
One is Enough: Distributed Filtering for Duplicate
Elimination

Georgia Koloniari
Computer Science Dept.

University of Ioannina, Greece
kgeorgia@cs.uoi.gr

Nikos Ntarmos
Computer Science Dept.

University of Ioannina, Greece
ntarmos@cs.uoi.gr

Evaggelia Pitoura
Computer Science Dept.

University of Ioannina, Greece
pitoura@cs.uoi.gr

Dimitris Souravlias
Computer Science Dept.

University of Ioannina, Greece
dsouravl@cs.uoi.gr

ABSTRACT
The growth of online services has created the need for du-
plicate elimination in high-volume streams of events. The
sheer volume of data in applications such as pay-per-click
clickstream processing, RSS feed syndication and notifica-
tion services in social sites such Twitter and Facebook makes
traditional centralized solutions hard to scale. In this pa-
per, we propose an approach based on distributed filter-
ing. To this end, we introduce a suite of distributed Bloom
filters that exploit different ways of partitioning the event
space. To address the continuous nature of event delivery,
the filters are extended to support sliding window semantics.
Moreover, we examine locality-related tradeoffs and propose
a tree-based architecture to allow for duplicate elimination
across geographic locations. We cast the design space and
present experimental results that demonstrate the pros and
cons of our various solutions in different settings.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information Filtering

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Distributed Bloom Filters, Duplicate Elimination

1. INTRODUCTION
The growth of the Internet and the advent of large-scale

computing infrastructures, have given ample ground to re-
searchers and developers to create applications and systems
that gather and process huge amounts of data from all over
the world, usually in a streaming fashion. In turn, the prob-
lem of eliminating duplicates from such streams of events

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10 ...$10.00.

has become very important in a number of different settings.
When it comes to large amount of data, duplicate-free event
delivery is important from two perspectives (a) from the per-
spective of the event recipients, since it avoids overwhelming
them with large amounts of similar data and (b) from a sys-
tem perspective, since it eliminates the cost of processing
and communicating duplicate data.

A recent example is that of click-fraud avoidance in pay-
per-click online ad services. In this scenario, malicious par-
ties generate fraudulent accesses to online ads, leading to an
arbitrary inflation of related charges. Relevant large-scale
systems (such as, Google AdWords/AdSense and Yahoo!
Search Marketing) usually filter-out successive identical ac-
cesses as a first (and usually most important) step in fighting

back1. Another example is the re-syndication of events that
occurs in applications such as Twitter and Facebook, where
events are re-posted (re-tweeted) by a number of different
sources besides their original source resulting in multiple ap-
pearances of the same event in users feeds. Related research
usually relies on variations of Bloom filters [2] to identify and
drop duplicates [14, 13]. A common theme in these works
is that the naive solution of using a single large Bloom fil-
ter for everything does not scale well, due to problems such
as excessive memory footprint, lock contention or reduced
parallelism. The authors advocate breaking up the filter
into smaller units, while incoming events are “rehashed” and
assigned to a number of these filter partitions. With this
work, we extend such solutions to function in the widely
distributed settings of modern data management infrastruc-
tures. Such architectures range for partitioning the Bloom
filter among threads on a single host to spreading (groups of)
such partitions and the related filtering load across multiple
hosts and data centers.

The contribution of our work lies in casting the design
space regarding the distribution of Bloom filters and their
use for duplicate-free event dissemination. In particular, we
propose two fundamental ways of partitioning the filters: a
horizontal and a vertical one. We study the two partitioning
methods both theoretically and experimentally in terms of
accuracy, efficiency, load balance and fault tolerance. Verti-
cal partitioning achieves in practice better load balance and
fault tolerance but induces higher communication costs. We
further present timer-based filters to support sliding window
semantics. In this case, an event is considered a duplicate,
only if it was previously delivered in the same time window.
A nice property of our extension is that it allows us to im-
prove accuracy through a heuristic we call “equal timers”.

1http://adwords.blogspot.com/2007/02/
invalid-clicks-googles-overall-numbers.html

433

Our structures are dynamic, in the sense that they auto-
matically adjust their size thus being capable of handling
bursts of events.

To exploit the geographical or network locality of sources,
we propose multiple levels of filtering through Bloom trees.
We introduce two variations of Bloom trees, namely the
sparse and dense Bloom tree. The sparse Bloom tree is built
based on a simple“first test for duplicates and then set”prin-
ciple that results in each event being stored only once in the
structure. On the other hand, the dense Bloom tree is built
based on a simple“test and set”principle that results in each
event being maintained many times in the structure. Both
structures have the same accuracy but differ in efficiency.

The rest of this paper is structured as follows. Section 2
briefly presents our system model. In Section 3, we intro-
duce our distributed filters. Filters are extended to support
sliding windows in Section 4 and bursts of events in Section
5. In Section 6, we introduce the Bloom tree. Section 7
presents our experimental results, while Section 8 includes a
comparison with related work. Section 9 offers conclusions.

2. MODEL AND PROBLEM DEFINITION
We consider a system where users are interested in events

generated by a number of distributed data sources. The
data sources that generate the events are called producers,
while the users that are interested in the events are called
consumers. The generated events are delivered (pushed) to
the consumers by some notification service or mechanism.

We are interested in delivering distinct events to the con-
sumers. To this end, we add a filtering component. All
events generated by the producers are first passed through
this component that filters out/discards duplicate events,
i.e., events that have reached the system before. The straight-
forward solution for implementing such a filtering compo-
nent would be to centrally collect and store all produced
events. Any new event is compared against these events
and is delivered to the consumers only if found to be dis-
tinct. The problem with this approach is that it induces
large space, communication and processing overheads. To
address these issues, we propose using Bloom filters to sum-
marize the set of events.

A Bloom filter [2] is a compact data structure for repre-
senting a set of elements. The idea is to allocate an array
bf of m bits, initially all set to 0, and then choose k inde-
pendent hash functions, hi, 1 ≤ i ≤ k, each with range 0 to
m-1. For each element a ∈ A, the bits at positions hi(a) in
bf are set to 1. Given a query for c, the bits at positions
hi(c) are checked. If any of them is 0, then certainly c /∈
A. Otherwise, we conjecture that c is in the set, although
there is a certain probability that we are wrong, called false
positive. For a Bloom filter with n distinct elements, the
false positive probability, i.e., the probability that a distinct
event is characterized as a duplicate, is:

Pfp(m, k, n) = (1− (1− 1

m
)
k·n

)
k

(1)

For large m, Eq. (1) is closely (i.e., within O(1/m)) approx-
imated by:

Pfp(m, k, n) ≈ (1− e−k·n/m
)
k

(2)

Using Eq. (2), one can set the parameters of a Bloom fil-
ter (i.e., number of hash functions k and size m) so as to
minimize the false positive probability. In particular, Pfp is

minimized for k = ln 2·m/n, in which case Pfp = 0.6185m/n.
Filtering works as follows. For each incoming event, the

corresponding bits in the filter are checked and if they are
set, the event is considered a duplicate; otherwise it is con-
sidered distinct. If the event is determined as a duplicate, no
further action is required. Otherwise, the event is inserted in
the filter by setting the above bits. We call this the first-test-

then-set primitive. We also define a test-and-set primitive,
where a non-set bit is set when tested.

Instead of forwarding the actual event to the filtering com-
ponent, the producers can just send the bit positions corre-
sponding to the event. This way, the communication over-
head between the producers and the notification service is
reduced. In particular, only k · log2(m) bits are required.
Note that in this case, the communication cost depends on
the number of hash functions and their range. The pro-
ducer of the event needs to forward the actual event to the
notification service, only if the event is found to be distinct.

3. SLICING THE BLOOM FILTER
Using Bloom filters reduces the space and processing over-

heads for detecting duplicates. However, the Bloom filter
constitutes a single point of failure and a potential bottle-
neck for the notification service. To address these issues, we
propose distributing the filter by slicing it.

3.1 Horizontal and Vertical Slicing
The Bloom filter is partitioned into disjoint parts, called

slices, each being placed at a different system site. Clearly,
the number of slices determines the degree of distribution.
We propose two different approaches for slicing the Bloom
filter: horizontally and vertically.

Definition 1. A horizontal Bloom filter is a basic Bloom
filter of size m split into S slices, si (1 ≤ i ≤ S), each of
which is a basic Bloom filter of size m/S. Each event u is
inserted in one of the S slices chosen uniformly at random
by an additional hash function HS with range [1, S].

To test whether an event u belongs to the horizontal
Bloom filter, the slice si = HS(u) is selected, and u is looked
up against it by applying the k hash functions with range
[0, (m/S)−1]. If the event is determined as distinct the cor-
responding bit positions in si are set. The processing cost
is O(k), and if the message regarding the event corresponds
to bits positions in the respective slice, the communication
cost is k · log2(m/S) bits.

A vertical Bloom filter splits the filter vertically into slices
corresponding to a subset of the range of the original filter.

Definition 2. A vertical Bloom filter is a Bloom filter of
size m split into S slices, si, 1 ≤ i ≤ S, such that each slice
si is assigned bits ((i − 1) · m/S) to (i · m/S − 1) of the
original Bloom filter.

For an incoming event u, the appropriate filter slices that
contain the corresponding bits are located by applying the
k hash functions to u. In the worst case, all k bits for the
event are contained in k different filter slices and a message
has to be sent to each of them to set the bits in their filters.

Note that each producer needs to know the location of the
slices to communicate with the corresponding sites. This in-
formation can be distributed among the sites holding the
filter slices, so that each producer knows the location of just
one of the sites. This can be achieved by building an over-
lay network among the sites that maintain the slices. The
sites can use this overlay for forwarding the event (or hash
functions) to the site(s) holding the appropriate slices.

3.2 Properties
False Positive Probability. Assume that we slice a Bloom
filter of size m with k hash functions into S slices. In the
case of vertical Bloom filters, all elements are inserted into
the same size m filter, thus as in Eq. (1), the false positive
probability is equal to:

V Pfp(m, k, S, n) = (1− (1− 1

m
)
k·n

)
k

(3)

In the case of horizontal Bloom filters, each slice has size
m/S. Assuming that HS distributes the n elements uni-

434

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

F
al

se
 p

os
iti

ve
 p

ro
ba

bi
lit

y

% slices failed

Horizontal slicing
Vertical slicing

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

N
um

be
r

of
 r

eq
ui

re
d

sl
ic

es

Number of failed sites

Horizontal, Pmax = 0.15
Horizontal, Pmax = 0.20

Vertical, Pmax = 0.15
Vertical, Pmax = 0.20

(b)

Figure 1: Fault tolerance.

formly at random at the S slices, each one of the slices re-
ceives approximately n/S elements. Thus, the false positive
probability is equal to:

HPfp(m, k, S, n) = (1− (1− S

m
)
k·n/S

)
k. (4)

From Eq. (3) and (4), HPfp(m, k, S, n) > V Pfp(m, k, S, n),
for S > 1. For small S

m
, HPfp(m, k, S, n) is closely (within a

factor of O(S/m)) approximated by (1−e−k·n/m)k, which in
conjunction with Eq. (2) leads to the following conclusion:

Proposition 1. The false positive probability for both hor-
izontal and vertical Bloom filters is asymptotically the same
and equal to that of the non-sliced filter.

Load. Assume an incoming stream of N events taking val-
ues in a domain ND, according to some distribution. For
this input, N lookups/filter tests are required in a single
Bloom filter. By slicing the filter, this load is distributed
among the S slices.

With horizontally sliced filters, each of the N events is
inserted/looked-up at only one slice, as HS(u) partitions ND

uniformly into parts of ND/S size each (on average), each
assigned to a different slice. Thus, the input load is also
distributed uniformly across the S slices. Therefore, for a
uniform input distribution, the load is balanced among the
S slices, with each slice receiving approximately N/S test
requests. Whereas, for a skewed distribution, the load at
each slice follows this distribution.

Vertical slicing, on the other hand, results in each input
event being inserted at k (possibly) different sites, as dic-
tated by the k hash functions. In this case the total load for
N events is increased by a factor of k. This added commu-
nication overhead comes at the benefit of load distribution;
as each of the k functions also spreads its input domain uni-
formly over its output domain, the final load distribution
is the sum of k permutations of the input distribution and
thus more balanced than with horizontal slicing. We study
this issue in more detail experimentally.

To conclude, while both horizontal and vertical filters dis-
tribute uniform input distributions evenly among the slices,
vertical filters also manage to balance skewed distributions
more evenly in the cost of increasing the total load.
Parallelism & Pipelining. With vertical Bloom filters,
k sites need to be contacted. Both the first-test-then-set
and the test-and-set primitives can be implemented either
in parallel or using pipelining. In the first case, the k sites
are contacted in parallel and each site independently tests,
sets, or tests-and-sets the corresponding bits. To determine
whether the event is distinct, the sites need to inform the
producer of the event with their decision. With pipelining,
the k sites test, set and test-and-set their bits in turn. In
this case, only one site communicates the final outcome; this
site is either the first site having a slice with an unset bit, or
the last site in the pipeline, if the bits are set in all sites. In
addition, the procedure for test stops, once the first unset
bit is encountered, thus the response time is improved.
Fault Tolerance. Let us now compute the false positive
probability in the case of failures. We assume that all sites
have an equal probability to fail.

In the case of horizontal Bloom filters, each event is in-
serted in just one of the S filters. This filter constitutes a
single point of failure for the event. If we treat events that
hash to a failed site as duplicates, the false positive proba-
bility in the case of f failures is given by:

f

S
+ (1− f

S
) · (1− e−k·n/m

)
k

(5)

Vertical Bloom filters exhibit better fault tolerance, since
information for each event is available in more than one site.
For each incoming event u, if there is at least one site that
has not failed and at this site the corresponding bit is not
set, we can safely characterize u as distinct. Thus, additional
false positives are introduced only in the case in which, for
an event u, the corresponding bits in all the non-failed sites
are set.

We assume that the bits that the events set are distributed
uniformly among the S slices. Thus, for f failed slices, the

probability that a bit is not available is f
S
. The false positive

probability in this case is:

(
f

S
+ (1− f

S
) · (1− e−k·n/m

))
k

(6)

Fig. 1(a) shows the false positive probability of horizontal
and vertical filters with increasing percentage of failed sites.

Since the increase in the false positive probability depends
on the number of slices S of the filter, we can tune S, so that
for a given number of failed sites (filters) f , the false positive
probability is not increased above a desired threshold Pmax

fp .

Definition 3. Given a Bloom filter bf with size m and k
hash functions with n inserted elements, we define its fault
tolerance parameter Sf , as the number of slices we need to
split bf into so as to achieve a false positive probability that
does not exceed Pmax

fp when f out of the Sf sites fail.

For horizontal Bloom filters, by solving Eq. (5) for Sf we

get: Sf ≥ f ·(1−Pfp)

Pmax
fp

−Pfp
. Similarly using Eq. (6), we get for ver-

tical filters: Sf ≥ f ·(1− k
√

Pfp)

k
√

Pmax
fp

− k
√

Pfp

. Fig. 1(b) illustrates how

the fault tolerance parameter Sf varies for different number
of failed sites and maximum false positive thresholds. Ver-
tical filters show better fault tolerance than horizontal ones.
For instance, for the same maximum false positive probabil-
ity of 0.15 and f=4 failed sites, vertical filters require less
than 20 slices, while horizontal filters require more than 30.

A symmetric approach is also possible, where instead of
treating events that hash at failed sites as duplicates, we
treat them as distinct. By doing so, we do not increase
false positives, but instead introduce false negatives. This
approach leads to an alternative definition of Sf such that
the false negative probability does not exceed a given Pmax

fn

threshold and to the following hybrid approach:
Vertical fault tolerance heuristic. An event is con-

sidered to be a duplicate, if there are at least x bits in non-
failed sites with their bits set, and distinct, otherwise.

To have a false negative, it means that one or more of the
bits corresponding to the failed sites would have not been
set. The probability of a false negative for horizontal Bloom

filters is f
S
, as any event corresponding to a failed site will

be considered as distinct. In this case, the false positive

probability is reduced to (1− f
S
) · (1− e−k·n/m)k.

For vertical filters, the false negative probability is:∑k
i=1

(
f
S

)i · (1− f
S

)k−i

while the false positive one becomes:((1− f
S
)·(1−e−k·n/m))k.

Now consider the hybrid approach for vertical Bloom fil-
ters, where an event is considered to be a duplicate, if there
are at least x bits in non-failed sites with their bits set, and
distinct, otherwise. Using this heuristic, we get:

V Pfp = ((1− f
S
) · (1− e−k·n/m))x

435

and

V Pfn =
∑k

i=k−x+1

(
f
S

)i · (1− f
S

)k−i
.

3.3 Other Types of Slicing
Let us first examine whether there is a better way to slice

a Bloom filter in terms of improving the false positive prob-
ability. The most general way to split a Bloom filter into S
slices is by using two sets of hash functions. For inserting
an event into the filter, one set of k1 hash functions is used
to select k1 of the S slices. Then, for each of the selected
slices, a second set of k2 hash functions is used to set the
corresponding k2 bits. Note that for horizontal Bloom fil-
ters, k1 = 1 and k2 = k, whereas for vertical Bloom filters,
k1 = k and k2 = 1. It can be shown that:

Proposition 2. The false positive probability cannot be
improved regardless of how we choose k1 and k2, given that
we maintain the total size and number of hash functions
fixed.
Proof. We split a Bloom filter into S slices using two sets
of hash functions. For inserting an event into the filter, the
first set of hash functions (k1 hash functions) is used to se-
lect k1 of the S slices. Then, for each of the selected slices a
second set of k2 hash functions is used to set to 1 the corre-
sponding k2 bits. Therefore, to insert each event we apply
k1∗k2 hash functions. To maintain the same number of hash
functions as for the single Bloom filter, we set k1 · k2 = k.
Let us assume n inserted events into the filter and slices of
the same size m/S. Then each slice has n ·k1/S elements on
average, making the per slice si false positive probability:

(1− (1− S/m)k2·k1·n/S)k2 ≈ (1− ek1·k2·n/m)k2

Since for each event we check all k1 slices indicated by the
first set of hash functions, the total probability for a false

positive to occur is: (1− ek1·k2·n/m)k2·k1 . Since k1 · k2 = k,
we conclude that the false positive probability cannot be
improved regardless of how we choose to slice a Bloom filter,
given that we want to maintain the total size and number
of hash functions fixed.

Let us now consider combinations of vertical and horizon-
tal Bloom filters, called diced Bloom filters. There are two
possible combinations: h-v diced Bloom filters are horizontal
Bloom filters with k hash functions and S slices of size m/S,
with each slice being a vertical Bloom filter of S′ slices of
size m/(S · S′); v-h diced Bloom filters are vertical Bloom
filters with k hash functions and S slices of size m/S, each
being a horizontal Bloom filter of S′ slices of size m/(S ·S′).

Assuming all mappings and hash functions are known, the
communication and processing cost for both diced Bloom fil-
ters is O(k). For the h-v diced Bloom filter, we first consider
the horizontal Bloom filter consisting of S slices and ignore
the vertical partitioning. The false positive probability is:(

1− (1− S
m
)
k·n
S

)k

The vertical partitioning does not influence the false positive
probability, and thus, the false positve for the h-v diced
Bloom filter is equal to the false positive probability of a
horizontal Bloom filter with S slices and k hash functions.
For the v-h diced Bloom filter, the vertical partitioning again
does not influence the false positive probability. Thus, the
total false positive probability is influenced by the horizontal
partitioning and given by:(

1− (1− S·S′

m
)

k·n
S·S′

)k

Again, for small S·S′

m
, we conclude that slicing the Bloom

filter does not influence its false positive probability.
With respect to load balance, both communication and

processing cost is split equally among the S · S′ sites that
maintain the corresponding filter slices. As for fault tol-
erance, the diced Bloom filter inherits the fault tolerance
properties of the vertical Bloom filters as information about

Figure 2: Event stream and the corresponding slid-
ing Bloom filter at time t and t+ 1.

each event is distributed among multiple sites. In particular,
the diced Bloom filter behave similarly to a vertical Bloom
filter but with S · S′ slices. For instance, the false positive
probability if we consider that any bit corresponding to a
failed site is set, is given by:

(
f

S · S′
+ (1− f

S
) · (1− e−k·n/m

))
k

(7)

The false positives in case of failures are the same for both
diced Bloom filters if we also consider that both their initial
false positive probability is (1 − e−k·n/m)k by using the e
approximation. If instead we use the accurate formulas then
the measure differs for the two structures as we need to
replace in Eq. (7) the corresponding false positive for each
variation as we have evaluated them above.

4. SLIDING WINDOWS
In many applications where duplicate-free delivery is de-

sired, events are only considered during specific time frames
(windows). For instance, in a pay-per-click online ad service,
an access made one day should not forbid the payment for
an access made the next day, i.e., the second access should
not be considered a duplicate.

Definition 4. An event u is considered distinct in a sliding
window of size w, if it has not been delivered during the
previous w time units.

So far, our Bloom filters are append-only: events are in-
serted in the filters but never deleted. However, to support
sliding-window semantics, an event must be deleted from the
filter, once it exits the current window. To allow deletions,

we extend each Bloom filter array bf to an array bfT of the
same size whose elements are integers called timers initially
set to zero. To insert an event u, instead of setting the bits
hj(u) of bf to one, we set the timers at the same positions

of bfT equal to w. At each time unit, all non-zero timers
are decremented by one. Consequently, a non-zero value t of
the timer in position j in bfT indicates that the last event

that has set the corresponding timer j in bfT was delivered
w − t time units ago. A position is considered to be zero,
when the corresponding timer becomes equal to zero, since
this means that the last event that has set the corresponding
timer was delivered w time units ago, thus no longer belongs
to the current window. Consequently, the above technique
ensures that Definition 4 holds. An example is shown in Fig.
2. The maximum value that any timer can take is w, thus
timers need to be �log2(w)	 bits long.

The above approach assumes that all k positions associ-
ated with an event are set at the same time. This may not
be possible when these positions belong to slices stored at
different sites, as it may be the case with vertical Bloom fil-
ters. To address possible network delays, the producer may
assign to each event u a timestamp tu equal to the time
instant of its delivery to the filtering service. Let ti be the
current time at a slice. When u is inserted, we set the timers
at the corresponding positions at this slice to w − (ti − tu).

436

The timers are set only if an event is distinct and not
for duplicate events. Thus, using the test-and-set primitive
is not possible, since, we cannot determine whether to re-
set any given timer without testing all associated positions
first. Instead, with first-test-then-set, we can safely reset
the timers that belong to events already tested as distinct.

Note that our sliding windows are time-based. Alterna-
tively, an event-based sliding window would require that the
same event is not among the last w events previously deliv-
ered. Our approach can be extended to this case as well, but
such semantics are hard to achieve in a distributing setting,
since some form of counting of the events is required.
Equal Timers Heuristic. The timers of the sliding Bloom
filters can be used to improve the false positive probability.
The intuition is that, if during the lookup for an event all k
timers are non-zero, and in addition all the corresponding k
timers are equal, then the timers have been most probably
set by the same event. Thus, the event is a true duplicate
with high probability.

We can evaluate the probability for a false positive if all
the k corresponding timers are equal as follows. For a false
positive, that is for an element that is not maintained in
the filter to correspond to k equal timers, and if we assume
that two events cannot be inserted in the same time unit,
a different element that has been previously inserted in the
filter needs to have set the exact same k timers. That is, the
k hash functions must have identical outputs for two differ-
ent elements. The false positive probability in this case may
be evaluated as the false positive probability for a lookup
when a single element is inserted in a Bloom filter, that is:

(1 − e−k/m)k. Generalizing the above idea, the more the
equal timers among the k ones, the smaller the probability
for a false positive. Based on this observation, we introduce
the following heuristic:
equal timers heuristic: A sliding Bloom filter with equal
timers indicates an event as a duplicate, iff all the corre-
sponding k timers are non-zero and at least k′ of the k cor-
responding timers are equal; else, the event is considered
distinct.

Exploiting the timers induces an overhead of k compar-
isons for each look-up.

5. DYNAMIC SIZE
Given an estimate of the number of events to be inserted

in each Bloom filter, we can pre-allocate a maximum size
per filter so that the false positive probability is kept be-
low a certain threshold. However, this may either result in
unnecessarily large filters if the actual event arrival rate is
smaller than the assumed value, or in a higher false positive
rate if the event arrival rate is larger. Instead, we can fur-
ther enhance the flexibility of our Bloom filters, by letting
the size of their slices grow dynamically as more events are
inserted, so that the false positive probability is kept below
a certain threshold.

Specifically, for a given filter configuration (i.e., size m
and k hash functions), solving Eq. (1) for n, we get: n =

−m
k
· ln (1− k

√
Pfp

)
. Now, substituting for a target Pfp we

can derive a cardinality-based threshold. If the number n
is not known, we can instead use for controlling the false
positive probability the density of the filter, defined as the
ratio z/m where z is the number of bits set to 1 in the filter.

It holds: Pfp = (z
m
)k. By solving for z, we get z = m· k

√
Pfp

and substituting for the target Pfp we can derive a density-
based threshold.

Let m0 be the filter size initially assigned to each slice.
When the density or cardinality of a slice exceeds the spec-
ified threshold, a new empty filter of the same characteris-
tics (size and hash functions) is created. From this point on,
events are checked against both filters. For an event to be de-

Figure 3: A Bloom tree with filters of size 10 and 2
hash functions, after the insertion of two events.

livered, both filters must indicate the event as distinct. New
events are inserted only in the newly created filter. This
process is repeatedly applied every time the newest filter
reaches the threshold. Clearly, there is a trade-off involved
in starting with small versus large initial filters. Small ini-
tial filters offer good space utilization; however, they result
in many small filters and thus incur additional look-ups and
a slightly worse total false positive rate.

In the sliding window case, as the window slides ahead,
the timers of older filters will eventually be reset to 0. Any
empty filter is then discarded. When cardinality is used, n
(i.e., the number of items) is incremented, each time an item
is inserted in the filter. Since it is not possible to accurately
detect when an item exits the window, we cannot decrement
n; the old “full” filter is left to live, until it becomes empty.
The density-based approach uses the actual load of the filter.
Thus, the last (or only) filter may live past w time units, as
window sliding gradually resets some of its timers to 0; if
the event arrival rate is smaller than the rate by which the
filter slides, the last filter will never need to grow. However,
when growing based on cardinality, the filter will fluctuate
between one and two filters if the arrival rate of events is
less than the window sliding rate.

The growing and shrinking of filters is applied per slice,
i.e., each slice may grow depending on the number of events
it receives, independently of the other slices. This allows
better space utilization when dealing with non-uniform in-
puts. Further, the number of alive filters depends on the
rate of the arriving events versus the size of the filter, the
target probability of false positive, and the sliding rate of
the window. Thus, besides addressing the problem of pre-
allocating an appropriate size, using dynamic sizes allows
filters to efficiently handle bursts of events, by dynamically
growing and shrinking their size over time.

6. MULTI-LEVEL FILTERING
In this section, we focus on multi-level filtering to explore

locality so that the communication cost is reduced. The
simplest form of multi-level filtering is achieved by assigning
a local Bloom filter at each producer, in addition to the
main Bloom filter. Each producer first tests for the events
it produces in its local filter. If the local filter indicates a
match, the event is a duplicate of an event that the producer
has generated before. Otherwise, the producer forwards the
event to the main filtering component.

Locality can be exploited further by multi-level filtering
through a tree of Bloom filters (i.e., a Bloom tree) that places
filters in the proximity of the producers. Events are assigned
to the same tree node based on the geographical or network
proximity of their producers. Thus, events are first tested
against filters nearby in the physical network and are for-
warded to remote parts of the network only in case of misses.
Besides location criteria, other criteria such as the similarity
of events that are usually looked up together or generated
together may also be used to build the Bloom tree.

437

Algorithm 1 Test-and-Set Algorithm

Input: An incoming event u, a Bloom tree T
Output: Whether u is duplicate or not.

1: i = the leaf node associated with the producer of u
2: duplicate = false;
3: while i NOT NULL do
4: if u ∈ bfi then
5: duplicate = true;
6: return duplicate;
7: else
8: set u in bfi
9: i = parent node of i in T
10: end if
11: end while
12: return duplicate;

Definition 5. A Bloom tree for a set of events is a tree
where each node is a Bloom filter such that:

• each internal node maintains the union of the events that
are maintained by its children,

• each leaf node maintains a subset of the total events in-
serted in the tree, and

• each event is inserted in at least one leaf.

An example Bloom tree is shown in Fig. 3.
To exploit locality, we try to filter each event as close to

its producer as possible, through a bottom-up traversal. An
event is first tested against the filter of the leaf associated
with its producer and if not found there, the process for-
wards the request to nodes higher in the tree. Definition 5
ensures that if the same event has appeared, reaching the
root ensures that this is detected. Moreover, sites located
nearby the producer are examined first and remote parts of
the network are contacted later if necessary.

We study two types of trees. A sparse Bloom tree is a
Bloom tree, where the leaf nodes maintain disjoint subsets
of the total events inserted into the Bloom tree, while in a
dense Bloom tree the sets of events maintained by its leaf
nodes may overlap. With a dense Bloom tree, we aim at
moving the events closer to the producers that generate them
so that more requests can be resolved locally. To implement
the dense Bloom trees, the test-and-set primitive is used,
whereas for the sparse Bloom trees, we use the first-test-
then-set primitive.
Test-and-set for dense Bloom trees. Consider an event
u generated at leaf i of a dense Bloom tree T . The event is
first tested against the filter bfi of node i. If bfi indicates a
hit, u is considered a duplicate and the process stops. Oth-
erwise, the bits corresponding to u are set in bfi. This miss
does not ensure that u is not a duplicate, since it may have
been inserted previously at some other leaf of T . Thus, the
process continues up the tree by forwarding a test-and-set
request for u to the parent node of i. The process contin-
ues until either the event is found, or the root is reached, in
which case we determine that u is distinct (Alg. 1).
First-test-then-set for sparse Bloom trees. The first-
test-then-set primitive starts similarly to the test-and-set
one by testing for event u in bfi. Again, if u is found in bfi,
the event is considered a duplicate and the process stops.
The difference lies in the case that bfi indicates a miss.
Then, a test request for u is again forwarded to the parent
node of i, but without setting any bits in bfi. The process
continues, until either we have a hit or we reach the root.
If the root is reached and u is determined as distinct, the
testing stops, and setting is initiated. The same path the
event has followed to the root is traversed now backwards
and the bits corresponding to the event are set at each node
in the path (Alg. 2).

Using a bottom-up traversal for testing and setting events
in the Bloom tree alleviates some of the load at the upper

Algorithm 2 First-Test-Then-Set Algorithm

Input: An incoming event u, a Bloom tree T
Output: Whether u is duplicate or not.

1: i = the leaf node associated with the producer of u
2: duplicate = false;
3: S = NULL {stack storing the path from i to the root of T}
4: while i NOT NULL do
5: if u ∈ bfi then
6: duplicate = true;
7: return duplicate;
8: else
9: push i into stack S
10: i = parent node of i in T
11: end if
12: end while
13: i = pop(S)
14: while i NOT NULL do
15: set u in bfi
16: i = pop(S)
17: end while
18: return duplicate;

levels in the case of duplicates. However, the nodes in the
upper levels still receive a considerable amount of load. We
can address this problem by slicing the root Bloom filter or
the filter of any other overloaded node in the tree.

Bloom trees can also be enhanced with timers to support
sliding windows. However, as with vertical Bloom filters,
the test-and-set primitive cannot be used. Instead, the first-
test-then-set primitive can be used both for sparse Bloom
trees and for implementing the dense Bloom trees.
Top-down testing. Since filters in higher levels maintain
more events, in general, the higher in the tree we locate
a match for an event, the higher the probability of a false
positive. In this case, for both dense and sparse Bloom trees,
we may improve the false positive probability for the testing
process by using the following heuristic.
top-down testing heuristic. Let us assume that a match
for u has occurred at a node i at level j. If we consider
level j as a level with high false positive probability, instead
of terminating the process, we continue by exploring the
subtree rooted at i. In particular, given a threshold level d,
testing proceeds as follows:

• If j < d, a test request is forwarded to all children of i
except the one i received the initial test request for u from.

• If all the children indicate a miss, then u is considered
distinct, the match at i is determined as a false positive
and the process stops.

• For all children of i that indicate a match for u, the test re-
quest is forwarded similarly to the children of these nodes.

• This process continues until we reach level d.

Note that even in dense Bloom trees, the top-down process
consists of tests only, i.e., no bits are set.
False Positives. Let us assume a Bloom tree with a single
filter configuration of size m and k hash functions used by
all of its nodes. To evaluate the false positive probability we
follow a bottom up approach. Assume n distinct inserted
elements in the Bloom tree filter in total. We denote as
bf(j,i), a filter bf maintained by the i-th node at the j-th
level of the tree. Thus, for each leaf filter i with ni inserted
elements, the false positive probability is given by:

Pfp(l,i) = (1− e−k·ni/m)k,

where the sum of the nis of all the leaves in the tree are
equal to n for sparse Bloom trees, and greater or equal to n
for the dense ones.

Let us consider now a filter corresponding to the i-th in-
ternal node at the j-th level of the hierarchy. Its filter bf(i,j)
maintains the union of the events maintained by its children.
Let us denote as Cr the set of distinct events inserted in the
r-th child of i which has d children in total. Then, the false

438

positive probability of this filter is 1 if any of its children has
indicated a match, and given that none of its children has
indicated a match it is:

Pfp(i,j) = (1− e−k·|C1
⋃
···

⋃
Cd|/m)k,

where |C1

⋃ · · ·⋃ Cd| denotes the cardinality of the union of
all events inserted in any of the d children of i. For sparse
Bloom trees, this is equal to the sum of events inserted in
all the d children as there are no double insertions, while for
dense ones it may be smaller since one event may be inserted
in more than one child.

Proposition 3. For the same input data and tree config-
uration, the false positive probability of the sparse and the
dense Bloom trees is the same.
Proof. To determine whether an event is distinct in the worst
case the bottom-up testing will reach the root in both trees.
However, the root nodes of the two trees are identical for the
same input data. Even if the distinct events inserted may
not be the same, the set bits are. The only difference may
be caused by a false positive occurring in the dense Bloom
filter that may prevent the insertion of an event, but that
means that the corresponding bits are already set.

Proposition 4. If an event is determined as distinct by a
single Bloom filter, then it is also determined as distinct
by any Bloom tree in which all nodes use the same filter
configuration with the single Bloom filter.
Proof. If an event is determined as distinct by the single
Bloom filter, it is also determined as distinct by the tree.

We can equivalently show that, if an event is determined
as a duplicate by the Bloom tree, then it is determined as
a duplicate by the Bloom filter. Thus, if the Bloom tree
indicates a false positive for an event, then this event would
cause a false positive in the single Bloom filter.

Each node filter maintains a subset of the events inserted
in the single Bloom filter, and since the same hash functions
are used, the bits set in each node are also a subset of the bits
set in the single Bloom filter. Therefore, if a false positive
appears at a node filter for an event, a false positive will
appear for the same event in the single Bloom filter.

Note that if a node filter indicates a false positive for an
event that has not been generated in its rooted subtree but
has been inserted by some other path in the tree, then this
event is not an actual false positive, since if it would reach
the single Bloom filter it would be correctly identified as a
duplicate. Thus, even in this case Prop. 4 still holds. How-
ever, Prop. 4 does not hold for horizontal Bloom filters. If
we configure the node filters similar to the slice of a hor-
izontal Bloom filter, with size m/S and k hash functions,
the events in one filter in this case are in general directed to
more than one slices in the horizontal Bloom filter. Thus,
the slices are not supersets of the node filters. If we config-
ure the node filters for horizontal Bloom filters similarly to
the case of vertical Bloom filters, i.e., as a single Bloom filter
with size m and k hash functions, while we do not increase
the false positive probability as with vertical Bloom filters,
still Prop. 4 does not hold.

Let us consider now the case where the main filtering com-
ponent compared to our tree is a sliced Bloom filter. That
is, let us consider that the root of our tree is now a sliced
Bloom filter.

Lemma 1. With vertical Bloom filters, Prop. 4 holds if
the tree filters are configured as the basic Bloom filter that
was split vertically, i.e., with size m and k hash functions.

Concurrency. Inserting and testing for items in the Bloom
filter involves accessing a number of bits. We can view the
first-test-then-set primitive as a sequence of read(b) followed
by write(b) operations, and test-and-set as a sequence of
readwrite(b) operations, b being a Bloom filter bit. With
concurrent accesses, an interleaving of these operations may
lead to false negatives. For instance, assume two producers
of the same event u, and that h1(u) = i and h2(u) = j for

 0
 0.01
 0.02
 0.03
 0.04
 0.05

0 100 200 300... 16866

E
ve

nt
 p

op
ul

ar
ity

Event

(a) Event popularity

 0

 250

 500

 750

 1000

 1250

0 500 1000 1500... 3053

#e
ve

nt
s

pr
od

uc
ed

Leaf node

(b) Source distribution

Figure 4: Web log data distribution.

two of the hash functions. Further, assume that both bits
i and j are equal to 0. If one producer tests i and then j
and the other one j and then i, they both decide that u is
distinct. One way to handle this is to implement both prim-
itives as atomic operations or transactions. Implementing
concurrency at the bit level is too fine grained; implement-
ing concurrency at the slice level is more reasonable. In the
case of vertical filtering, more than one site needs to be con-
tacted for testing/setting the corresponding bits thus some
coordination is needed. Note that slicing actually improves
concurrency, since we lock smaller units. For trees, it suffices
to lock the root, as all first-test-then-set requests will pass
through the root node before setting any bits in the tree.

7. EXPERIMENTAL EVALUATION
In this section, we present experimental results regarding

the performance of the proposed distributed Bloom filters.
We used two real-world datasets - namely, a log of entries
of the web server of our department and a network flow log
from Yahoo - as well as a set of synthetic datasets. Unless
stated otherwise, the presented figures refer to the web log
dataset.

For the web log, the initial log file consisted of approxi-
mately 4.5 million entries, each including (among others) the
IP address of the requesting client, the accessed URL, and a
timestamp. We initially pruned all entries with IPs belong-
ing to subnets of our institution, so as to include only remote
accesses and avoid biasing the dataset. This pruning step
brought the total log entry count down to 2.5 million entries.
We then randomly sampled 100000 of these entries to create
our input dataset. In this dataset, the client IP is used as the
source (i.e., producer) identifier and the URL as the event
data. The popularity of accessed URLs (i.e., the percentage
of times each URL appears in the input stream) follows a
highly skewed Zipf-like distribution as shown in Fig. 4(a).
The Yahoo network flow log dataset contains 100000 com-
munication patterns between end-users and Yahoo servers
collected from three border routers in October 11 2007. In
this dataset, the client IP is treated as the event data to
be filtered. Figure 6 illustrates the popularity of each dis-
tinct item in this dataset, which also follows a highly skewed
Zipf-like distribution. Lastly, for the synthetic datasets, we
used both a uniform and a Zipf distribution with parame-
ter α=1.0 for generating the events and further control the
number of duplicates by drawing the events from domains
having different sizes.

The accuracy of Bloom filters depends on the filter con-
figuration, that is, the filter size and the number of hash
functions. Typically, the filter size is set so that, given the
number of distinct events, a maximum probability of false
positive (Pfp) is achieved. Unless stated otherwise, the size
of the filter is preset at the optimal size given an estimation
of the input size. In particular, we use as default k=4 hash
functions, and for example, for the web log dataset that in-
cludes ≈ 4300 distinct URLs, for Pfp = 0.02, 0.05, and 0.08,
the filter consists of m≈14300, 105000, and 89000 elements
(bits/timers) respectively.
Bloom Slicing. The goal of this set of experiments is to
examine the performance of Bloom filter slicing and pitch it
against the theoretic formulae, using an append-only setting

439

 0

 0.02

 0.04

1 250 500 750 1000

fa
ls

e
po

si
tiv

e
ra

te

number of slices

hor,143000
ver,143000

hor,105000
ver,105000

hor,89000
ver,89000

(a) False positive

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 20 40 60 80 100
200
400
600
800
1000

fa
irn

es
s

number of slices

horizontal
vertical
optimal

(b) Fairness

 0.1

 1

 10

 100

1 5 20 40 60 80 100
200
400
600
800
1000

m
ax

 lo
ad

 %

number of slices

horizontal
vertical
optimal

(c) Load

 0

 0.005

 0.01

 0.015

 0.02

 0.025

1 2 3 4 5 6 7
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

fa
ls

e
po

si
tiv

e
ra

te

fa
ls

e
ne

ga
tiv

e
ra

te

threshold

false positive rate
false negative rate

(d) Fault tolerance heuristic

Figure 5: Results for vertical and horizontal Bloom filters for varying number of slices (web log).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

0 100 200 300... 2049

E
ve

nt
 p

op
ul

ar
ity

Event

Figure 6: Yahoo dataset
event popularity.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1 250 500 750 1000

F
al

se
 p

os
iti

ve
 r

at
io

Number of slices

hor,48400
ver,48400

hor,35600
ver,35600

hor,30000
ver,30000

(a) False positive (synthetic)

 0

 0.02

 0.04

 0.06

 0.08

1 250 500 750 1000

fa
ls

e
po

si
tiv

e
ra

te

number of slices

hor,17400
ver,17400

hor,12800
ver,12800

hor,10800
ver,10800

(b) False positive (Yahoo)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 5 20 40 60 80 100 200 400 600 800 1000

av
g.

 n
um

be
r

of
 m

es
sa

ge
s

pe
r

ev
en

t

number of slices

no pipelining
pipelining - replication 80%
pipelining - replication 50%
pipelining - replication 20%

(c) Pipelining

Figure 7: False positives for (a) the synthetic and (b) Yahoo datasets, and (c)
pipelining for synthetic data.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 20 40 60 80 100
200
400
600
800
1000

fa
irn

es
s

number of slices

horiz,α=1
vert,α=1
vert,α=0

horiz,α=0
optimal

(a) Fairness (synthetic)

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 20 40 60 80 100
200
400
600
800
1000

fa
irn

es
s

number of slices

horizontal
vertical
optimal

(b) Fairness (Yahoo)

 0.1

 1

 10

 100

1 5 20 40 60 80 100
200
400
600
800
1000

m
ax

 lo
ad

 %

number of slices

horiz,α=1
vert,α=1

horiz,α=0
vert,α=0
optimal

(c) Load (synthetic)

 0.1

 1

 10

 100

1 5 20 40 60 80 100
200
400
600
800
1000

m
ax

 lo
ad

%

number of slices

horizontal
vertical
optimal

(d) Load (Yahoo)

Figure 8: (a,b) Fairness and (c,d) load for the synthetic and Yahoo datasets respectively.

 0

 100

 200

 300

 400

no equal 2 3 4 5 6 7 8

du
pl

ic
at

es

equal timers

bloom filter duplicates
true duplicates

(a) Horizontal filters

 0

 100

 200

 300

 400

no equal 2 3 4 5 6 7 8

du
pl

ic
at

es

equal timers

bloom filter duplicates
true duplicates

(b) Vertical filters

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

1 2 3 4 5 6 7 8

fa
ls

e
po

si
tiv

e
ra

te

of timers required to be equal

horizontal, no timers
vertical, no timers

horizontal
vertical

(c) False positive

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 7 8

fa
ls

e
ne

ga
tiv

e
ra

te

of timers required to be equal

horizontal
vertical

(d) False negative

Figure 9: Equal timers (web log).

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 2*r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 5*r

(a) w=100

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 2*r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 5*r

(b) w=500

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 2*r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 5*r

(c) w=1000

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 2*r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 5*r

(d) w=100

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 2*r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 5*r

(e) w=500

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 2*r

0

2

4

6

 0 2000 4000 6000 8000 10000

Arrival rate: 5*r

(f) w=1000

Figure 10: Dynamic size – (a,b,c): density-based, (d,e,f): cardinality-based (web log).

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 1 2 3 4 5 6 7 8 9 10

F
al

se
 p

os
iti

ve
 r

at
e

Arrival rate (times r)

Cardinality,W=1000
Cardinality,W=500
Cardinality,W=100

Density,W=1000
Density,W=500
Density,W=100

Figure 11: Dynamic size – false
positive (web log).

 0

 10000

 20000

 30000

 40000

 50000

 60000

43210

hi
ts

hops

sparse Bloom tree
dense Bloom tree

(a) Hops until detection

 0

 20000

 40000

 60000

 80000

 100000

 120000

43210

ac
ce

ss
es

tree level

sparse Bloom tree
dense Bloom tree

(b) Accesses per level

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

43210

fa
ls

e
po

si
tiv

e
ra

te

top-down testing threshold

sparse Bloom tree
dense Bloom tree

(c) Top-down heuristic

Figure 12: Bloom trees (web log).

440

in which events are gradually inserted in an initially empty
filter. Figure 5(a) plots the false positive rate – that is,

the ratio FP
FP+TN

, where FP and TN are the numbers of

false positives and true negatives for the whole input stream
respectively – for an increasing number of slices. Although
theoretically the false positive rate is not (asymptotically)
affected by slicing (see Section 3), this only holds for vertical
filters; for horizontal filters the more the slices, the more the
false positive rate deviates from the theoretic value. This is
caused primarily by imbalances in the way items are spread
across horizontal partitions and by the range of the k hash
functions becoming very small as the size of individual slices
decreases.

This load imbalance is also evident in Fig. 5(b) that de-
picts the fairness [11] of the load distribution – defined as

(
∑S

i=1 xi)
2/(S ·∑S

i=1(xi)
2), where S is the number of slices

and xi the percentage of load received by the i-th slice, with
the optimal fairness value being 1 – with the number of
slices. In addition, Fig. 5(c) reports the maximum per-
centage of the load received by any of the slices, the opti-
mal being 1/S. Both figures verify the intuition in Section
3, showing vertical filters outperforming horizontal ones for
skewed distributions. Note that since the load distribution
characteristics are not affected by the filter parameters (m,
k), only a single curve is plotted for each case.

The false positives (Fig. 7(a), 7(b)) and load character-
istics (Fig. 8) for the synthetic and Yahoo data sets are
similar. Note that, since the number of distinct items in
these datasets are different from the web log, the filters are
configured differently. Specifically, for the synthetic datasets
(≈5700 distinct items) and for the same target Pfps of 0.02,
0.05, and 0.08, the filters consist of approximately 48400,
35600, and 30000 elements respectively; whereas, for the Ya-
hoo dataset (≈2049 distinct items), the corresponding sizes
are approximately 17400, 12800, and 10800 elements.

We also evaluated our fault-tolerance heuristic (Fig. 5(d)).
Here, we use 8 hash functions, to depict how the heuristic
works more clearly. In this case, in order to characterize
an event as duplicate, we need at least x (x ∈ [1, 7]) of the
corresponding bits to be alive and set, else we characterize
it as distinct, potentially introducing false negatives. We
consider a 20% failure rate (i.e., 8 out of 40 slices failing).
As shown in Fig. 5(d), a threshold value of 3 or 4 is the
best, since it almost minimizes both the false positive and
false negative rate.

Finally, we study how pipelining improves the commu-
nication cost for vertical Bloom filters. We use three syn-
thetic datasets that exhibit different degrees of replication.
In particular, we consider a scarcely, a medium, and a highly
replicated dataset, where the distinct events correspond re-
spectively to about 80%, 50%, and 20% of the input data.
Pipelining reduces the average number of messages, i.e., the
slices accessed per lookup (Fig. 7(c)) for vertical partition-
ing. Note that with horizontal partitioning, only one slice
is accessed per lookup. The savings are more evident when
there are few duplicates, since seeing the first bit equal to 0
suffices to characterize an event as distinct. Note that some
hash functions may lead to the same slice, thus the average
number of slices accessed without pipelining is at most equal
to the number of functions.

In summary, vertical Bloom filters achieve slightly better
false positive rates, fault tolerance and load distribution, but
induce higher communication costs that can be somewhat
reduced using pipelining.
Sliding Bloom Filters and Dynamic Size. In this set
of experiments, events are continuously inserted in a timer-
based filter, with the timers decaying over time as described
in Section 4. We first evaluate the equal timers heuristic in
terms of accuracy gains. Again, we use 8 hash functions for

Table 1: Local filters.
Hits Accesses

dense sparse dense sparse
L0 34K 77K 50K 111K
L1 49K 5K 100K 116K

better clarity. Figures 9(a) and 9(b) show the distribution
of true duplicates over all duplicates when x (x ∈ [1, 8]) out
of the 8 timers are equal, for both horizontal and vertical
partitioning. Characterizing an event as distinct when all
timers are unequal for vertical and at most 2 timers are
equal for horizontal seems to strike a good balance between
false positives (Fig. 9(c)) and false negatives (Fig. 9(d)).

We also experimented with the dynamic adjustment of the
size of the sliding Bloom filters for handling bursts in the ar-
rival rate of events. We show the growth of the filter size
when a burst in the rate of events appears after 1/3 of the
stream has passed, lasts for 1/3 and then events continue to
arrive with the initial rate. We consider two such bursts, one
with events appearing at twice the initial arrival rate and one
with events appearing at five times the arrival rate. We fur-
ther experiment with various window sizes, ranging from 100
to 500 and 1000 time slots. We show the number of Bloom
filters that are created with (i) a density-based method (Fig.
10(a), 10(b), and 10(c)) and (ii) a cardinality-based method
(Fig. 10(d), 10(e), and 10(f)) and the corresponding false
positive rate (Fig. 11). In both cases, additional filters are
temporarily created to handle the peaks. As expected, the
cardinality-based method exhibits larger fluctuations in the
number of additional created filters than the density-based
method, as the former has no easy way of estimating the
actual number of items in the filter at any time, while the
latter knows exactly how many bits are set. We can also
see that, the larger the window size, the more extra filters
are created during the burst period and the longer they live,
as older events are phased out more slowly. We also re-
peated the sliding window experiments with the Yahoo flow
and synthetic datasets with similar results, thus omitted for
space conservation reasons.
Multi-level Filtering. Since locality is clearly application-
dependent, to evaluate the benefits of multi-level filters, we
used the client IPs from the web log to create the tree hi-
erarchy. Figure 4(b) plots the distribution of events across
the leaf level of our tree. Table 1 shows the locality achieved
with local filters, that is with 2 levels, where level 0 corre-
sponds to the root and level 1 to the leaves. The number of
hits indicates the number of events detected as duplicates
at each level. Clearly, for dense trees most duplicates are
detected by using only the local filters, whereas for sparse
trees, the vast majority of events are detected as duplicates
at the root. Thus, dense trees are better in terms of local-
ity, since they avoid contacting the root filter. The number
of accesses refers to the number of filters accessed per level.
Again, dense filters exploit locality better as expected. They
also reduce the number of accesses, since for sparse trees, in
the case of non-duplicates, each filter is accessed twice, once
during testing and once during setting.

We also built a Bloom tree with 5 levels for the same
dataset. Figure 12(a) shows the number of levels each event
goes up the tree before detected as a duplicate or not, and
Fig. 12(b) the distribution of accesses per level. Again,
the dense tree resolves most requests locally (i.e., at lower
levels). Figure 12(c) shows the reduction of false positives
achieved with the top-down heuristic for various levels. A
threshold value of 2 seems the best choice for both trees,
since continuing at lower levels practically does not improve
the false positive rate any further. Similar results were ob-
tained for the second real and the synthetic datasets as well.
In summary, both sparse and dense trees exploited the local-

441

ity in the dataset. Dense trees are more efficient and should
be used, unless sliding-window semantics must be supported.

8. RELATED WORK
In this paper, we have proposed distributed filtering for

duplicate-free event delivery. Our solution is based on dis-
tributed Bloom filters. The contribution of our work lies in
casting the design space regarding the distribution of Bloom
filters and their use for duplicate-free event dissemination.
Horizontal vs vertical partitioning, sparse and dense trees
and their analysis are novel in this paper.

Bloom filters have been used in a variety of applications
(see [3] for a survey). For example, Bloom filters are de-
ployed for cache sharing among web proxies; each proxy
contains Bloom filters that summarize the cache content of
all other participating proxies to quickly determine which of
them contains an item of interest [9]. Bloom filters have also
been used for computing the union of non-distinct sets resid-
ing at distributed sites by providing compact summaries of
the content of each site [6]. In addition, Bloom filters have
been deployed for query routing in distributed overlays, sum-
marizing the content of a single node or sets of nodes in its
neighborhood. In the latter case, multi-level Bloom filters
have been proposed, most notably attenuated Bloom filters
[16] and filters for hierarchical overlays [12]. An attenuated
Bloom filter of depth d is an array of d Bloom filters. Each
node in the overlay maintains an attenuated Bloom filter for
each of its links such that the i-th filter, 1 ≤ i ≤ d, provides a
summary of the content of all nodes reachable through that
link within at most i-hops. In [12], Bloom filters are placed
on the nodes of a hierarchical overlay of nodes sharing XML
data, where the filter at each node summarizes the XML
content of all descendants in the overlay. In contrary to our
approach, these works use Bloom filters to summarize the
content of nodes, focusing on using the filters for routing
and on lazy filter update methods for changing content.

There has been some previous work regarding streaming
and dynamic-size filters. To handle unbounded streams of
items, in stable Bloom filters, some randomly chosen bits
are reset to 0, as new items are inserted, such that old items
that have become stale are deleted from the filter [7], with
applications in click-fraud detection [13]. Sliding windows
with counters are used in [14] and [18] for a single stream
and in [17] for distributed streams but using a centralized
filter. The equal-timers heuristic and the distributed system
aspects are new in this paper. Dynamic [10] and Scalable [1]
Bloom filters start with a small filter and add filters when
the current ones get full. Block partitioned Bloom filters
[15] use blocks of Bloom filters where each block can grow
dynamically. The combination of dynamic size with slid-
ing windows for handling bursts and the distributed issues
considerations are novel in this paper.

Finally, counting Bloom filters have been used for fre-
quency estimation [5], finding most frequent items [8] and
long duration network flows [4]. Spectral Bloom filters use
counters to estimate the multiplicities of items [5], while
multistage Bloom filters use multiple filters to reduce false
positives for identifying large network flows [8, 4]. In such
applications, sampling could also be applied for duplicate
elimination. However, sampling suffers from false negatives
while inducing much larger space, communication, and com-
putation overheads than Bloom filters.

9. SUMMARY
In this paper, we address the problem of large-scale dupli-

cate-free delivery of events produced by distributed sources.
To this end, we have proposed a distributed filtering mech-
anism based on Bloom filters. We have presented a suite of
distributed Bloom filters that exploit different ways of slicing

the filter. To address the dynamic nature of event dissem-
ination, we have proposed extensions that provide sliding
windows semantics and dynamically adjustable sizes. To
exploit locality, sparse and dense Bloom filters have been
introduced that support multi-level filtering. We have stud-
ied both theoretically and experimentally the properties of
the various proposed structures.

10. REFERENCES
[1] P. S. Almeidaa, C. Baqueroa, N. Preguiça, and

D. Hutchison. Scalable bloom filters. Information
Processing Letters, 101(6):255–261, 2007.

[2] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[3] A. Broder and M. Mitzenmacher. Network
applications of bloom filters: A survey. Internet
Mathematics, 1(4):485–509, 2002.

[4] A. Chen, Y. Jin, J. Cao, and L. E. Li. Tracking long
duration flows in network traffic. In INFOCOM, 2010.

[5] S. Cohen and Y. Matias. Spectral bloom filters. In
SIGMOD Conference, 2003.

[6] I. Dar, T. Milo, and E. Verbin. Optimized union of
non-disjoint distributed data sets. In EDBT, 2009.

[7] F. Deng and D. Rafiei. Approximately detecting
duplicates for streaming data using stable bloom
filters. In SIGMOD Conference, 2006.

[8] C. Estan and G. Varghese. New directions in traffic
measurement and accounting: Focusing on the
elephants, ignoring the mice. ACM Trans. Comput.
Syst., 21(3):270–313, 2003.

[9] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Trans. Netw.,
8(3):281–293, 2000.

[10] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo. The
dynamic bloom filters. IEEE TKDE, 22(1):120–133,
2010.

[11] R. Jain, D. Chiu, and W. Hawe. A quantitative
measure of fairness and discrimination for resource
allocation in shared computer systems. DEC Research
Report TR-301, 1984.

[12] G. Koloniari and E. Pitoura. Content-based routing of
path queries in peer-to-peer systems. In EDBT, 2004.

[13] S. Majumdar, D. Kulkarni, and C. Ravishankar.
Addressing click fraud in content delivery systems. In
Proc. INFOCOM, 2007.

[14] A. Metwally, D. Agrawal, and A. E. Abbadi. Duplicate
detection in click streams. In WWW, 2005.

[15] O. Papapetrou, W. Siberski, and W. Nejdl.
Cardinality estimation and dynamic length adaptation
for bloom filters. Distributed and Parallel Databases,
28(2,3):119–156, 2010.

[16] S. C. Rhea and J. Kubiatowicz. Probabilistic location
and routing. In Proc. INFOCOM, 2002.

[17] X. Wang, Q. Zhang, and Y. Jia. Efficiently filtering
duplicates over distributed data streams. In Proc.
CSSE, 2008.

[18] T. Xia, C. Jin, X. Zhou, and A. Zhou. Filtering
duplicate items over distributed data streams. In
WAIM, 2005.

442

