
Multiversion Data Broadcast Organizations

Oleg Shigiltchoff1, Panos K. Chrysanthis1, and Evaggelia Pitoura2

1 Department of Computer Science
University of Pittsburgh. Pittsburgh, PA 15260, USA

{oleg,panos}@cs.pitt.edu
2 Department of Computer Science

University of Ioannina, GR 45110 Ioannina, Greece
pitoura@cs.uoi.gr

Abstract. In recent years broadcasting attracted considerable attention
as a promising technique of disseminating information to large number
of clients in wireless environment as well as in the web. In this paper, we
study different schemes of multiversion broadcast and show that the way
broadcast is organized has an impact on performance, as different kind of
clients needs different types of data. We identify two basic multiversion
organizations, namely Vertical and Horizontal broadcasts, and propose
an efficient compression scheme applicable to both. The compression can
significantly reduce the size of the broadcast and consequently, the av-
erage access time, while it does not require costly decompression. Both
organizations and the compression scheme were evaluated using simula-
tion.

1 Introduction and Motivation

The recent advances in wireless and computer technologies create expectation
that data will be “instantly” available according to client needs at any given
situation. Modern client devices often are small and portable, therefore they are
limited in power consumption. As a result, the significant problem arises: how
to transfer data effectively taking into consideration this limitation.

One of the schemes which can solve this problem is broadcast push [1]. It
exploits the asymmetry in wireless communication and the reduced energy con-
sumption in the receiving mode. Servers have both much larger bandwidth avail-
able than client devices and more power to transmit large amounts of data.

In broadcast push the server repeatedly sends information to a client pop-
ulation without explicit client requests. Clients monitor the broadcast channel
and retrieve the data items they need as they arrive on the broadcast chan-
nel. Such applications typically involve a small number of servers and a much
larger number of clients with similar interests. Examples include stock trad-
ing, electronic commerce applications, such as auction and electronic tendering,
and traffic control information systems. Any number of clients can monitor the
broadcast channel. If data is properly organized to cater to the needs of the
client, such a scheme makes an effective use of the low wireless bandwidth. It is
also ideal to achieve maximal scalability in regular web environment.

Y. Manolopoulos and P. Návrat (Eds.): ADBIS 2002, LNCS 2435, pp. 135–148, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

136 Oleg Shigiltchoff et al.

There exist different strategies which can lead to performance improvement
of broadcast push [6,8]. The data are not always homogeneous and clients some-
time are more interested in particular data elements. Therefore some data, more
frequently accessed, are called “hot” and the other data, less frequently accessed,
are called “cold”. To deal with this kind of data the idea of broadcast disks was
introduced [3,4,2]. Here the broadcast organized as a set of disks with different
speeds. “Hot” data are placed on the “hot” (or “fast”) disk and the “cold” (or
“slow”) data are placed on the “cold” disk. Hence if most of the data that client
needs are “hot” it reduces the response time.

Another strategy capable to reduce the access time is client caching. However
when data are being changed, there arises a problem how to keep the data cached
in a client consistent with the updated data on the server [10,12,5]. Clearly, any
invalidation method is prone to starvation of queries by update transactions.
This same problem also exists in the context of broadcast push, even without
client caching. Broadcasting is a form of a cache “on the air.” In our previous
work, we effectively addressed this problem by maintaining multiple versions of
data items on the broadcast as well as in the client cache [9]. With multiple
versions, more read-only transactions are successfully processed and commit in
a similar manner as in traditional multiversion schemes, where older copies of
items are kept for concurrency control purposes (e.g., [7]). The time overhead
created by the multiple versions is smaller than the overall time lost for aborts
and subsequent recoveries.

The performance (determined by the access time and power consumption) of
multiversion broadcast is directly related to the issue of the size of the broadcast.
Towards this we try to find ways to keep the size of broadcast as small as possible.
There is no need to assume that all data have to be changed every time interval
such that data values of adjacent versions are always different. Hence, we can
reduce the communication traffic by not explicitly sending unchanged part of
the older versions [11]. Consequently the client can retrieve the needed version
of data sooner if the data do not change very often, which reduces the time
during which the client stays on. We exploit this idea in the compression scheme
we are proposing in this paper.

The main contributions of this paper are:

1. Identification of two different broadcast organizations for multiversion broad-
cast, namely Vertical and Horizontal.

2. Development of a compression scheme along the lines ofRun Length Encoding
(RLE) [11], applicable to both of the proposed broadcast organizations and
which incurs no decompression overhead at the client.

3. Evaluation of circumstances under which each of our proposed broadcast
organizations performs better.

The rest of the paper is structured as follows. In Section 2,we present the sys-
tem model. Section 3 and 4 describe server side broadcast organization and
client access behavior, respectively. Sections 5 presents our experimental plat-
form whereas our experimental results are discussed in Section 6.

Multiversion Data Broadcast Organizations 137

2 System Model

In a broadcast dissemination environment, a data server periodically broadcasts
data items to a large client population. Each period of the broadcast is called
a broadcast cycle or bcycle, while the content of the broadcast is called a bcast.
Each client listens to the broadcast and fetches data as they arrive. In this
way data can be accessed concurrently by any number of clients without any
performance degradation (compared to “pull”, on-demand approach). However,
access to data is strictly sequential, since clients need to wait for the data of
interest to appear on the channel. We assume that all updates are performed at
the server and disseminated from there.

Without lose of generality, in this paper we consider the model in which
the bcast disseminates a fixed number of data items. However, the data values
(values of the data items) may or may not change between two consecutive
bcycles. In our model, the server maintains multiple versions of each data item
and constantly broadcasts a fixed number of versions for each data items. For
each new cycle, the oldest version of the data is discarded and a new, the most
recent, version is included. The number k of older versions that are retained
can be seen as a property of the server. In this sense, a k-multiversion server,
i.e., a server that broadcasts the previous k values, is one that guarantees the
consistency of all transactions with span k or smaller. Span of a client transaction
T , is defined to be the maximum number of different bcycles from which T reads
data.

The client listens to the broadcast and searches for data elements based on
the pair of values (data id and version number). Clients do not need to listen
to the broadcast continuously. Instead, they tune-in to read specific items. Such
selective tuning is important especially in the case of portable mobile computers,
since they most often rely for their operation on the finite energy provided by
batteries and listening to the broadcast consumes energy. Indexing has been used
to support selective tuning and reduce power consumption, often at the cost of
access time. In this paper, we focus only on broadcast organization and how to
reduce its size without adopting any indexing scheme.

The logical unit of a broadcast is called bucket. Buckets are the analog to
blocks for disks. Each bucket has a header that includes useful information. The
exact content of the bucket header depends on the specific broadcast organiza-
tion. Information in the header usually includes the position of the bucket in the
bcast as an offset time step from the beginning of the broadcast as well as the
offset to the beginning of the next broadcast.

The broadcast organization, that is where to place the data and the old
versions, is an important problem in multiversion broadcast. In the next section,
we elaborate on this issue, considering in addition broadcast compression as a
method to reduce the size of broadcast.

138 Oleg Shigiltchoff et al.

3 Broadcast Organization

3.1 Basic Organization

The multiversion data can be represented as a two-dimension array, where in-
dexes are version numbers (Vno) and data ids (Did), and the values of the array
elements are the data values (Dval). That is Dval[Did=i, Vno=k]=v means that
k-version of i-data item is equal to v. This data representation can be extended
to any number of data items and versions.

The simple sequential scheme can broadcast data items in two different or-
ders: Horizontal broadcast or Vertical broadcast. In the Horizontal broadcast, a
server broadcasts all versions (with different Vno) of a data item with a particu-
lar Did, then all versions (with different Vno) of the next data item with the next
Did and so on. This organization corresponds to the clustering approach in [9].
In the Vertical broadcast, a server broadcasts all data items (with different Did)
having a particular Vno, then all data items (with different Did) having the next
Vno and so on. Formally, the Horizontal broadcast transmits [Did[Vno,Dval]*]*
sequences whereas the Vertical broadcast transmits [Vno[Did,Dval]*]* sequen-
ces. To make the idea more clear consider the following example. Let us assume
we have a set of 4 data items, each having 4 versions:

Vno=0 Vno=1 Vno=2 Vno=3
Did=0 Dval=1 Dval=1 Dval=1 Dval=1
Did=1 Dval=8 Dval=8 Dval=8 Dval=5
Did=2 Dval=6 Dval=1 Dval=1 Dval=2
Did=3 Dval=5 Dval=4 Dval=4 Dval=4

For the Horizontal broadcast the data values on the bcast are placed in the
following order (The complete bcast will include also the data ids and version
numbers as indicated above):

1 1 1 1 8 8 8 5 6 1 1 2 5 4 4 4

while for the Vertical broadcast the data values on the bcast are placed in the
following order:

1 8 6 5 1 8 1 4 1 8 1 4 1 5 2 4

Clearly for each of the two organizations, the resulting bcast has the same size.
The two organizations differ in the order in which they broadcast the data values.

3.2 Compressed Organization

In both cases, Horizontal and Vertical, the broadcast size and consequently the
access time can be reduced by using some compression scheme. A good compres-
sion scheme should reduce the broadcast as much as possible with minimal, if
no, impact on the client. That is it should not require additional processing at

Multiversion Data Broadcast Organizations 139

the client, so it should not trade access time to processing time. The following
is a simple compression scheme that exhibits the above properties.

The current compression scheme was inspired by the observation that the
data values do not always change from one version to another. In other words,
Dval[Did=i, Vno=k]= Dval[Did=i, Vno=k+1]= ...= Dval[Did=i, Vno=k+N]=v,
where N-number of versions at which the value of i-data item (having Did=i) re-
mains equal to v. Then, when broadcasting data, there is no reason to broadcast
all versions of a data items if its Dval does not change. Instead, the compressed
scheme broadcasts Dval only if it is different from Dval of the previous ver-
sion. In order not to lose information (as well as to support selective tuning) it
also broadcasts the number of versions having the same Dval. In formal form
the Horizontal broadcast would produce [Did[Vno(Repetition,Dval)]*]*, and the
Vertical broadcast would create [Vno[Did(Repetitions,Dval)]*]*. Obviously we do
not include into the broadcast those versions, which already have been included
“implicitly” with other versions.

The way the compression works for Horizontal broadcast is quite straight-
forward, because we can see the repetitive data values in the simple sequential
(or uncompressed) bcast. 1 1 1 1 transforms to 1x3, 8 8 8 transforms to 8x2 and
so on. The data values from the example above are broadcast in the following
compressed format:

1x3 8x2 5 6 1x1 2 5 4x2

The compression for Vertical broadcast is slightly more complex. To explain the
idea let us redraw the previous table in a way that captures the first step of our
compression algorithm. The second step is the vertical linearization of the array.

Did=0 1 for Vno=0–3
Did=1 8 for Vno=0,1,2 5 for Vno=3
Did=2 6 for Vno=0 1 for Vno=1,2 2 for Vno=3
Did=3 5 for Vno=0 4 for Vno=1,2,3

In the second step, the compressed data values would be broadcast in the
following order:

1x3 8x2 6 5 1x1 4x2 5 2

For the Vertical broadcast, 1x3 means that Dval[Did=0, Vno=0]= 1 and three
other versions (Vno=1, 2 and 3) of this data item (Did=0) also have Dval=1.
In such a way the server implicitly broadcasts 4 data elements at the same
time. Similarly 8x2 means Dval[Did=1, Vno=0]= 8, Dval[Did=1, Vno=1]= 8,
6 means Dval [Did=2, Vno=0]= 6, and 5 means Dval[Did=3, Vno=0]= 5. This
completes the broadcast of all data elements having Vno=0. Then, it broadcasts
the elements having Vno=1. The first two elements of Vno=1 with Did = 0 and
Did=1 have already been broadcast implicitly (in 1x3 and 8x2), so we do not
need to include them into the broadcast. Instead, we include 1x1 corresponding
to Did=2 and so we broadcast explicitly Dval[Did=2, Vno=1]= 1 and implicitly
Dval[Did=2, Vno=2]= 1. Next to be broadcast is 4x2, corresponding to Did=3

140 Oleg Shigiltchoff et al.

and so on. Note that we broadcast the same number of elements, which are now
compressed, for both Horizontal and Vertical broadcasts but in different order.

In the case of the Vertical broadcast, it also makes sense to rearrange the
sequence of broadcast data elements within a single-version sweep and make
them dependent not on Did but on the number of implicitly broadcast elements.
Applying this reordering to our example, the resulting vertical broadcast is:

1x3 8x2 6 5 4x2 1x1 5 2

We can see that 4x2 and 1x1 belonging to version 2 switch their positions,
because we broadcast implicitly two 4s and only one 1. The idea is that we
broadcast first as “dense” data as possible, because when a client begins to
read the string it has higher chances to find the necessary data elements in
“more dense” data. Of course it works under assumption that client access data
uniformly, without distinguishing between “hot” and “cold” data.

In order to make our broadcast fully self-descriptive, we add all necessary
information about version number and data items. One of our design principles
has been to make the system flexible, allowing a client to understand the content
of a broadcast without requiring the client explicitly to be told of the organization
of the broadcast. For this purpose, we use four auxiliary symbols:

(Did), V (Vno), = (Assignment to Dval), ˆ (Number of repetitions)

Using these symbols, the sequential bcast for Horizontal broadcast discussed
above is fully encoded as

V0#0=1V1#0=1V2#0=1V3#0=1V0#1=8V1#1=8V2#1=8V3#1=5
V0#2=6V1#2=1V2#2=1V3#2=2V0#3=5V1#3=4V2#3=4V3#3=4

and for Vertical broadcast

V0#0=1#1=8#2=6#3=5V1#0=1#1=8#2=1#3=4V2#0=1#1=8#2
=1#3=4V3#0=1#1=5#2=2#3=4

V0,V1,V2 and V4 are the version numbers. They determine Vno of the data ele-
ments which follows it in the broadcast. #0=1 means the element having Did=0
of the corresponding version (broadcast before) is equal to 1. So, V0#0=1#1=8
means Dval[Did=0, Vno=0]=1 and Dval[Did=1, Vno=0]=8. Note that for Ver-
tical broadcast we do not need to include the version number in the broadcast
before each data element, but for Horizontal broadcast we have to do this. Be-
cause of this need of some extra auxiliary symbols, a Horizontal broadcast is
usually longer than its corresponding Vertical broadcast. However, given that
the size of an auxiliary symbol is much smaller (which is typically the case) than
the size of a data element, this difference in length becomes very small.

In the case of Compressed bcast, the symbol ˆ is used to specify that the fol-
lowing versions of a data item have the same value. The other auxiliary symbols
are also used to give a client the complete information about Did, Vno, and Dval
in a uniform format for both the compressed and uncompressed multiversion

Multiversion Data Broadcast Organizations 141

broadcast organizations. Returning to our example broadcasts, the compressed
Horizontal broadcast is encoded as:

V0ˆ3#0=1V1V2V3V0ˆ2#1=8V1V2V3ˆ0#1=5V0ˆ0#2=6V1ˆ1#2=1V2
V3ˆ0#2=2V0ˆ0#3=5V1ˆ2#3=4V2V3

whereas the compressed Vertical broadcast as:

V0ˆ3#0=1ˆ2#1=8ˆ0#2=6#3=5V1ˆ2#3=4ˆ1#2=1V2V3ˆ0#1=5#2=2

Considering the Vertical bcast as an example, let us clarify some details of
the broadcast. It starts from the version 0. First, it broadcasts the data elements
with the most repetitive versions. V0ˆ3#0=1ˆ2#1=8ˆ0#2=6#3=5 means that
versions 0,1,2,3 of data element 0 are 1, versions 0,1,2 of data element 1 are 8, ver-
sion 0 of data element 2 is 6, version 0 of data element 3 is 5. V1ˆ2#3=4ˆ1#2=1
means that versions 1,2,3 of data element 3 are 4 and versions 1,2 of data ele-
ment 2 are 1. We do not broadcast versions 1 of data elements 0 and 1 because
we broadcast them together with versions 0.

3.3 Discussion

We can roughly estimate the reduction of the broadcast length (and, conse-
quently, the broadcast time) due to our compression scheme. In order to repre-
sent the repetitiveness of data from one version to another in numerical form, we
introduce the Randomness Degree parameter, which gives the probability that
Dval[Did=k][Vno=i] is not equal to Dval[Did= k][Vno=i+1]. For instance, Ran-
domness Degree=0 means that Dval[Did=k][Vno=i]=Dval[Did=k][Vno=i+1] for
any i.

Obviously, the smaller degree of randomness the higher is the gain of this
scheme of broadcast. Hence we can expect that the broadcast of the data having
many “static” elements (for example, a cartoon clip with one-color background
or a stock index of infrequently traded companies, etc.) may improve “density”
of broadcast data. Naturally such compression works only in case we do have
the data elements which do not change every time interval. In other words, the
compression works if Randomness Degree is less than 1.

As an example, consider broadcast of the data with Randomness Degree=0.1.
Then in average out of 100 versions we have 10 versions with the values different
from the values of the previous versions and 90 versions repeating their values.
It means that instead of broadcasting 100 data values we broadcast only 10. We
can roughly estimate that overhead created by the auxiliary symbols will not
exceed 1 symbol per “saved” data item from the broadcast. Assuming, one data
item consumes 16 bytes and one auxiliary symbol consumes 1 byte, the gain is
100*16/(10*16+90*1)=6.4, which corresponds to 84% reduction of the broadcast
length. Similarly, the broadcast shrinks about 45%, for Randomness Degree=0.5
and about 9%, for Randomness Degree=0.9. These numbers do not depend on
whether broadcast is Vertical or Horizontal. However, the system behavior can
in fact depend on it, because the performance depends on when the desired data

142 Oleg Shigiltchoff et al.

is read. In the example presented, if a client wants to find a data element with
Did=3 and Vno=0, the Vertical broadcast reads only 3 data before it hits, and
the Horizontal broadcast reads 6 data elements. It is easy to find the opposite
example, so a question arises: Which organization is more preferable?

We would expect that different strategies would be more appropriate for dif-
ferent applications. If users require different versions of a particular data (for
example, the history of a stock index change), the horizontal broadcast is prefer-
able. If users need the most recent data (for example, the current stock indexes),
the vertical broadcast is supposed to be more efficient. In our experiment, we
study the performance of these two broadcast strategies under different workload
scenarios, that is client behaviors.

4 Client Access Behavior

Clients may have different tasks, and the way a client searches for data depends
on the task. The first way, called the Random Access, is used when a client wants
a randomly chosen data element. In this case the client requests pairs of random
Dids and random Vnos. The second way, called the Vertical Access, is used if
a client needs a specific version of some data elements. In this case, the client
requests one specific Vno and a few Dids, so all required data belong to one
version. The third way, called the Horizontal Access, is used if a client wishes
different versions of a specific data item. Then the client requests one Did and
a few corresponding Vno.

The client does not always know the data elements and their versions in
advance and a particular choice of data may depend on the value of the previously
found data. We call this type of client dynamic search client (in contrast, we call
static search client a client whose all its data needs are known before first tuning
into the broadcast). For dynamic search client, it is also possible to have three
different access patterns: Vertical, Horizontal and Random. For Vertical one,
the client requests a data item and its version. When found, it requests another
element of the same version. For Horizontal access, the client requests another
version of the same data item. For Random access, the client requests a new
data item and a new version every time.

In all the cases, a dynamic search client may find the new data element either
within the same broadcast as the previous data element or, with probability 50%,
it will need to search for the new data element in the next broadcast. In general,
in order to find n data elements, a dynamic search client needs to read roughly
2n/3 broadcasts. In other words, the access time for all access patterns depends
on number of broadcasts necessary for finding the elements. This is in contrast
with static search client where the access time is determined by the order the data
values are read within the same broadcast. As a result, all Random, Vertical and
Horizontal access patterns have roughly the same access time for dynamic search
client and so, the access pattern is not important anymore for the selection of the
type of the broadcast organization. Therefore, in our experiments we consider
only the behavior of static search clients with predetermined data needs.

Multiversion Data Broadcast Organizations 143

5 Experimental Testbed

The simulation system consists of a broadcast server, which broadcasts a spec-
ified number of versions of a set of data items, and a client which receives the
data. The number of data items in the set is determined by the Size parameter
and the number of versions by the Versions parameter. The communication is
based on the client-server mechanism via sockets. For simplicity the data values
are integer numbers from 0 to 9.

The simulator runs the server in two modes, corresponding to the two broad-
cast organizations, namely Vertical Broadcast and Horizontal Broadcast (deter-
mined by the Bcast Type parameter). The broadcast could be either Compressed
or basic Sequential (determined by the Compression parameter). The server gen-
erates broadcast data with different degree of randomness (from 0 to 1), which is
determined by the parameter Randomness Degree (the definition of Randomness
Degree was given in Section 3). The client searches the data by using three dif-
ferent access types: Random, Vertical and Horizontal (determined by the Access
Type parameter).

The client generates the data elements it needs to access (various versions
of data items) before tuning into the broadcast. The parameter Elements deter-
mines the number of the data elements to be requested by the client. For the
Random access, the data items and their versions are determined randomly to
simulate the case when all versions of all data items are equally important for
a client. For the Vertical and Horizontal accesses, the requested data elements
are grouped into a number of strides (determined by StrideN), each containing
l elements (determined by StrideL). (Clearly, StrideL*StrideN = Elements.) For
example, if StrideN=2 and StrideL=5, for Vertical access, the client searches for
two versions (determined randomly with uniform distribution) of 5 consecutive
data elements. For Horizontal access, the client tries to find 5 versions of 2 data
items (determined randomly with uniform distribution).

The client may tune in at any point in the broadcast, but it starts its search
for data elements at the beginning of the next broadcast. Thus, if a client does
not tune in at the beginning of a broadcast, it sleeps to wake up at the beginning
of the next broadcast which is determined by the next broadcast pointer in the
header of each bucket. A client reads a broadcast until all the desired data
elements are found. In this way, it is guaranteed that the desired data elements
are found within a single broadcast. While the client is reading, it counts the
number and type of characters it reads. This can be converted into Access Time
– the time elapsed between the time the client starts its search and until it
reads its last requested data element, given a specific data transmission rate.
In our study, access time is the measure of performance for both response time
and power consumption (recall we do not consider selective tuning in this paper,
hence a client stays in active mode throughout its search). The smaller the access
time, the higher the performance and the smaller the consumption of energy. We
assume that the auxiliary characters (#, =, ˆ , V, annotations) consume one time
unit and the data elements may consume 4, 16, 64 etc. time units, depending
on complexity of the data. The Length parameter is used to specify the size of

144 Oleg Shigiltchoff et al.

Table 1. Simulation Parameters

Parameter Values

Compression Basic Sequential broadcast
Compressed broadcast

Bcast Number Number of broadcasts

Bcast Type Vertical broadcast
Horizontal broadcast

Size Number of data items

Versions Number of versions

Randomness
Degree

0–1, (0: all versions have the same value, 1: versions are com-
pletely independent)

Length Size of a data element (size of an auxiliary symbol is 1)

Elements Number of the requested data items

Access Type Random access
Vertical access
Horizontal access

StrideN Number of the strides for Vertical/Horizontal accesses

StrideL Length of the strides for Vertical/Horizontal accesses

Tries Number of the same experiments to reduce deviations

data element. In the experiments reported in this paper, we have chosen Length
to be 16, which may correspond to 16 bytes.

In order to estimate confidence intervals we performed the measurements
80 times (parameter Tries). Then we calculate the average access time and the
corresponding standard deviation which are shown in our graphs. The discussed
parameters are summarized in Table 1.

6 Performance Results

In this section, we report on the results of our experiments that demonstrate the
applicability of our proposed two broadcast organizations and the advantages of
our compression technique.

The results presented in Figure 1 to Figure 3 are obtained for the Vertical
Broadcast organization and Random Access of the client.

As mentioned before, effectiveness of the Compressed Broadcast may depend
on size of the data elements on the broadcast (represented by Length parameter).
Figure 1 (Size=90, Elements=5, Tries=80, Randomness Degree=0.5, Vertical
Broadcast, Random Access) shows dependence of the access time on the size of
the data item for the Compressed and the Sequential server broadcasts. It is
quite obvious from the figure that the compression reduces the client’s access
time about 50% for any size of the data. (This can also be seen in Figure 2
for Randomness degree=0.5) The greatest gain in terms of absolute access time
occurs for the largest data sizes.

Multiversion Data Broadcast Organizations 145

Length
0 5 10 15 20 25 30 35

A
cc

es
s

T
im

e

0

5000

10000

15000

20000

25000

Sequential Bcast
Compressed Bcast

Fig. 1. Dependence of the access time
on the size of the data item

Randomness Degree
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

es
s

T
im

e

0

2000

4000

6000

8000

10000

12000

14000

Sequential Bcast
Compressed Bcast

Fig. 2. Compression performance for
different Randomness Degree

The main contributor to the performance improvement of compressed broad-
cast over a simple sequential broadcast may be how often we can save time by
not broadcasting a data element of a certain version if it has the same value as
the data element of the previous version. Intuitively and from simple estima-
tion we may see that the smaller Randomness Degree is, the greater gains are.
Figure 2 (Size=90, Elements=5, Tries=80, Length=16, Vertical Broadcast, Ran-
dom Access) confirms our estimations and the performance dependence of the
compression on the Randomness Degree. For Randomness Degree=0.0 one can
observe about 10 times improvement. When the versions become more different,
the performance of the compressed broadcast worsens, getting close to that of
the sequential broadcast as Randomness Degree approaches 1.

We should note that in the worst case (absolutely uncorrelated versions)
we could expect that overhead from the auxiliary information would degrade
the performance of our optimization. However, it has not been observed in any
of our simulation experiments. This is because we used simple data type and
even with Randomness Degree=1 some data elements have the same values for
adjacent versions. This happens because Randomness Degree determines only the
probability that two version values are not correlated but does not guarantee
that they are different. The experiment shows that the proposed compressed
scheme works best if the data do not change from one version to another every
time interval. However, even if they do change, the compressed broadcast just
converts to a simple sequential broadcast. The auxiliary symbols overhead is
so small that the fact that even at Randomness Degree=1 there exist some
data items for which the data values are the same for adjacent version numbers
(and so, we still have some minimal compression) is enough to have some minor
performance improvement. This is a situation to be expected in reality.

The dependence of the Access Time on the number of elements requested
(given by Elements parameter) is shown in Figure 3 (Size=90, Randomness

146 Oleg Shigiltchoff et al.

Elements
0 2 4 6 8 10

A
cc

es
s

Ti
m

e

2000

4000

6000

8000

10000

12000

14000

16000

Sequential Bcast
Compressed Bcast

Fig. 3. Performance for different number of searched elements

Degree=0.5, Tries=80, Length=16, Vertical Broadcast, Random Access). We can
see that at the beginning the increase of the number of elements requested leads
to significant increase of the access time, but later (for Elements higher than 4)
the access time increases more slowly. This behavior does not look very surprising
if we consider the access time as the time needed to search from the beginning of
a bcast to “the furthest data element”. The other requested date elements are “in
between” and are “picked up” on the way. As Elements increases, the place where
the last searched element was “picked up” shift towards the end of the broadcast
string, making the Access Time “saturated”. The important feature is that the
absolute difference between the access time for the compressed broadcast and
the sequential broadcast is the biggest for Elements higher than 4. However, the
relative difference stays approximately the same (about 2 times).

The results presented in Figure 1 to Figure 3 are obtained for the Vertical
Broadcast and Random Access only, but qualitatively the tendencies mentioned
are valid for all other broadcast organizations and access schemes. Figure 4 and
Figure 5 show the differences between these schemes.

Figure 4 (Size=10, Elements=20, Tries=80, Length=16, Vertical Broadcast)
shows the dependence of the Access Time on Randomness Degree when the
server uses the Vertical Broadcast, whereas Figure 5 (Size=10, Elements=20,
Tries=80, Length=16, Horizontal Broadcast) when the server uses the Horizontal
Broadcast. The main conclusion from Figure 4 is that for the Vertical Broadcast
the most efficient access scheme is the Vertical Access and the worst is the
Horizontal Access (about 1.5 times worse than the Vertical Access). The Random
Access is somewhere in between (about 1.4 times worse than the Vertical Access)
closer to the Horizontal Access. Figure 5 shows the opposite results. The best
scheme for the Horizontal Broadcast is the Horizontal Access, and the worst is
the Vertical Access (about 1.4 times worse than the Horizontal Access).

Multiversion Data Broadcast Organizations 147

Randomness Degree
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

es
s

Ti
m

e

0

500

1000

1500

2000

Vertical Access, Sequential Bcast
Random Access, Sequential Bcast
Horizontal Access, Sequential Bcast
Vertical Access, Compressed Bcast
Random Access, Compressed Bcast
Horizontal Access, Compressed Bcast

Vertical Bcast

Fig. 4. Vertical broadcast at different
Randomness Degree

Randomness Degree
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

es
s

T
im

e

0

500

1000

1500

2000

Vertical Access, Sequential Bcast
Random Access, Sequential Bcast
Horizontal Access, Sequential Bcast
Vertical Access, Compressed Bcast
Random Access, Compressed Bcast
Horizontal Access, Compressed Bcast

Horizontal Bcast

Fig. 5. Horizontal broadcast at differ-
ent Randomness Degree

These results are valid for both Compressed and Sequential Broadcasts. The
interesting feature is that for small values of Randomness Degree, it is more im-
portant for the performance whether the broadcast is Compressed or Sequential
than whether the access scheme “corresponds” to the broadcast. We can see on
the figures that for Randomness Degree less than 0.7 the Access Time for any
access type is smaller in the case of the Compressed Broadcast.But for Random-
ness Degree higher than 0.7, there are cases when the Sequential Broadcast with
“right” access scheme can beat the Compressed Broadcast with “wrong” access
scheme. Hence, in order to have the best performance, the broadcast organiza-
tion and access scheme should have “similar patterns”, either Vertical Broadcast
organization and Vertical Access, or Horizontal Broadcast organization and Hor-
izontal Access.

7 Conclusion

In this paper we showed that besides the size of a broadcast, the organization of
the broadcast has an impact on performance, as different kind of clients needs
different types of data. We recognized three kind of clients applications based
on their access behavior: “Historical” that access many versions of the same
data, “snapshot” that access different data of the same version and “browsing”
that access data and versions randomly. The performance of our proposed Com-
pressed and basic Sequential, Horizontal and Vertical broadcast organizations
was evaluated in terms of these three different kind of applications.

Specifically, if the primary interest of clients is “historical” applications, the
best way to broadcast is the Horizontal Broadcast. If the primary interest of
clients is “snapshot” applications, the best way to broadcast is the Vertical

148 Oleg Shigiltchoff et al.

Broadcast. In case of mixed environment it is possible to create adaptive broad-
cast with no extra cost due to flexibility of the broadcast format.

The suggested compression technique does not require extra time for client
side decompression and works for both Vertical and Horizontal broadcasts. The
auxiliary symbols overhead is small if the size of one data element significantly
exceeds a few bits. The effectiveness of a compressed broadcast depends on the
repetitiveness of the data. The less frequently data change, the better the gains
are. But even in the worst case (completely random data), the Compressed
broadcast does not exhibit worse performance than the Sequential broadcast.

Currently, we are evaluating the two broadcast schemes in the context of
broadcast disks. Further, we are developing caching schemes that integrate with
the different broadcast organizations.

Acknowledgments

This work was supported in part by the National Science Foundation award ANI-
0123705 and in part by the European Union through grant IST-2001-32645.

References

1. S. Acharya et al. Balancing Push and Pull for Data Broadcast. Proceedings ACM
SIGMOD Conference (1997) 183–194

2. S. Acharya, M. Franklin, and S. Zdonik Disseminating Updates on Broadcast Disks.
Proceedings 22nd VLDB Conference (1996) 354–365

3. S. Acharya et al. Broadcast Disks: Data Management for Asymmetric Communi-
cation Environments. Proceedings ACM SIGMOD Conference (1995) 199–210

4. S. Acharya, M. Franklin, and S. Zdonik Dissemination-based Data Delivery Using
Broadcast Disks. IEEE Personal Communications, 2(6) (1995) 50–61

5. J. Jing, A.H. Elmargarmid, S. Helal, and R. Alonso Bit-Sequences: An adaptive
Cache Invalidation Method in Mobile Client/Server Environment. ACM/Baltzer
Mobile Networks and Applications, 2(2) (1997) 115–127

6. T. Imielinski et al. Data on Air: Organization and Access. IEEE Transactions on
Knowledge and Data Engineering, 9, No. 3, (1997) 353–372

7. C. Mohan, H. Pirahesh, and R. Lorie Efficient and Flexible Methods for Tran-
sient Versioning to Avoid Locking by Read-Only Transactions. Proceedings ACM
SIGMOD Conference (1992) 124–133

8. E. Pitoura and P.K. Chrysanthis Scalable Processing of Read-Only Transactions
in Broadcast Push. Proceedings 19th IEEE Conference on Distributed Computing
Systems (1999) 432–439

9. E. Pitoura and P.K. Chrysanthis. Exploiting Versions for Handling Updates in
Broadcast Disks. Proceedings 25th VLDB Conference (1999) 114–125

10. J. Shanmugasundaram et al. Efficient Concurrency Control for Broadcast Envi-
ronments. Proceedings ACM SIGMOD Conference (1999) 85–96

11. S.W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, Cal-
ifornia Technical Publishing (1997)

12. K.-L. Wu, P.S. Yu, M.-S. Chen. Energy-Efficient Mobile Cache Invalidation. Dis-
tributed and Parallel Databases, 6 (1998) 351–372

	Introduction and Motivation
	System Model
	Broadcast Organization
	Basic Organization
	Compressed Organization
	Discussion

	Client Access Behavior
	Experimental Testbed
	Performance Results
	Conclusion

