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Abstract. Peer-to-peer systems offer an efficient means for sharing data
among autonomous nodes. A central issue is locating the nodes with data
matching a user query. A decentralized solution to this problem is based
on using routing indexes which are data structures that describe the con-
tent of neighboring nodes. Each node uses its routing index to route a
query towards those of its neighbors that provide the largest number of
results. We consider using histograms as routing indexes. We describe a
decentralized procedure for clustering similar nodes based on histograms.
Similarity between nodes is defined based on the set of queries they match
and related with the distance between their histograms. Our experimen-
tal results show that using histograms to cluster similar nodes and to
route queries increases the number of results returned for a given num-
ber of nodes visited.

1 Introduction

The popularity of file sharing systems such as Napster, Gnutella and KaZaA has
spurred much current attention to peer-to-peer (p2p) computing. Peer-to-peer
computing refers to a form of distributed computing that involves a large number
of autonomous computing nodes (the peers) that cooperate to share resources
and services [11]. A central issue in p2p systems is identifying which peers contain
data relevant to a user query. There two basic types of p2p systems with regards
to the way data are distributed among peers: structured and unstructured ones.

In structured p2p systems, data items (or indexes) are placed at specific peers
usually based on distributed hashing (DHTs) such as in CAN [13] and Chord [6].
With distributed hashing, each data item is associated with a key and each peer
is assigned a range of keys and thus items. Peers are interconnected via a regular
topology where peers that are close in the key space are highly interconnected.
Although DHTs provide efficient search, they compromise peer autonomy. The
DHT topology is regulated since all peers have the same number of neighboring
peers and the selection of peers is strictly determined by the DHTs semantics.
Furthermore, sophisticated load balancing procedures are required.
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In unstructured p2p systems, there is no assumption about the placement of
data items in the peers. When there is no information about the location of data
items, flooding and its variation are used to discover the peers that maintain
data relevant to a query. With flooding (such as in Gnutella), the peer where
the query is originated contacts its neighbor peers which in turn contact their
own neighbors until a peer with relevant data is reached. Flooding incurs large
network overheads, thus to confine flooding, indexes are deployed. Such indexes
can be either centralized (as in Napster) or distributed among the peers of the
system providing for each peer a partial view of the system.

In this paper, we use a form of distributed index called routing index [3].
Each peer maintains a local index of all data available locally. It also maintains
for each of its links, one routing index that summarizes the content of all peers
reachable through this link within a given number of hops. We propose using
histograms as local and routing indexes. Such histograms are used to route range
queries and maximize the number of results returned for a given number of peers
visited.

In addition, we use histograms to cluster peers that match the same set
of queries. The similarity of two peers is defined based on the distance of the
histograms used as their local indexes. The motivation for such clustering is
that once in the appropriate cluster, all relevant to a query peers are a few links
apart. In addition, we add a number of links among clusters to allow inter-cluster
routing. Our clustering procedure is fully decentralized.

Our experimental results show that our procedure is effective: in the con-
structed clustered peer-to-peer system, the network distance of two peers is
proportional to the distance of their local indexes. Furthermore, routing is very
efficient, in particular, for a given number of visited peers, the results returned
are 60% more than in an unclustered system.

Preliminary versions of a clustering procedure based on local indexes appears
in [12] where Bloom filters are used for keyword queries on documents. The
deployment of histograms as routing indexes for range selection queries, the
routing procedure and the experimental results are new in this paper. As opposed
to Bloom filters that only indicate the existence of relevant data, histograms
allow for an ordering of peers based on the estimated results they provide to a
query. This leads to a clustered p2p system in which the network distance of two
peers is analogous to the estimated results.

The remainder of this paper is structured as follows. In Section 2, we intro-
duce histograms as routing indexes and appropriate distance metrics. In Section
3, we describe how histograms are used to route queries and to cluster relevant
peers. In Section 4, we present our experimental results. Finally, in Section 5, we
compare our work with related research, and in Section 6 offer our conclusions.

2 Histograms in Peer-to-Peer Systems

We assume a p2p system with a set N of peers ni. The number of peers changes
as peers leave and join the system. Each peer is connected to a small number
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of other peers called its neighbors. Peers store data items. A query q may be
posed at any of the peers, while data items satisfying the query may be located
at many peers of the system. We call the peers with data satisfying the query
matching peers. Our goal is to route the query to its matching peers efficiently.

2.1 Histograms as Routing Indexes

We consider a p2p system where each peer stores a relation R with a numeric
attribute x and focus on routing range selection queries on x. Our approach is
based on using local indexes to describe the content of each peer. In particular,
each peer n maintains a summary, called local index, that describes its content. A
property of the index is that we can determine, with high probability, whether
the peer matches the query based on the index of the peer, that is, without
looking at the actual content of the peer. We propose using histograms as local
indexes.

A histogram on an attribute x is constructed by partitioning the data distri-
bution of x into b (≥ 1) mutually disjoint subsets called buckets and approximat-
ing the frequencies and values in each bucket. Histograms are widely used as a
mechanism for compression and approximations of data distributions for selec-
tivity estimation, approximate query answering and load balancing [7]. In this
paper, we use histograms for clustering and query routing in p2p systems. We
consider equi-width histograms, that is, we divide the value set of attribute x into
ranges of equal width and keep the percentage of x’s occurrences for each bucket.
In addition, we maintain the total number of all tuples (the histogram size).

We denote by LI(n) the histogram used as the local index of peer n. Besides
its local index, each peer n maintains one routing index RI(n, e) for each of its
links e. RI(n, e) summarizes the content of all peers that are reachable from n
using link e at a distance at most R. The routing indexes are also histograms
defined next.

We shall use the notation H(n) to denote a histogram (used either as a local
index LI(n) or as a routing index RI(n, e)), Hi(n) to denote its i-th bucket,
0 ≤ i ≤ b − 1, and S(H(n)) to denote its size. Then,

Definition 1 (Histogram-Based Routing Index). The histogram-based
routing index RI(n, e) of radius R of the link e of peer n is defined as fol-
lows: for 0 ≤ i ≤ b − 1, RIi(n, e) = (Σp∈P LIi(p) ∗ S(LI(p))/Σp∈P S(LI(p)) and
S(RI(n, e)) = Σp∈P S(LI(p)) where P is the set of all peers p within distance R
of n reachable through link e.

An example is shown in Fig. 1. The set of peers within distance R of n is
called the horizon of radius R of n.

As usual, we make the uniform frequency assumption and approximate all
frequencies in a bucket by their average. We also make the continuous values
assumption, where all possible values in the domain of x that lie in the range
of the bucket are assumed to be present. However, there is a probability that
although a value is indicated as present by the histogram, it does not really exist
in the data (false positive). This is shown to depend on the number of buckets,
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Fig. 1. The local indexes of peers 1, 2, 3, and 4 and the routing index of link e of peer
1 for radius R = 2, assuming that local indexes LI(2), LI(3) and LI(4) have the same
size

the number of tuples and the range of the attribute. Details can be found in the
Appendix.

For a given query q, the local histogram LI(n) of peer n provides an esti-
mation of the number of results (matching tuples) of peer n, while the routing
index RI(n, e) provides an estimation of the number of results that can be found
when the query is routed through link e. We denote by results(n, q) the actual
number of results to query q and by hresults(H(n), q) the number of results
estimated by the histogram H(n). Let a query qk = {x: a ≤ x ≤ a + k ∗ d},
where d is equal to the range of each bucket, 0 ≤ k ≤ b and a = c ∗ d, where
0 ≤ c ≤ b − 1. We also consider the queries q< = {x: x ≤ a} and q> = {x: x ≥
a}. Note that query q> is the same with query qb.

We can estimate results(n, q) using the histogram H(n) of peer n based on
the type of the query q as follows:

– qk: hresults(H(n), qk) = S(H(n)) ∗ Σ
((a+k∗d)/d)
i=a/d Hi(n)

– q<: hresults(H(n), q<) = S(H(n)) ∗ Σ
a/d
i=0Hi(n)

– q>: hresults(H(n), q>) = S(H(n)) ∗ Σb
i=a/dHi(n)

We defined the query qk as starting from the lower limit of a bucket (a =
c * d), for simplicity.

2.2 Using Histograms for Clustering

Ideally, we would like to route each query q only through the peers that have
the most number of results (top-k matching peers). To express this, we define
PeerRecall as our performance measure. PeerRecall expresses how far from the
optimal a routing protocol performs. Let V be a set of peers (V ⊆ N), by
Sresults(V, q) we denote the sum of the numbers of results (i.e., matching tuples)
returned by each peer that belongs to V .

Sresults(V, q) = Σv∈V results(v, q) (1)

Definition 2 (PeerRecall). Let V isited (V isited ⊆ N) be the set of peers
visited during the routing of a query q and Optimal (Optimal ⊆ N) be the
set of peers such that |Optimal| = |V isited| and v ∈ Optimal ⇔ results(v, q)
≥ results(u, q), ∀ u /∈ Optimal. We define PeerRecall as: PeerRecall(q) =
Sresults(V isited, q)/Sresults(Optimal, q).
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Intuitively, to increase PeerRecall, peers that match similar queries must be
linked to each other. This is because, if such peers are grouped together, once we
find one matching peer, all others are nearby. The network distance between two
peers ni and nj , dist(ni, nj) is the length of the shortest path from ni to nj . In
general, peers that match similar queries should have small network distances.
Our goal is to cluster peers, so that peers in the same cluster match similar
queries. The links between peers in the same cluster are called short-range links.
We also provide a few links, called long-range links, among peers in different
clusters. Long-range links serve to reduce the maximum distance between any
two peers in the system, called the diameter of the system. They are used for
inter-cluster routing.

To cluster peers, we propose using their local indexes. That is, we cluster peers
that have similar local histograms. For this to work, the distance (d) between
two histograms must be descriptive of the difference in the number of results to
any given query.

Property 1. Let LI(n1), LI(n2) and LI(n3) be the local indexes of three peers
n1, n2 and n3. If d(LI(n1), LI(n2)) ≥ d(LI(n1), LI(n3)), then
|results(n1, q)/S(LI(n1)) -results(n2, q)/S(LI(n2))| ≥|results(n1, q)/S(LI(n1))
- results(n3,q)/S(LI(n3))|.

That is, we want the distance of two histograms to be descriptive of the
difference in the number of results they return for a given query workload. In
the following, as a first step we consider how two well-known distance metrics
perform with respect to the above property.

Histogram Distances. The L1-distance of two histograms H(n1) and H(n2)
is defined as:

Definition 3 (L1 Distance Between Histograms). Let two histograms H(n1)
and H(n2) with b buckets, their L1 distance, dL1(H(n1), H(n2)) is defined as:
dL1(H(n1), H(n2)) = Σb−1

i=0 |Hi(n1) - Hi(n2)|.
Let us define as

L1(i) = Hi(n1) − Hi(n2). (2)

then
dL1(H(n1), H(n2)) = Σb−1

l=0 |L1(l)| (3)

The histograms we study are ordinal histograms, that is, there exists an
ordering among their buckets, since they are built on numeric attributes. For
ordinal histograms, the position of the buckets is important and thus, we want
the definition of histogram distance to also take into account this ordering. This
property is called shuffling dependence. For example, for the three histograms
of Fig. 2, the distance between histograms H(n1) and H(n2) that have all their
values at adjacent buckets (Hi(n1) and Hi+1(n2) respectively) should be smaller
than the distance between histograms H(n1) and H(n3) that have their values
at buckets further apart. This is because, the difference of results for peers n1
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Fig. 2. Intuitively, the distance between H(n1) and H(n2) should be smaller than the
distance between H(n1) and H(n3)

and n2 is smaller for a larger number of range queries than for peers n1 and
n3. The shuffling dependence property does not hold for dL1 , since the three
histograms have the same pair-wise distances.

We now consider an edit distance based similarity metric between histograms
for which the shuffling dependence property holds. The edit distance between
two histograms H(n1) and H(n2) is the total number of all necessary minimum
movements for transforming H(n1) to H(n2) by moving elements to the left or
right. It has been shown that this is expressed by the following definition [2]:

Definition 4 (Edit Distance Between Histograms). Let two histograms
H(n1) and H(n2) with b buckets, their edit distance, de(H(n1), H(n2)) is defined
as: de(H(n1), H(n2)) = Σb−1

i=0 |Σi
j=0(Hj(n1) − Hj(n2))|.

Let us define as

pref(l) = Σl
i=0Hi(n1) − Σl

i=0Hi(n2) (4)

then
de(H(n1), H(n2)) = Σb−1

l=0 |pref(l)| (5)

Let a query qk = {x: a ≤ x ≤ a + k ∗ d, where d is equal to the range of each
bucket and 0 ≤ k ≤ b}.

Given that a is chosen uniformly at random from the domain of x, then the
difference in the results is equal to:

|hresults(H(n1), qk)/S(H(n1)) − hresults(H(n2), qk)/S(H(n2))| =
Σb−1

j=0 |pref(j + k) − pref(j − 1)| (6)

where pref(j) = 0 for j ≥ b − 1 and j < 0.
From Equation 6, for k = b − 1 that is for queries x ≥ a Property 1 holds. It

also holds for x ≤ a. It does not hold however, in general.
To summarize, the L1 distance satisfies Property 1 for q0 (that is for queries

that cover one bucket), while the edit distance satisfies Property 1 for q< and
q> (which is the same with qb).

3 Query Routing and Network Construction

We describe next how histogram-based indexes can be used to route a query
and to cluster similar peers together. We distinguish between two types of links:
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short-range or short links that connect similar peers and long-range or long links
that connect non-similar peers. Two peers belong to the same cluster if and only
if there is a path consisting only of short links between them. We describe first
how queries are routed and then how long and short links are created.

3.1 Query Routing

A query q may be posed at any peer n. Our goal is to route the query q through
peers that give a large number of results for q. Ideally, we would like to visit
only those peers that provide the most results. To maximize PeerRecall, we use
a greedy query routing heuristic: each peer that receives a query propagates it
through those of its links whose routing indexes indicate that they lead to peers
that provide the largest number of results. The routing of a query stops either
when a predefined number of peers is visited or when a satisfactory number of
results is located. Specifically, for a query q posed at peer n:

1. First, n checks its local index and if the index indicates that there may be
matching data locally, it retrieves them.

2. Then, n checks whether the maximum number of visited peers (MaxV isited)
has been reached or the desired number of matching data items (results) has
been attained. If so, the routing of the query stops.

3. Else, n propagates the query through the link e whose routing index gives
the most matches (hresults(RI(n, e), q) > hresults(RI(n, l), q), ∀ link l �=
e) and e has not been followed yet. If hresults(RI(n, e), q) = 0, ∀ link e that
has not been followed, query propagation stops.

By following the link e whose hresults(RI(n, e), q) returns the largest value,
the query is propagated towards the peers with the most results and thus
PeerRecall is increased.

When a query reaches a peer that has no links whose routing indexes indicate
a positive number of results, or when all such links have already been followed,
backtracking is used. This state can be reached either by a false positive or when
the desired number of results has not been attained yet. In this case, the query
is returned to the previous visited peer that checks whether there are any other
links with indexes with results for the query that have not been followed yet,
and propagates the query through one or more of them. If there are no such
matching links, it sends the query to its previous peer and so on. Thus, each
peer should store the peer that propagated the query to it. In addition, we store
an identifier for each query to avoid cycles. Note that this corresponds to a
Depth-First traversal.

To avoid situations in which all routing indexes indicate that there are no
results, initially we use the following variation of the routing procedure. If no
matching link has been found during the routing of the query, and the current
peer n has no matching links (hresults(RI(n, e), q) = 0 ∀ link e of n), which
means that the matching peers (if any) are outside the radius R of n, then the
long-range link of this peer is followed (even if it does not match the query).
The idea is that we want to move to another region of the network, since the
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current region (bounded by the horizon) has no matching peers. In the case that
the peer has no long-range link or we have already followed all long-range links,
the query is propagated through a short link to a neighbor peer and so on until
a long-range link is found.

3.2 Clustering

We describe how routing indexes can be used for distributed clustering. The idea
is to use the local index of each new peer as a query and route this towards the
peers that have most similar indexes.

In particular, each new peer that enters the system tries to find a relevant
cluster of peers. Then, it links with a number SL of peers in this cluster through
short links. Also, with probability Pl, it links with a peer that does not belong
to this cluster through a long link. Short links are inserted so that peers with
relevant data are located nearby in the p2p system. Long links are used for
keeping the network diameter small. The motivation is that we want to be easy
to find both all relevant results once in the right cluster, and the relevant cluster
once in another cluster, thus increasing PeerRecall.

When a new peer n wishes to join the system, a join message that contains
its local index LI(n) is posed as a query to a well known peer in the system.
The join message also maintains a list L (initially empty) with all peers visited
during the routing of the join message. The join message is propagated until up
to JMaxV isited peers are visited.

Whenever the join message reaches a peer p the procedure is the following:

1. The distance d(LI(n), LI(p)) between local indexes LI(n) and LI(p) is
calculated.

2. Peer p and the corresponding distance are added to list L.
3. If the maximum number of visited peers JMaxV isited is reached, the rout-

ing of the join message stops.
4. Else, the distances d(LI(n), RI(p, e)) between the local index LI(n) of the

new peer n and the routing indexes RI(p, e) that correspond to each of the
links e of peer p are calculated.

5. The message is propagated through the link e with the smallest distance
that has not been followed yet, because there is a higher probability to find
the relevant cluster through this link. When the message reaches a peer with
no other links that have not been followed, backtracking is used.

When routing stops, the new peer selects to be linked through short links to
the SL peers of the list L whose local indexes have the SL smallest distances
from the local index of the new peer. It also connects to one of the rest of the
peers in the list through a long link with probability Pl.

An issue is how the peer that will be attached to the new peer through
the long link is selected. One approach is to select randomly one of the rest of
the peers within the list (that does not belong to the SL peers selected to be
linked through short links). Another approach is to select one of the rest of the
peers within the list with a probability based on their distances from the new
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peer. Thus, we rank these peers based on their distances, where the first in the
ranking is the one with the smallest distance and has rank = 0. The second
in the ranking has rank = 1 and so on. The probability that a specific peer
from the list is selected with respect to its ranking is: α * (1 − α)rank, where
0 < α < 1. The smaller the value of α, the greater the probability to create a
long link with a more dissimilar peer.

4 Experimental Results

We implemented a simulator in C to test the efficiency of our approach. The size
of the network varies from 500 to 1500 peers and the radius of the horizon from 1
to 3. Each new peer creates 1 to 2 short links (SL = 1 or 2) and one long link with
probability Pl = 0.4. The routing of the join message stops when a maximum
number (JMaxV isited) of peers is visited. The routing of a query stops when
a maximum number (MaxV isited) of peers is visited. Both numbers are set to
5% of the existing peers. Each peer stores a relation with an integer attribute
x ∈ [0, 499] with 1000 tuples. The tuples are summarized by a histogram with
50 buckets. 70% of the tuples of each peer belong to one bucket, and the rest are
uniformly distributed among the remaining buckets. The tuples in each bucket
also follow the uniform distribution. The input parameters are summarized in
Table 1.

Table 1. Input parameters

Parameter Default Value Range

Number of peers 500 500-1500
Radius of the horizon 2 1-3
Number of short links (SL) 2 1-2
Probability of long link (Pl) 0.4
Perc of peers visited during 5
join (JMaxV isited)
Perc of peers visited 5
during search (MaxV isited)
Histogram-related parameters
Number of buckets (b) 50
Domain of x [0, 499]
Tuples per peer 1000
Range of queries 2 0-4

We compare first the two distance metrics. Then, we evaluate the clustering
and the query routing procedures.

4.1 Histogram Distance Metrics

We run a set of experiments to evaluate the performance of the two histogram
distance metrics (the L1 and the edit distance). For simplicity of presentation,
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in the reported experiment, we use histograms with 10 buckets and x ∈ [0, 99].
We used a workload with queries having range (k) varying from 0 (covering
data in 1 bucket) to 4 (covering data in 5 buckets). We use 10 histograms H(i)
0 ≤ i < 10 with 10 buckets each, that have 70% of their data in bucket i and the
rest uniformly distributed among the other buckets. We compute the distance
of each histogram with H(0) using the two distance metrics. Our performance
measure is the difference in the number of results for each histogram with H(0),
that is:

|hresults(H(n), qk)/S(H(n)) − hresults(H(0), qk)/S(H(0))|, 1 ≤ n < 10
with respect to the distance of the respected histograms (that is, whether Prop-
erty 1 is satisfied).

Figure 3(left) shows the results when the L1 distance is used. Due to the
nature of the data, all compared histograms have the same distance. The distance
of the histograms has no relation with the difference in the number of results.
This is because the L1 distance compares only the respective buckets of each
histogram without taking into account their neighboring buckets which however
influence the behavior of queries with ranges larger than 0.

The edit distance (Fig. 3(right)) outperforms L1. In particular, as the distance
between the histograms increases, their respective differences in the results also
increases. However, for each query range this occurs until some point after which
the difference in the results becomes constant irrespectively of the histogram
distance. This is explained as follows. The edit distance between two histograms
takes into account the ordering of all buckets, while a query with range r involves
only r + 1 buckets, and thus it does not depend on the difference that the two
histograms may have in the rest of their buckets. For example, for a query
with range 0, the difference in the results remains constant while the histogram
distances increase. This is because the query involves only single buckets while
the edit distance considers the whole histogram. Thus, the edit distance works
better for queries with large ranges.

We also calculated the average performance of the two distance metrics for
a mixed query workload of queries with range from 0 to 4 (Fig. 4). L1 has
the worst overall performance since although the distance between the various
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Fig. 3. Relation of the number of results returned with the histogram distance using
(left) the L1 distance and (right) the edit distance
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histograms is constant, the difference in the number of results increases. The
edit distance behaves better. The difference in results increases until a point and
then it becomes constant. If we continue with ranges larger than 4, this point
occurs later.

4.2 Cluster Quality

In this set of experiments, we evaluate the quality of clustering. For these ex-
periments, we assume a query workload with range 2 (whose results occupy 3
buckets). We compare the constructed clustered network with a randomly con-
structed p2p system, that is a p2p system in which each new peer connects
randomly to an existing peer (random construction and routing) (random).

We measure the average histogram distance between the peers that are at
various network distances from each other in the created p2p network. We use
a network of 500 nodes and radius 2, and conduct the same experiment for
SL = 1 (Fig. 5(left)) and SL = 2 (Fig. 5(right)). As the network distance
between two peers increases, their histogram distance increases too, for both
histogram distance metrics and for both 1 and 2 short links. This means that
the more similar two peers are, the closer in the network they are expected to
be. The rate of increase of the histogram distance is large when the network
distance is small and decreases as the network distance increases, due to the
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denser clustering of similar peers in a particular area of the network (e.g., the
formation of clusters of similar peers). The edit distance has a larger increase
rate for large network distances (4 and above for 2 short links and 6 and above
for 1 short link) than the L1 distance (which remains nearly constant for these
network distances). The conclusion is that in the network built using the edit
distance, some kind of ordering among the peers in different clusters is achieved.
For the random network, the histogram distance is constant for all network
distances, since there is no clustering of similar peers.

4.3 Query Routing

In this set of experiments, we evaluate the performance of query routing using
as our performance measure PeerRecall (as defined in Def. 2). We compare the
constructed clustered network with a randomly constructed p2p, that is a p2p
system in which each new peer connects randomly to an existing peer (random
construction and routing) (random). We also consider a randomly constructed
p2p system that uses histograms only for query routing (random join).

We use a network of 500 peers and examine the influence of the horizon in the
query routing performance for SL = 1 (Fig. 6(left)) and SL = 2 (Fig. 6(right)).
The radius varies from 1 to 3; we use queries with range = 2. Using histograms
for both clustering and query routing results in much better performance than
using histograms only for routing or not using histograms at all. For radius 2
and for 2 short links, we have the best performance. For 1 short link, PeerRecall
increases as the radius of the horizon increases, since each peer has information
about the content of more peers. For 2 short links, PeerRecall decreases for
radius greater than 2. The reason is that there are more links, and thus, much
more peers are included within the horizon of a particular peer (when compared
with the network built using 1 short link). Thus, a very large number of peers
correspond to each routing index. This results in losing more information than
when using radius 2. Thus, for each type of network there is an optimal value of
the radius that gives the best performance.
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Fig. 6. Routing for different values of the radius and with (left) SL = 1 and (right)
SL = 2
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Fig. 7. Varying the number of nodes

Next, we examine how our algorithms perform with a larger number of peers.
We vary the size of the network from 500 to 1500. Radius is set to 2 and we
use 2 short links and queries with range = 2. As shown in Fig. 7, PeerRecall
remains nearly constant for both histogram distance metrics and outperforms
the random join and the random networks.

5 Related Work

Many recent research efforts focus on organizing peers in clusters based on their
content. In most cases, the number or the description of the clusters is fixed and
global knowledge of this information is required. In this paper, we describe a fully
decentralized clustering procedure that uses histograms to cluster peers that an-
swer similar queries. In [1], peers are partitioned into topic segments based on
their documents. A fixed set of C clusters is assumed, each one corresponding
to a topic segment. Knowledge of the C centroids is global. Clusters of peers are
formed in [17] based on the semantic categories of their documents; the semantic
categories are predefined. Similarly, [4] assumes predefined classification hierar-
chies based on which queries and documents are categorized. The clustering of
peers in [10] is based on the schemes of the peers and on predefined policies pro-
vided by human experts. Besides clustering of peers based on content, clustering
on other common features is possible such as on their interests [8].

In terms of range queries, there has been a number of proposals for supporting
them in structured p2p systems. In [15], which is based on CAN, the answers of
previous range queries are cached at the appropriate peers and used to answer
future range queries. In [16], range queries are processed in Chord by using an
order-preserving hash function. Two approaches for supporting multidimensional
range queries are presented in [5]. In the first approach, multi-dimensional data
is mapped into a single dimension using space-filling curves and then this single-
dimensional data is range-partitioned across a dynamic set of peers. For query
routing, each multi-dimensional range query is first converted to a set of 1-d range
queries. In the second approach, the multi-dimensional data space is broken up
into “rectangles” with each peer managing one rectangle using a kd-tree whose
leaves correspond to a rectangle being stored by a peer.
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Routing indexes were introduced in [3] where various types of indexes were
proposed based on the way each index takes into account the information about
the number of hops required for locating a matching peer. In the attenuated
Bloom filters of [14], for each link of a peer, there is an array of routing indexes.
The i-th index summarizes items available at peers at a distance of exactly i
hops. The peer indexes of [9] use the notion of horizon to bound the number of
peers that each index summarizes.

6 Conclusions and Future Work

In this paper, we propose using histograms as routing indexes in peer-to-peer
systems. We show how such indexes can be used to route queries towards the
peers that have the most results. We also present a decentralized clustering pro-
cedure that clusters peers that match similar queries. To achieve this, we use the
histograms of each peer and test how the L1 and the edit histogram distances can
be used to this end. Our experimental results show that our clustering procedure
is effective, since in the constructed clustered peer-to-peer system, the network
distance of two peers is proportional to the distance of their histograms. Fur-
thermore, routing is very efficient, since using histograms increases the number
of results returned for a given number of peers visited.

This work is a first step towards leveraging the power of histograms in peer-to-
peer systems. There are many issues that need further investigation. We are cur-
rently working on defining more appropriate distance metrics and multi-attribute
histograms. We are also developing procedures for dynamically updating the
clusters. Another issue is investigating the use of other types of histograms (be-
sides equi-width ones).
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Appendix

False Positive Probability for a Histogram. Let H be a histogram for
an integer attribute x ∈ [Dmin, Dmax] (x can take D = Dmax − Dmin + 1
distinct values). H has b buckets. Let a query x = A. We assume that each
peer has n tuples that follow uniform distribution. Then in each bucket we
have n/b tuples. The probability that we do not have a query match, that is,
there does not exist a tuple with value x = A in the data summarized by H
is P (query no match) = ((D − 1)/D)n. The probability that the histogram
indicates a match is: P (hist match) = 1 − ((b − 1)/b)n (it is sufficient that one
tuple falls into the bucket that A falls into as well). The range of each bucket is
D/b. Thus the probability of having a query no match while we had a histogram
match is: P1 = ((D/b − 1)/(D/b))n/b = ((D − b)/D)n/b. Thus, the false positive
probability is according to the formula of Bayes:
P (fp) = P (hist match / query no match) = P1 ∗ P (hist match)/P (query no
match) ⇒

P (fp) = (((D − b)/D)n/b ∗ (1 − ((b − 1)/b)n))/((D − 1)/D)n. (7)


	Introduction
	Histograms in Peer-to-Peer Systems
	Histograms as Routing Indexes
	Using Histograms for Clustering

	Query Routing and Network Construction
	Query Routing
	Clustering

	Experimental Results
	Histogram Distance Metrics
	Cluster Quality
	Query Routing

	Related Work
	Conclusions and Future Work

