the hash function changes, the copy of the HAgent is

immediately updated (primary copy). For reasons of

efficiency, copies of this hash function are maintained

locally in every node of the system. These copies may be

temporally out-of-date (secondary copies).

2.2 System Components

 The basic agents that constitute our location

management mechanism are: (i) IAgents (Information

Agents), (ii) LHAgents (Local Hash Agents), and (iii) the

HAgent (Hash Agent).

 The IAgents are mobile agents that maintain

information about the current location of the mobile agents

that are assigned to them. Every IAgent maintains for each

mobile agent it serves its id and its precise current location.

The location of an IAgent depends on the current location

of the agents it serves and may change over time.

 The LHAgents and the HAgent are responsible for the

maintenance of the hash function. In particular, there is one

LHAgent at each node of the system. Each LHAgent

maintain a local copy of the hash function. The HAgent is

the agent (mobile or static) that maintains the primary copy

of the hash function. The HAgent is also responsible for

coordinating the splitting and merging processes.

2.3 Basic Operations

Agent Movement

During its creation, each mobile agent A communicates

with the LHAgent at its node to find out the id and the

current location of the IAgent that is responsible for

maintaining its current location. Subsequently, each time

A moves, it informs its IAgent about its new location.

Locating an Agent.

Each time, an agent Q wants to communicate with another

agent A, it communicates first with its own local LHAgent

and gets the id and the current location of A’s IAgent.

Then, Q queries the specified IAgent for the current

location of A. Upon receiving the query, the IAgent checks

whether it is still responsible for A (the IAgent may have

seize to serve A, if the hash function has been modified). If

it still servers A, it replies to Q with A’s current location.

Otherwise, it notifies Q that it is no longer responsible for

A. This will trigger the hash function update propagation

procedure described in Section 4.3.

3. Description of Hashing

 For attaining scalability and adaptability to the

changing system conditions, the number of IAgents

changes over time. The mapping of agents to IAgents is

through a hash function H. Since this mapping changes

dynamically over time, we choose H from the category of

extensible hash functions [6]. Function H takes as input the

binary representation of a mobile agent’s id and returns the

id of the IAgent that is responsible for this agent.

Specifically, H uses some prefix of the binary

representation of the agent’s id. The size (i.e, the number of

bits) as well as which bits of the prefix are used varies over

time.

Figure 1: Hash Tree

 To represent the hash function H, we use a binary tree

that we call a hash tree. Figure 1 depicts an instance of

such a hash tree. With each edge of the hash tree, we

associate a label. A label is a string of bits. The first bit of

the label of each edge (u, v) determines whether node v is

on the left or the right of u. If v is on the left of u, the first

bit of the label is “0”; otherwise it is “1”. We call the first

bit of each label its valid bit. The multi-bit labels are the

result of splitting and merging IAgents.

 The concatenation of the labels of all edges in the path

from the root of the hash tree to a leaf node v is called the

hyper-label of the leaf node v. For example, in Figure 1,

the hyper-label of leaf “IA2” is 0010101.

1

0

010

0

0 1

11

0 1

1

10

IA5 IA6

IA4 IA3

IA2 IA1

IA0
0

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

 For ease of presentation, we shall use the character “.”

to separate the labels in each hyper-label. For example,

hyper-label 0010101 will be denoted 0.010.10.1.

 Each leaf node of the hash tree corresponds to an

IAgent. The IAgent at a leaf node v keeps information for

the current location of the mobile agents for which the

prefix of the binary representation of their id is compatible

with the hyper-label of v. A prefix of the binary

representation of a mobile agent’s id is compatible with a

hyper-label, if and only if the valid bit of each label in the

hyper-label is equal to the k-th character of the binary

representation, where k is the position of the specific valid

bit in the hyper-label.

Figure 2: Compatibility between prefixes and hyper-
labels (with bold letters are the valid bits)

 For instance, prefix 0001111 is compatible with the

hyper-label 0.010.10.1, since the valid bit of all labels in

the hyper-label match with the corresponding bits of the

prefix (Figure 2). This also means that agent with prefix

0001111 is mapped to IAgent “IA2” (Figure 1).

 In other words, to match agents with IAgents we just

use the valid bits of each label. For example, in the hash

tree shown in Figure 1, the IAgent with Id “IA3” serves

all agents with prefix 01, while the IAgent with Id “IA5”

serves all agents with prefix 1x10, where x can be either

1 or 0.

 This leads us to the following simple procedure for

finding the IAgent that serves a specific agent A. First,

A’s id is converted into its binary representation. Then,

the hash tree is traversed as follows. Starting from the

root of the hash tree, we proceed towards a leaf of the

hash tree by checking one by one the bits of the binary

representation. If the value of the bit is 1, we go to the

right child of the node; otherwise we go to node’s left

child. In the case where a label of an edge has k bits,

where k > 1, we ignore the next k - 1 bits of the binary

representation and the next selection of a node is based

on the bit following these k-bits.

4. Rehashing

 By rehashing we refer to the procedure during which

the hash function changes. The hash function changes

when the structure of the hash tree is modified because

of the deletion or insertion of an IAgent.

 The main purpose of the insertion or the deletion of

an IAgent is the re-organization of the hash tree structure

in order to uniformly distribute the load created by the

requests either for locating or updating an agent’s current

location. Specifically, we guarantee that the rate of

requests received by each IAgent does not exceed a Tmax

or falls below a Tmin threshold. To compute the current

workload, we maintain running statistics of the requests

received by each IAgent.

 The process of creating a new IAgent or merging an

existing one is coordinated by the HAgent. The HAgent

ensures that only one such process is in progress at each

time.

4.1 Creating New IAgents

 When the rate of the messages that an IAgent receives

exceeds the Tmax threshold, a new IAgent is created so that

the load is split. To distribute the load among IAgents

fairly, each IAgent maintains statistics regarding the access

load of each agent it serves.

 The statistics maintained may vary in their level of

detail leading to different heuristics for efficient rehashing.

For example, we may maintain the exact number of update

and query requests received per agent or for groups of

agents (e.g., all agents with a specific prefix). In this paper,

we assume that we maintain for each agent the

accumulated rate of update and query requests.

 The splitting procedure is based on the fact that only

the valid (i.e. first) bit of a label is used when determining

the mapping between agents and IAgents. Thus, when a

label has more than one bit, we could use the other unused

bits of the label to extend hashing. Doing so would result in

more balanced hash trees or in other words in using shorter

prefixes. This observation leads to two different forms of

splitting. In the first case (simple split), all labels in the

hyper-label of the IAgent have one bit. In the other case

(complex split), there is at least one label at the hyper-label

having more than one bit.

 Simple split is performed when all labels in the hyper-

label of the IAgent A to be split have exactly one bit. In

this case, we split the load by using m (m 1) extra bits of

the prefix. Specifically, IAgent A starts by using m = 1 bit

to split its load. If this results to an uneven split, A

increments m by one, and tries to split its load using m = 2

bits. This procedure continues until m is sufficiently large

to produce an even split of A’s load. In terms of the hash

tree, we create two new leaf nodes as children of the node

to be split. The last label of the hyper-label of A is

augmented with m – 1 bits, reflecting the fact that the split

was done on the m-th bit.

 For instance, assume that we need to split the IAgent

“IA3” in Figure 1. Its hyper-label is 0.1. Let m = 1. We

create two new nodes in the hash tree, one with hyper-label

Id’s Binary

Representation Hyper label

1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 001 11 1 0. 010. 10. 1

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

0.1.0 that corresponds to the existing IAgent “IA3” and

one with hyper-label 0.1.1 for the new IAgent (Figure 3).

Figure 3: Simple Split

 Complex split occurs when there is at least one label in

the hyper-label of the node to be split that has more than

one bit. In this case, we use these bits for splitting. The

motivation is to use the unused bits in the label to produce

more balanced hash trees. If this fails to distribute the

workload among the IAgents, then we switch to simple

split that always splits a leaf node. In particular, we start by

considering the left-most multi-bit label of the hyper-label.

We start by considering the first bit after the valid bit. If

this results in an uneven split, we use the second bit and so

on. If the attempt to split based on the leftmost multi-bit

label fails, we consider the next multi-bit label. This

procedure continues until a successful split is possible. If

this is not possible, we switch to simple split.

 For example, say we want to split IAgent “IA1” with

hyper-label 0.010.10.0. We start the splitting based on the

first bit of label 010. Assume this is successful. Then, we

create two new nodes, one with hyper-label 0.0.10.10.0 and

one with hyper-label 0.0.0 (Figure 4).

Figure 4: Complex Split

4.2 Merging IAgents

If the rate of messages that an IAgent receives falls

below the Tmin threshold, we merge this IAgent with

existing IAgents. The agents served by the merged IAgent

are assigned to some other IAgents of the system.

 Similarly with the case of split, we consider two

different cases. In the first case, simple merge, the sibling

in the hash tree of the IAgent is a leaf. In this case, we

simply merge the node with its sibling. For instance,

assume that IAgent “IA6” in Figure 1 needs to be merged.

It is merged with its sibling “IA5” (Figure 5).

Figure 5: Simple Merge

 In complex merge, the sibling of the IAgent to be

merged is an internal node. In this case, the load of the

IAgent is assigned to the IAgents at the subtree rooted at its

sibling node. For example, assume that IAgent “IA0” in

Figure 1 is merged. This results in the hash tree in Figure 6.

Figure 6: Complex Merge

 Merging may lead to reducing the height of the hash

tree. It may also result in overloading some of the IAgents

that are assigned the agents that were previously served by

the IAgent that was merged. In this case, the overloaded

IAgents may need to be split.

4.3 Hash Function Update Propagation

 When the hash function is modified, only the HAgent

is updated immediately. The local copies of the hash

function at the LHAgents are updated on demand. An

update of the hash function is initiated either by (i) an agent

that has moved and contacts the wrong IAgent for updating

its current location or (ii) an agent that is searching for

another agent and contacts the wrong IAgent. In both these

cases, the mobile agent or the querying agent respectively

contacts their local LHAgent which in turn contacts the

HAgent to get the updated copy of the hash function.

5. Implementation and Performance Results

 For the evaluation of the efficiency of our mechanism,

we implemented it in the Aglets 2.0.1 mobile agent

platform [7]. To study its scalability, we also implemented

in Aglets a centralized mechanism. In the centralized

scheme, there is a single central agent that is responsible

for maintaining the current location of all mobile agents in

the system. This central agent performs the same functions

as the IAgents in our system.

 To evaluate our mechanism, we present two

experiments that compare the scalability of our mechanism

1

0

010

0

0 1

11

0 1

1

10

IA5 IA6

IA4

IA3

IA2 IA1

IA0

0 1

IA7

IA0

IA1 IA2

IA3 IA4 IA5 0

0

010

0

0

11

11

10

1

0

0

0 1

11

10

1

IA5 IA6

IA4 IA3

IA2

1

0 10

IA1

IA0

IA8

0 10

0

IA1 IA2

IA3 IA4 0

01010

0

0

11

11

1

IA5 IA6

0 1

0

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

with the scalability of the centralized scheme. The first

experiment evaluates the performance in relation to the

number of mobile agents, while the second with the

mobility rate of the mobile agents. In both cases, we

consider as our performance metric the average response

time of a query for the location of a mobile agent (TAgent)

selected randomly from all the mobile agents in the system.

We call this location time. The total number of queries is

200 in each case.

 The Tmax and Tmin values were set at 15 and 5 messages

per second respectively. These values depend on various

parameters, such as the type of nodes that host the IAgents

as well as the agent implementation platform. We found

out that these values work well in our setting. Developing

heuristics for setting these values is part of our plans for

future work.

 The experiments were performed in real time

conditions on a LAN network using 10 Sun Blade 100

running Solaris 2.8. Each experiment was run multiple

times and we report the statistically normalized averages.

 For the first experiment, we consider constant the

mobility rate of the TAgents and change their number. The

number of the TAgents that we consider is 10, 20, 30, 50

and 100. Each TAgent stays at each node for 0.5 sec. As

shown in Figure 7, in the centralized scheme, the time to

locate a TAgent increases linearly with the number of

TAgents as opposed to our mechanism in which the

location time stays almost constant.

Figure 7: Results of Experiment I

 For the second experiment, we consider constant the

number of TAgents in the system and modify their mobility

rate, i.e., how long they stay at each node. The faster the

Tagents move, the more update messages the IAgents

receive. In this experiment, we consider a small number of

TAgents (20) to emphasize the effect of mobility. We

consider that each TAgents remains at each node for 100,

200, 500, 1000 and 2000 msecs. As shown in Figure 8, our

mechanism outperforms the centralized one.

 Although, it was expected that the time for locating a

mobile agent with our mechanism would be much smaller

than with the centralized approach, it is interesting to note

that this time remains almost constant regardless of the

current system conditions. In other words, if at some point

a large number of mobile agents is created in the system or

their moving rate changes unpredictably, our mechanism

will adapt nicely by changing appropriately the hash

function and deleting or inserting new IAgents in order to

keep constant the time needed to locate a mobile agent.

Figure 8: Results of Experiment II

6. Related Work

 The problem of locating mobile objects is a well-

studied one [2]. However, although, in most mobile agents

platforms, knowing the precise current location of the

receiver is considered necessary for inter-agent

communication, many of them (e.g., Aglets [7], Mole [9],

D’Agents [10], Concordia[11], and Grasshoper[12]) do not

provide an agent location mechanism. Scalability, although

important, is also an issue rather under-researched in the

context of agent platforms [4].

 Ajanta’s location mechanism [5, 8] implements an

HLR/VLR scheme [2] in which a registry keeps

information for the agents which are currently located in its

domain. In addition, each registry maintains the precise

current location for the agents which were created in its

domain. One limitation with Ajanta is that the name of

each agent contains information about the registry in which

the agent was created. Thus, this mechanism cannot be

used in agent systems that use a naming system that does

not contain such information.

 Voyager [13] implements a centralized schema with

forwarding pointers. In this scheme, every agent that

wishes to be located by other agents registers to one or

more name services. Each time an agent moves, it informs

all the name services to which it has registered. To locate

an agent, one must know either a name service to which the

agent has registered or (under some circumstances) a node

that the agent has visited during its trip (these nodes will

forward the request until the agent is reached).

 As far as we know, ours is the first approach that

considers dynamic hashing in the context of mobile agents.

Hashing was also proposed for locating agents in [14]. In

this work, the emphasis is on security; mobile agents are

assigned to tracking agents (IAgents) by means of a

cryptographic hash function.

 Hashing has been used to map data items to servers in

many domains. A distributed variant of an extendible

hashing data structure is presented in [3]. The proposed

Experiment I

0

10

20

30

40

10 20 30 50 100

Number of TAgents

L
o
c
a
ti
o
n
 T

im
e

(m
s
e
c
)

Centralized Scheme

Our Mechanism

Experiment II

0

5

10

15

20

100 200 500 1000 2000

Time each Tagent remains at each

node (msec)

L
o

c
a

ti
o

n
 T

im
e

 (
m

s
e

c
)

Centralized Scheme

Our Mechanism

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

data structure consists of buckets of data that are spread

across multiple servers. Chord [1] is a protocol that uses

hashing for locating the node in a peer-to-peer system that

stores a particular data item. The hash function used in

Chord is a variant of consistent hashing. Consistent hashing

distributes data items to nodes so that each node receives

roughly the same number of items. However, in our case,

our goal is to balance the total workload received at each

node as opposed to the number of items.

 One issue that was not considered in this paper is

guaranteed agent discovery; that is, ensuring that the

location of an agent is found even if an agent moves faster

than the requests for its location. This issue is the topic of

[15, 16] and is an important direction for future work.

7. Conclusions

 In this paper, we propose a hash-based approach to the

problem of locating mobile agents. Special agents, called

IAgents, maintain the current location of a set of mobile

agents. Which set of mobile agents is associated with each

IAgent is determined through a hash function. This

association changes over time as new IAgents are created

or existing IAgents are merged depending on the system

workload. Our experiments show that our approach scales

well with both the number of agents and their mobility rate

and provides almost constant search time for locating an

agent independently of the system workload.

 We are currently extending our system in two ways.

First, we study a dual problem, the placement of the

IAgents so that locality is exploited. For example, the

IAgents could move closer to the majority of the agents

that they serve. Second, we investigate means for

enhancing the fault tolerance of our mechanism. Currently,

we are supporting a primary copy mechanism for the hash

function, thus making the HAgent that keeps this copy a

vulnerability point.

Acknowledgements

 This work is partially funded by the Information

Society Technologies programme of the European

Commission under the IST-2001-32645.

References

[1] Castro, P., Greenstein, B., Stoica, I., Morris, R., Karger, D.,

Kaashoek, F., and Balakrishnan, H., Chord: A Scalable Peer-to-

Peer Lookup Service for Internet Applications, In Proc. ACM

SIGCOMM 2001.

[2] Pitoura E.,and Samaras, G., Locating Objects in Mobile

Computing, IEEE Transactions on Knowledge and Data

Engineering. Vol. 13, No. 4, pp. 571 – 592, July/August 2001.

[3] Hilford, V., Bastani, F.B., and Cukic, B., EH* - Extendible

Hashing in Distributed Environment, In Proc. of the COMPSAC

’97 – 21st International Computer Software and Applications

Conference.

[4] Brazier, F., van Steen M., and Wijngaards, N., On MAS

Scalability. In Proc. Of the 5th International Conference on

Autonomous Agents, Montreal, Canada, May 28 – June 01, 2001.

[5] Karnik, N. and M., Tripathi, A.,R., Design Issues in Mobile

Agent Programming Systems, IEEE Concurrency. Vol. 6, No. 3,

pp. 52-61, July – September 1998.

[6] R.J., Enbody, and Du, H.C., Dynamic Hashing Schemes.,

ACM Computing Surveys. Vol 20, No. 2, June 1988.

[7] Lange, D.B., and Oshima, M., Programming and Deploying

Java Mobile Agents with Aglet, Addison Wesley, 1998

[8] Tripathi, A., Karnik, N., Ahmed, T., Singh, R., Prakash, A.,

Kakani, V., Vora, and M., Pathak, M., Design of the Ajanta

System for Mobile Agent Programming, Journal of System and

Software, May 2002

[9] Baumann, J., Hohl, F., Rothermel, and K., Straber, M., Mole –

Concepts of a Mobile Agent System, WWW Journal, Special

issue on Applications and Techniques of Web Agents, volume 1,

no 3, 1998

[10] D’Agents http://agent.cs.dartmouth.edu/

[11] Mitsubishi Electric ITA, Concordia Developer’s Guide,

October 1998

[12] IKV++ GmbH, Release 2.2, Grasshoper Programmer’s

Guide, March 2001

[12] ObjectSpace Voyager: Technical overview, Dec. 1997.

http://www.objectspace.com/voyager/whitepapers/VoyagerTechO

view.pdf.

[14] Roth V. and Peters J., A Scalable and Secure Global

Tracking Service for Mobile Agents, In Proc. Mobile Agents

2001, Vol. 2240 of LNCS. Springer Verlag, December 2001.

[15] Moreau L. Distributed Directory Service and Message

Router for Mobile Agents. Science of Computer Programming,

39(2-3):249-272, 2001.

[16] Murphy A. L. and Picco G. P., Reliable Communication

for Highly Mobile Agents. In Journal of Autonomous Agents

and Multi-Agent Systems, Special issue on Mobile Agents.

Danny Lange ed., (to appear).

Proceedings of the 23 rd International Conference on Distributed Computing Systems Workshops (ICDCSW’03)
0-7695-1921-0/03 $17.00 © 2003 IEEE

