Creating and maintaining replicas in unstructured
peer-to-peer systems

Elias Leontiadis, Vassilios V. Dimakopoulds and Evaggelia Pitoufa

! Department of Computer Science, University College Londimited Kingdom
2 Department of Computer Science, University of loanninantina, Greece

Abstract. In peer-to-peer systems, replication is an important isssiét im-
proves search performance and data availability. It has beewn that optimal
replication is attained when the number of replicas per ieproportional to the
square root of their popularity. In this paper, we focus odaips in the case of
optimal replication. In particular, we propose a new pidtstrategy for achiev-
ing square root replication called pull-then-push repi@a(PtP). With PtP, after
a successful search, the requesting node enters a regpigsttephase where it
transmits copies of the item to its neighbors. We show thagtipg the repli-
cas can be significantly improved through an update-pusbkepivaere the node
that created the copies propagates any updates it hasedaging similar pa-
rameters as in replicate-push. Our experimental resuti& shat replicate-push
coupled with an update-push strategy achieves good rgplc@ment and con-
sistency with small message overhead.

1 Introduction

The popularity of file sharing systems (such as Napster andeBa) has resulted in
attracting much current research in peer-to-peer (p2@esys Peer-to-peer systems
offer a means for sharing data among a large, diverse andgmepulation of users.
An issue central in such systems is resource location,iven@ user query for data, to
discover the peers with matching data items.

There are two basic approaches for building p2p systemsffiaiemtly locating
data. In structured p2p systems, data items are assignguedis peers using some
form of distributed hashing. Locating peers with matchirgadis then guaranteed to
take place by visiting a bounded number of peers, normatiafithmic to the total
number of peers in the system. In unstructured p2p systdrase fs no assumption
about the placement of data items. New nodes connect to stiraeremdes in the p2p
system randomly. When compared with structured p2p systenssructured p2p sys-
tems usually provide no guarantees for search performartogabnot suffer from the
cost induced from maintaining the structure and from loddrm@ng procedures neces-
sary in structured p2p systems.

In this paper, we focus on the problem of replication in wnsired p2p systems.
Replication improves the performance of search as well tsalailability. Availabil-
ity issues are especially critical in p2p systems, sincegleave the system very often,

* Work partially supported by the Integrated Project ISTAS3EOLUS.

thus making their data unavailable. Previous work on théctfp 2] showed that op-
timal (with respect to search performance) replicatiorcisieved when the number of
copies per data item is proportional to the square root of frogularity. Here, we pro-
pose a new practical strategy for achieving square rooicaggin called pull-then-push
replication (PtP). With PtP replication, after a succelssfarch for a data item, the node
that posed the query enters a replicate-push phase duriich Wipushes copies of the
item to its neighbors.

We also propose consistency maintenance protocols foesapeated using the
optimal replication strategy. We show that updating theie®pan be significantly im-
proved through an update-push phase where the node th&tditba copies propa-
gates any updates it receives to its neighbors. Althougticeeconsistency protocols
have been previously proposed (e.g., in [3]), our main domtion is that we study the
problem in conjunction with the strategy used to create thy@es. Our experiments
show that the best results are achieved when update-pusisinsiéar parameters with
replicate-push.

2 Optimal replication

Suppose there are in total different data items in the network, and that, collectiyely
the peers have capacity for storiRjtems’. Also, assume that the query rate for itém
isq;,i =1,...,m. Cohen and Shenker [1] developed a theory for optimallyicaphg
the data items in unstructured peer-to-peer networksngtve restriction ofR. In par-
ticular, they studied different replication strategied ahowed that the expected search
cost is minimized when th&h item has-; replicas, where; is proportional to, /g;.

In their analysis the authors assumed a theoretical randobrep (RP) search me-
thod: the inquiring node repeatedly probes peers in randairaaks for the item, until
the item is found. As the authors argued, the RP method egpthe essential behav-
ior of the blind search strategies (such as flooding) uswatiployed in p2p systems
because in unstructured networks the topology is unretatéte location of data. The
problem with square-root (SR) replication is that it reggiknowledge of the query
rate for each item. To alleviate this, the following schenas\wroposed: after each suc-
cessful search, the item is copied to a number of nodes egjtiz¢ thumber of probes.
It was shown that, with an analogous rate of item removals,dbheme leads to SR
replication.

However, even this scheme is not easily implementable. ikgapack of the num-
ber of queried nodes is simply impractical when the usualdilog-based search al-
gorithms are used, due to the excessive number of messagérerk But even if a
practical way of counting the queried nodes existed, thislmer would not be equal
to the number of random probes that would have been requifedireason is that the
theoretic RP strategy stops immediately after locatingtta. All practical strategies,
however, unleash parallel search paths — if the item is foniodie of the search paths,
the rest might continue querying nodes until, for examplenatto-live (TTL) param-
eter was exhausted.

% Data items can be actual copies of the data or just pointeteto.

In conclusion, practical strategies for approximating nluenber of probes are re-
quired. In [2], the authors examined a number of such algast namelyowner-
replication, path-replicationandrandom-replicationIn owner-replication, the inquir-
ing node is the only one that makes a copy of the resource —inlgatearly to subopti-
mal replication. In the other two strategies, the node thatides the resource creates a
number of replicas, equal to the distance (in hops) betweemtuiring and the offer-
ing node. The last two strategies differ only in where thdicap are placed. Path and
random replication approach SR replication but not quitaieately. The reason is that
if the distance between the inquiring and the offering nadehops, the RP strategy
may not have located the item within jugbrobes, unless a single path was used for the
search. The authors used multiple random walkers, whialralét visit a multiple oft
nodes. We next propose a simple but effective scheme.

2.1 Pull-Then-Push replication

The proposed scheme is based on the following idea: theianeat replicas is dele-
gated to thénquiring node, not the providing node. The scheme consists of twogshas
The pull phase refers to searching for a data item. After a successéuth, the in-
quiring node enters pushphase, whereby it transmits the data item to other nodes
in the network in order to force creation of replicas. We ¢hai$ thePull-then-Push
(PtP) replication. One can conceive variations of the Ptitegyy by utilizing differ-
ent algorithms for the pull and push phases. Path replicassuggested in [2] could
be considered as a type of PtP replication, where the puigohaes multiple random
walkers, while the push phase uses a single path.

In order to reach SR replication, we need to create a numbyepti€as equal to the
number of probed nodes. Consequently, one should utiliezeamealgorithm for the
push and the pull phases, so that the push phase visits apatteky the same nodes the
pull phase visited. For example, if a random BFS search #éhgoiis used for the pull
phase, the same algorithm should be used to broadcastrnmeuteng the push phase.

All practical search strategies produce multiple searclbes and utilize some form
of TTL to limit the search space (and the resulting messageh@ad). If during the
pull phase the item was found at distarideps from the inquirer, then the push phase
should also stop after hops. This means that the TTL utilized for the push phases
should not be set according to the TTL used during pull, bilnersaccording ta.

However, because of the multiple search routes producedttitstep may contact
quite a large number of nodes. In [4], it was shown that foeglaoding, the number of
messages grows exponentially with the TTL; most of thosesaggss are sent in the last
step of the search. For example, assume a random networkadthpeer connected to
d other nodes, and a pure flooding strategy, where each pgeagates the query to all
its neighbors. If a search returned an item at the 3rd stggoajmatelyd + d? + d°
different peers would have been visited, although only amgterat distance 3 had the
item. This means that+d2 41 probes could be enough and as a result, the best strategy
for the push phase would be to use a TTL of 2, not 3. In gendralTT L used for the
push phase should be equal to the hop distance at which theviés found minus one.

Recapping, our proposed PtP strategy adheres to the falipmiles:(a) After a
successful search, the requester pushes the item back teterk; (b) The same

algorithm is used for both pull (search) and puét); The TTL for push is equal to
t — 1, wheret is the hop distance where the resource was fo(d)dAll peers receiving
the push message create a replica of the item. In the neids&at provide simulation
results which confirm that this simple PtP strategy doesdddead to SR replication.

2.2 Experimental results

The PtP strategy has been evaluated through extensiveasiomd. In our simulator,
we construct a network of peers/nodes, where each peer iectad tad other peers
in random, called its neighbors. Each peer offers a numbdataf items and also has
a fixed number of slots for replicating other items. Initfahll replica slots are empty.
Then, we continuously perform searches originating at@ampeers, for random items.
After each search, a push phase occurs, where replicatifmmdsed according to the
strategy used. If a peer has to replicate an item and has rlatdesslot, a uniformly
random slot is emptied so that room is created for the neviceeResults are collected
after a sufficiently large number of searches; the single imgsortant metric we extract
is the number of replicas;, for each item.

The simulator is capable of utilizing a number of differe@ach (pull) strategies.
In all these strategies, a peer that receives a query foraaiteat, first checks whether
it knows about the item; if not, it propagates the query to#gghbors. The strategies
differ in the set of neighbors where the queries are progagand include [2, 4, 5]:

— Pure flooding Peers propagate the query to all their neighbors.

— Random walkers or random path=or a single random path, each peer propagates
the query to exactly one of its neighbors, in random. Mudtiwhlkers searching in
parallel is a variation to decrease the average number of: lbe inquiring node
sends the query to a number of its neighbors, each one umgashandom walker.

— Random BFS or teeminBeers propagate the query to each of their neighbors with
some fixed probabilitys. A decayparameter may be utilized so thatdecreases
with the distance from the inquiring node. If a node is inalistet from the inquir-
ing peer, then the probability of contacting a neighbori®giby:¢; = ¢(1 — ¢)?,
wheregy = ¢ andc is the decay parameter. For= 0 we have simple teeming,
while if in addition¢ = 1, the strategy is pure flooding.

The same algorithms are used for the push phase. Of courdgs icase the peers do
not receive queries but just items to propagate immediadetpme of their neighbors.
In Fig. 1, we present results for a random network of 1000e=rch with 4 neigh-
bors on average. A peer has storage space for 10 items, otdtaf af R = 100 differ-
ent items. The replication strategies employed are owragh, and PtP replication. For
PtP we experimented with all the algorithms presented abosdevith different param-
eters. In Fig. 1, we show the results for two of them, one witlartddom walkers and
TTL =10 and one with teeming, TTL = 5 and a decay parameter-of0.4. The other
algorithms exhibited the same behavior, and were omittedl&rity. The plot shows
the normalized number of replicas (R) for each of the items. To make the square-root
trend clearer, for this particular plot, we have assumedyqrages proportional to the

0,04

0,035

0.03 = optimal (SR)

0,025 —o— PtP (teeming)
—a— PtP (random paths)

0,02
—X—owner

0,015 —x—path

normalized replication ratio

0,01

0,005

1 20 40 60 80
item id (prop. to query rate)

Fig. 1. Distribution of replication ratios under various replicat strategies

id of the item, so the:-axis could also be named ‘query rate’. The plot includesihe
timal square-root distribution (SR), drawn with a thickdinVe have also experimented
with other query rates, including Zipf-like ones, and thgules were identical.

It should be clear from Fig. 1, that owner replication is femh the optimum. Path
replication is better, but does not result in SR replicat®oth PtP strategies, although
different by nature, led to almost perfect SR replicatiohisTalso comes to confirm
our intuition that the exact strategies used for the pudlfpphases of PtP are not very
important, as long as they are the same in both phases. Heyelyvehow PtP’s ability
to approximate SR replication. Results on PtP’s perforraara the achieved search
gains can be found in [6].

3 Consistency maintenance

Replication induces the need for consistency maintendhaeis, keeping the replicas
up to date whenever changes occur. For the discussion trat$owe assume that each
data item has a singtewvner, which is also the single peer that is allowed to modify the
item. Upon modification, the replicas which have been spozadthe network must be
made consistent with the most recent version of the data item

The problem of consistency maintenance appears in mangxistjv, 8]. In [3, 9],
various strategies were proposed in the context of pepetr-systems. In general, up-
dates of a data item are broadcast by the owner and/or ahsedor by the peers that
have the replicas. Thus, solutions to the consistency ewémice problem utilizéa)
owner-initiated updatpush so that peers with replicas are communicated the update,
(b) replica holder-initiategull, either when needed or periodically, so as to discover
new updates, if any, dc) a combined push/pull scheme.

It has been shown that usually a combined push/pull straedy for short) con-
stitutes the best tradeoff between consistency levels asssage overhead [9, 5]. The
owner performs a limited push of the updates and the peelpertibdically, just in
case the owner-initiated push did not reach them.

A basic problem in these P/P protocols is when should a pdeRulling too often
creates substantial message overhead. Pulling infrelgueat result in missing im-

portant updates. Adaptive pull strategies try to minimtee communication overhead,
while maintaining good consistency levels by having eaplica holder pull at specific
intervals. These intervals are determined by a time-teestf (TTR) parameter, which
is adaptively adjusted depending on the previous pull teslilafter the last pull the
item was found unchanged, TTR is increased so as to pull tegsiéntly; otherwise,
TTR is decreased so as to check for updates more often.

Our premise is that efficient consistency maintenance cathieved only in con-
junction with efficient replication. If the number of repdis and their placement is well-
planned, then the algorithms for maintaining them underatggican be much more
effective. To this end, we propose a novel push/pull updat¢eg)y that utilizes knowl-
edge about replica creation so as to improve update effizi€har experiments have
shown that consistency maintenance can be achieved dfidierly when replication
is done in the optimal way, using the PtP strategies. Optiggaication not only mini-
mizes the average search costs but also reduces the avpdege costs when combined
with a suitable update strategy.

3.1 Updates under optimal replication

From now on we assume that items have been replicated in thherkeand that replica-
tion has been done using the PtP strategy. As discusseeretirdi PtP strategy requires
that, after a successful search, the peer that found theciteates a number of replicas,
through areplicate-pushphase, or R-push for short, with an appropriate TTL value.
The basic idea now is to let this peer be held “responsible’'Ufalating the replicas

it created, as explained next. With respect to a particudda tem, the nodes in the
network fall into one of the following three categories:

— owner. the single peer that produces new versions of the data item

— responsiblea peer that searched for the item in the past (and thus faheedre-
ation of replicas of the item)

— indifferent a peer that was forced to hold a replica of the item.

The strategy, which we call PtPU, is a combination of push/pte owner broad-
casts new updates to the network, through an update-pushpash for short. When-
ever a “responsible” peer receives a new version of the itthdr through ampdate-
pull that it itself performed or an U-push that the item owneiiatéd), it undertakes the
task of updating the replicas it created. In other wordseifgrms a U-push itself for
the new version of the item. Moreover, this U-push shouldlegnthe same TTL pa-
rameter as the one used in the R-push, thereby reaching<amgattely the same nodes
that were previously reached in order to create replicas.

This scheme has the potential of reducing the overhead sigtency maintenance
significantly. A peer that is “responsible” for a resourcewld check (pull) frequently
for newer updates of the item, using a smaller TTR value.ebich were forced to
have replicas of this item (“indifferent” peers) do not needgull (or, they could pull
quite infrequentlycf the discussion in Section 4), relying on some “responsipér
to provide an update for them. Summarizing, our strategabehas follows:

— The owner pushes the new versions of the item

— “Responsible” peers pull periodically, and push any upsltttey become aware of
to their neighborhood exactly as when they created theaapli.e. with the same
parameters as in the push phase of PtP).

— The other peers do nothing; they rely on “responsible” ptekeep them updated.

For the periodic pulls of the “responsible” peers, we follaw adaptive scheme
[9], whereby the time-to-pull-next (TTR) is decreased arr@ased according to the
perceived version of the item. If the last pull did not retanmewer version, the estimate
for the next TTR will be increased by some constant: TERTTR+C. If, on the other
hand, a more recent version of the item was found, the nextdiRId be decreased. It
should be decreased in proportion to the differerd2ein versions between the pulled
item and the one the peer had — the higher the differdbcéhe more the missed
updates, and hence the more frequent the pull should be, Feusstimate for the new
TTRis: TTR. = TTR/(D +), where(is a parameter that provides some reduction
in TTR in the case o) = 1. The next TTR is a weighted average of the current TTR
and the estimate:

TTR — wTTR. + (1 — w)TTR,

where,w is a parameter determining the rate of change — smaller salfie make
TTR change very slowly, while larger values make TTR adajtldy to variations.

3.2 Experimental Evaluation

We have evaluated the performance of both the P/P and the &tBtdgies through
extensive simulations. The network of peers is construatetthe data items are repli-
cated using the PtP strategy as described in Section 2.&r. étating the replicas, we
initiate simulation sessions. Each session runs for a nuof®unds (turns). During
each turn, the owner of an item creates a new version of theutith a given update
probability p,, (update rate) and pushes it to the network. In the P/P syraafigpeers
with replicas pull for new versions using adaptive pull. WMRtPU, only the “responsi-
ble” peers pull using, again, adaptive pull. In additiorg tresponsible” peers push any
received updates to their neighbors using exactly the stiategy used when the repli-
cas were created (for example, using teeming with the sagesydad TTL values).

We evaluate the performance of the update strategies wsffeot to two parame-
ters: the achieved consistency and the associated messadead. The consistency
level is measured as the percentage of replicas that are-daté. We experimented
with different strategies for propagating the updates, (pere flooding, random walk-
ers, teeming and teeming with decay). The results attaireré gualitative the same,
thus, we report here only the results obtained when usingitepwith decay, which
is the method that gives us the most flexibility in terms ofitgnthe extend of the
propagation. In particular, we present results when udinget variations of teeming
as summarized in the table that follows. Wide teeming visitge peers, while narrow
teeming produces smaller message overhead.

|[Extend of teemirjg (decay)TT L]
Wide 0.1 5
Medium 0.3 5
Narrow 0.4 4

Regarding the adaptive pull, the tuning of its parametebgysond the scope of this
paper. A set of values that were found to work well in adaptirgTTR is:w = 0.8,
b =0.5,andC = 10turns, and those are the values that were used in all theimgras
presented here. The reader is referred to [10, 7] for a @etdiscussion of the topic.

Performance with respect to the update rate.The goal of the first set of experiments
is to depict the behavior of plain P/P and PtPU under diffewpdate rates. We consider
two cases: frequent updates, (= 0.1), and infrequent updatep,(= 0.025). The
owner pushes the updates using narrow teeming. The reasasifg such a rather
limited push is to make the effect of pull more clear. To disraa general trend, we let
both strategies utilize exactly the same pull charactesigt.e. the same variations of
teeming) and see how they compare with each other. The semdtshown in Fig. 2
for high update rates and in Fig. 3 for infrequent updateshB#rategy is simulated for
pulling with wide, medium and narrow teeming. In the caseightupdate rates, peers
are forced to a high pull overhead in the P/P strategy so as frequently updated. In
the PtPU case, though, pullis limited. Push messages are sirare the “responsible”
peers also propagate any updates they receive. For a lovteupata, it is easier for
any strategy to keep good consistency levels, utilizingefemessages. Even in this
case, though, PtPU achieved consistency levels above 986, plain P/P is, at best, a
little above 80%. PtPU consistently outperforms P/P by aggsnre. It results in better
consistency levels and, at the same time, fewer messages.

Comparison of the two update policies.In this set of experiments, we compare fur-
ther the two methods. In particular, we show (i) the levelarigistency achieved when
the two methods produce the same number of messages ahé (ilyinber of messages
required by each method for achieving the same consisteney. Here, we consider a
medium update rate(, = 0.05). For each strategy we repeatedly alter the pull parame-
ters until we achieve the same value for the metric of intdies the consistency level

or the number of messages) among all strategies.

The results are presented in Figures 4—6. In the plots, veecalssider the perfor-
mance of P/P and PtPU, for the case where the creation otasptioes not follow
the PtP strategy. Instead, after the replication phasesethiecas get scattered across
the network. Our goal is to show that loosing the localityuoed by the PtP strategy
results in worsening the performance of both the P/P and BtRitkgies. Note that the
number of replicas is kept the same; what differs is theicghaent in the network. The
strategies under random placement of the replicas are chaikean “(R)” in the plots.

In Fig. 4 the owner uses a narrow push to propagate the upféeasin the simula-
tor tuning the pull parameters until all strategies achieseproximately the same con-
sistency level of 82%. The resulting message counts shavpltaia P/P required 43%
more messages than PtPU to achieve the same consistendy. fthe owner uses a
medium push to propagate the updates, so as to make it easiieefinferior strategies
to achieve higher consistency levels (but, of course, witfhér message overhead).
The achieved consistency levels where approximately 9586e@gain, plain P/P re-
quired 46% more messages than PtPU. In Fig. 6 all strategiesrgted approximately
62000 messages. PtPU required a narrow pull while P/P’stizdapull resulted in a

plain P/P -- high update rate PtPU -- high update rate

100 100

90 —~—wide | ____| 9 |
» \ —e-medium|(« L
8 8 ——narrow 38 80
B 704 a 70
o 2
g 60 g © id
] | S —~—wide
8 = \\\‘&3\; . - medium
g 40 4 < 40 ——narrow
2 30 S 30l
o o
* 20 ® 20 f

10 4 10

0 0 T T T T T T T T T T T
0O 20 40 60 80 100 120 140 160 180 200 220 240 0 20 40 60 80 100 120 140 160 180 200 220 240
simulation turn (time) simulation turns (time)
plain P/P -- high updale rate PtPU -- high update rate
120000 120000
lpush
] @ mpull
g 100000 g 100000 |mpush|
] «©
@ o
2 80000 280000 -
£ E
° 60000 S 60000
o o
£ £
g 40000 - 3 40000 -
c c
] K
2 20000 4 2 20000
0 o
wide medium narrow wide medium narrow
pull type pull type

Fig. 2. Performance of the two strategies under high update rates.

plain P/P -- low update rate PtPU -- low update rate
100 100 e
90 90
g o0 % % 80 4
8 8
E_ 70 B 70
= 604 2 - wide
g S —=-medium
% 50 ——wide % 50 —— narrow
€ 40 -o-medium g 401
S 30 —— narrow S 304
o o
* 204 ® 204
10 4 10
0 T T T T T T T T T T T 0 T T T T T T T T T T T
0O 20 40 60 80 100 120 140 160 180 200 220 240 0 20 40 60 80 100 120 140 160 180 200 220 240
simulation turn (time) simulation turn (time)
plain P/P -- low update rate PtPU -- low update rate
35000 mpull 35000 Epull
Dpush @push
30000 4 @ 30000 -
8 g
& 25000 4 @ 25000
2 @
E 20000 1 E 20000 {
s o
g 15000 é 15000 1
2 3
5 10000] 2 10000
g £
= o
5000 | +< 5000 q
0 0-
wide medium narrow wide medium narrow
pull type pull type

Fig. 3. Performance of the two strategies under low update rates.

% of consistent replicas

% of consistent replicas

100 80000
90 e] 70000 4
80 - 2
o 60000
70]
60 ~ p/p random é 50000
- plp 5
50 — ptpu random 5 40000 §
— p[pu 2
40 € 30000 |
30 4 =
£ 20000 4
20 4 k]
104 10000
0 T T T T T T T T T T T 0 T T T
0 20 40 60 80 100 120 140 160 180 200 220 240 p/p random p/p ptpu random ptpu
simulation turn (time) strategy

100
90
80
70
60
50
40

30 4
20 4
10

0

Fig. 4. Number of messages when all strategies result in consistevels of approximately 82%.

120000
W pull
,, 100000 - Bpush
5
©
@ 80000 4
~P/P(R) 2
—=-P/P 5
~PtPU (R) 5 60000 1
o
—~PtPU 2
2 40000 -
®
e
20000 -
T T T T T T T T T T T 0 T T T
0O 20 40 60 80 100 120 140 160 180 200 220 240 P/P(R) P/P PtPU(R) PtPU
simulation turn (time) strategy

Fig. 5. Number of messages when all strategies result in consistevels of approximately 95%.

wider teeming. The superiority of the PtPU strategy is sheividly, as it managed to
achieve more than 90% consistency.

Another conclusion from these plots is that, indeed, thdeamplacement of repli-
cas makes the performance of P/P and PtPU worse. This edidat intuition that the
inherent locality of replica creation through PtP resuitsiore efficient updates.

4 Discussion

In this paper, we consider replication in unstructured p2giesns. The idea behind
our approach is that developing protocols for consistenajntanance which utilize
knowledge about the strategy used to create the copiesasasehe efficiency of such
protocols. Based on this, we develop a simple strategy faesing square-root replica-
tion, which was previously proved to be optimal for unsturet peer-to-peer systems,
and a consistency maintenance protocol that is tuned foreqlication strategy.

Our experimental results show that our protocols achiey@fstantly better consis-
tency for a smaller communication cost than protocols tbatat exploit knowledge of
the underlying replication strategy. A more detailed vansof this work can be found
in [6].

In our experiments we have assumed that the network doesange during the
replication and update phases. We are currently studym@éhavior of our strategies

70000

Epull 100

60000 -

50000 -

40000

30000 -

20000 -

total number of messages

10000 -

p
Opush 90
w 80 —\
©
2 7
3
£ 60+ \“\H\@RH\
H
i 50 -
[}
§ 40 ——p/p random
s 30 - plp
2 —-ptpu
20 —+— ptpu random
10 4
P/P(R) P/P PtPU PtPU(R) 0O 20 40 60 80 100 120 140 160 180 200 220 240
strategy simulation turn (time)

Fig. 6. Consistency quality when all strategies generate the saméer of messages.

in more dynamic settings where peers enter or leave themsyatavill. In such envi-
ronments the PtPU strategy may encounter the followinglproba “responsible” peer
could depart from the network, leaving thus a number of ‘fiedént” nodes without
anybody to update their replicas for them. Thus, it is alnmogerative that “indiffer-
ent” peers should pull, too, just in case the “responsibtalenis not near them anymore.

References

1

2.

10.

Cohen, E., Shenker, S.: Replication Strategies in Ucistred Peer-to-Peer Networks. In:
Proc. ACM SIGCOMM’'02. (2002)

Lv, D., Cao, P., Cohen, E., Li, K., Shenker, S.: Search agiBation in Unstructured Peer-
to-Peer Networks. In: Proc. ICS’02, 16th ACM Int'l Confeoenon Supercomputing, New
York, USA (2002)

. Datta, A., Hauswirth, M., Aberer, K.: Updates in highlyrelable, replicated peer-to-peer

systems. In: Proc. of ICDCS 2003, 23rd Int'l Conference ostiibuted Computing Systems,
Providence, Rhode Island (2003) 76-85

. Dimakopoulos, V.V., Pitoura, E.: Performance analy$idistributed search in open agent

system. In: Proc. IPDPS '03, Int'l Parallel and Distributetbcessing Symposium, Nice,
France (2003)

. Leontiadis, E., Dimakopoulos, V.V., Pitoura, E.: Cactplates in a Peer-to-Peer Network of

Mobile Agents. In: Proc. P2P2005, 4th Int’l Conference orRe Peer Computing, Zurich,
Switzerland (2004) 10-17

. lias Leontiadis, Dimakopoulos, V.V., Pitoura, E.: Ciegtand Maintaining Replicas in Un-

structured Peer-to-Peer Systems. Technical Report TR@DOBiv. of loannina, Dept. of
Computer Science (2006)

. Srinivasan, R., Liang, C., Ramamritham, K.: Maintaini@mporal coherency of virtual data

warehouses. In: Proc. RTSS '98, 19th Real Time Systems Sygulrid, Spain (1998)

. Urgaonkar, B., Ninan, A., Raunak, M., Shenoy, R., Ramgram, K.: Maintaining mutual

consistency for cached web objects. In: Proc. ICDCS 200dt, 122l Conference Distributed
Computing Systems, Phoenix, AZ, USA (2001)

. Lan, J., Liu, X., Shenoy, P., Ramamritham, K.: Consistanaintenance in peer-to-peer file

sharing networks. In: Proc. of WIAPP’03, 3rd IEEE Workshapoternet Applications, San
Jose, CA, USA (2003) 76-85

Lan, J.: Cache Consistency Techniques for Peer-tofle€8haring. Technical report, MSc
Thesis, Dept. of Computer Science, Univ. of Massachus2fig2)

