
1

1
P2p, Spring 05

Topics in Database Systems: Data Management in Peer-to-Peer Systems

∆ιαδικαστικά

Αύριο, Τετάρτη 18 Μαΐου 12:00 – 13:00 Ομιλία σε
p2p
Ερώτηση: Τα δυο ποιο ενδιαφέροντα (κατά τη γνώμη σας)

ερωτήματα που έθεσε ο ομιλητής

“Feedback” για το άρθρο σας την επόμενη Τετάρτη 25/5, 3:00
– 6:00 αλφαβητικά

Την Παρασκευή (26/5) θα ανακοινώσω και την μερική σας
βαθμολογία – ελέγξτε αν μου έχετε στείλει όλες τις παρουσιάσεις

2
P2p, Spring 05

Topics in Database Systems: Data Management in Peer-to-Peer Systems

∆ιαδικαστικά

2 ακόμα Μαθήματα

24/5 και

31/5 ερωτήματα σε p2p

θα ανακοινώσω αύριο τις παρουσιάσεις για τις 24/5 (κάποιοι
παράγραφοι)

3
P2p, Spring 05

Topics in Database Systems: Data Management in
Peer-to-Peer Systems

Replication II

4
P2p, Spring 05

Replication Policy
How many copies

Where (owner, path, random path)

Update Policy
Synchronous vs Asynchronous

Master Copy

5
P2p, Spring 05

Replication II:

Epidemic Algorithms

6
P2p, Spring 05

Methods for spreading updates:

Push: originate from the site where the update
appeared

To reach the sites that hold copies

Pull: the sites holding copies contact the master site

Expiration times

2

7
P2p, Spring 05

Update at a single site

Randomized algorithms for distributing updates and driving
replicas towards consistency

Ensure that the effect of every update is eventually
reflected to all replicas:

Sites become fully consistent only when all updating
activity has stopped and the system has become quiescent

Analogous to epidemics

A. Demers et al, Epidemic Algorithms for Replicated Database
Maintenance, SOSP 87

8
P2p, Spring 05

Methods for spreading updates:

Direct mail: each new update is immediately mailed from its
originating site to all other sites

Timely reasonably efficient

Not all sites know all other sites

Mails may be lost

Anti-entropy: every site regularly chooses another site at random
and by exchanging content resolves any differences between them

Extremely reliable but requires exchanging content and resolving
updates

Propagates updates much more slowly than direct mail

9
P2p, Spring 05

Methods for spreading updates:

Rumor mongering:

Sites are initially “ignorant”; when a site receives a new update it
becomes a “hot rumor”

While a site holds a hot rumor, it periodically chooses another site
at random and ensures that the other site has seen the update

When a site has tried to share a hot rumor with too many sites that
have already seen it, the site stops treating the rumor as hot and
retains the update without propagating it further

Rumor cycles can be more frequent that anti-entropy cycles, because
they require fewer resources at each site, but there is a chance that
an update will not reach all sites

10
P2p, Spring 05

Anti-entropy and rumor spreading are examples of epidemic
algorithms

Three types of sites:

Infective: A site that holds an update that is willing to share is
hold

Susceptible: A site that has not yet received an update

Removed: A site that has received and update but is no longer
willing to share

Anti-entropy: simple epidemic where all sites are always either
infective or susceptible

11
P2p, Spring 05

How to choose partners

Consider spatial distributions in which the choice tends to favor
nearby servers

12
P2p, Spring 05

A set S of n sites, each storing a copy of a database

The database copy at site s ∈ S is a time varying partial function

s.ValueOf: K → {u:V x t :T}

where K is a set of keys, V a set of values, T a set of timestamps

T is totally ordered by <

V contains the element NIL

s.ValueOf[k] = {NIL, t} means that item with k has been deleted from the
database

Assume, just one item

s.ValueOf ∈ {u:V x t:T}

thus, an ordered pair consisting of a value and a timestamp
The first component may be NIL indicating that the item was deleted by the
time indicated by the second component

3

13
P2p, Spring 05

The goal of the update distribution process is to drive the system
towards

∀s, s’ ∈S: s.ValueOf = s’.ValueOf

Operation invoked to update the database

Update[u:V] s.ValueOf {r, Now{{})

14
P2p, Spring 05

Direct Mail

At the site s where an update occurs:

For each s’ ∈ S

PostMail[to:s’, msg(“Update”, s.ValueOf)

Each site s’ receiving the update message: (“Update”, (u, t))

If s’.ValueOf.t < t

s’.ValueOf ← (u, t)

The complete set S must be known to s

PostMail messages are queued so that the server is not delayed, but
may fail when queues overflow or their destination are inaccessible for
a long time

n (number of sites) messages per update

traffic proportional to n and the average distance between sites

15
P2p, Spring 05

Anti-Entropy
At each site s periodically execute:

For some s’ ∈ S

ResolveDifference[s, s’]

Three ways to execute ResolveDifference:

Push
If s.Valueof.t > s’.Valueof.t

s’.ValueOf ← s.ValueOf

Pull
If s.Valueof.t < s’.Valueof.t

s’.ValueOf ← s.ValueOf

Push-Pull
s.Valueof.t > s’.Valueof.t ⇒ s’.ValueOf ← s.ValueOf
s.Valueof.t < s’.Valueof.t ⇒ s.ValueOf ← s’.ValueOf

16
P2p, Spring 05

Anti-Entropy

Assume that

Site s’ is chosen uniformly at random from the set S

Each site executes the anti-entropy algorithm once per period

It can be proved that

An update will eventually infect the entire population

Starting from a single affected site, this can be achieved in time
proportional to the log of the population size

17
P2p, Spring 05

Anti-Entropy

Let pi be the probability of a site remaining susceptible after the i cycle
of anti-entropy

For pull,

A site remains susceptible after the i+1 cycle, if (a) it was susceptible
after the i cycle and (b) it contacted a susceptible site in the i+1 cycle

pi+1 = (pi)2

For push,

A site remains susceptible after the i+1 cycle, if (a) it was susceptible
after the i cycle and (b) no infectious site choose to contact in the i+1
cycle

pi+1 = pi (1 – 1/n)n(1- p)

Pull is preferable than push

18
P2p, Spring 05

Complex Epidemics: Rumor Spreading

There are n individuals initially inactive (susceptible)

We plant a rumor with one person who becomes active (infective),
phoning other people at random and sharing the rumor

Every person bearing the rumor also becomes active and likewise shares
the rumor

When an active individual makes an unnecessary phone call (the recipient
already knows the rumor), then with probability 1/k the active individual
loses interest in sharing the rumor (becomes removed)

We would like to know:

How fast the system converges to an inactive state (no one is
infective)

The percentage of people that know the rumor when the inactive state
is reached

4

19
P2p, Spring 05

Complex Epidemics: Rumor Spreading

Let s, i, r be the fraction of individuals that are susceptible,
infective and removed

s + i + r = 1

ds/dt = - s i

di/dt = si – 1/k(1-s) I

s = e –(k+1)(1- s)

An exponential decrease with s

For k = 1, 20% miss the rumor

For k = 2, only 6% miss it

20
P2p, Spring 05

Residue

The value of s when i is zero, that is, the remaining susceptible when the
epidemic finishes

Traffic

m = Total update traffic / Number of sites

Delay

Average delay (tavg) is the difference between the time of the initial
injection of an update and the arrival of the update at a given site
averaged over all sites

The delay until (tlast) the reception by the last site that will receive the
update during an epidemic

Criteria to characterize epidemics

21
P2p, Spring 05

Blind vs. Feedback

Feedback variation: a sender loses interest only if the recipient knows
the rumor

Blind variation: a sender loses interest with probability 1/k regardless
of the recipient

Counter vs. Coin

Instead of losing interest with probability 1/k, we can use a counter so
that we loose interest only after k unnecessary contacts

s = e- m

There are nm updates sent

The probability that a single site misses all these updates is (1 – 1/n)nm

Counters and feedback improve the delay, with counters playing a more
significant role

Simple variations of rumor spreading

22
P2p, Spring 05

Push vs. Pull

Pull converges faster

If there are numerous independent updates, a pull request is likely to
find a source with a non-empty rumor list

If the database is quiescent, the push phase ceases to introduce traffic
overhead, while the pull continues to inject useless requests for updates

Counter, feedback and pull work better

Simple variations of rumor spreading

23
P2p, Spring 05

Minimization

Use a push and pull together, if both sites know the update, only the
site with the smaller counter is incremented

Connection Limit

A site can be the recipient of more than one push in a cycle, while for
pull, a site can service an unlimited number of requests

Push gets better

Pull gets worst

24
P2p, Spring 05

Hunting

If a connection is rejected, then the choosing site can “hunt” for
alternate sites

5

25
P2p, Spring 05

Complex Epidemic and Anti-entropy

Anti-entropy can be run infrequently to back-up a complex
epidemic, so that every update eventually reaches (or is
suspended at) every site

26
P2p, Spring 05

Deletion and Death Certificates

Replace deleted items with death certificates which carry
timestamps and spread like ordinary data

When old copies of deleted items meet death certificates,
the old items are removed.

But when to delete death certificates?

27
P2p, Spring 05

Dormant Death Certificates

If the death certificate is older than the expected time
required to propagate it to all sites, then the existence of an
obsolete copy of the corresponding data item is unlikely

Delete very old certificates at most sites, retaining “dormant”
copies at only a few sites (like antibodies)

Two thresholds, t1 and t2

+ a list of r retention sites names with each death certificate (chosen
at random when the death certificate is created)

Once t1 is reached, all servers but the servers in the retention list
delete the death certificate

Dormant death certificates are deleted when t1 + t2 is reached

28
P2p, Spring 05

Anti-Entropy with Dormant Death Certificates

Whenever a dormant death certificate encounters an
obsolete data item, it must be “activated”

29
P2p, Spring 05

Spatial Distribution

The cost of sending an update to a nearby site is much lower that
the cost of sending the update to a distant site

Favor nearby neighbors

Trade off between: Average traffic per link and Convergence times
Example: linear network, only nearest neighbor: O(1) and O(n) vs uniform
random connections: O(n) and O(log n)

Issue: determine the probability of connecting to a site at distance
d
For spreading updates on a line, d- 2 distribution: the probability of
connecting to a site at distance d is proportional to d- 2

In general, each site s independently choose connections according to a
distribution that is a function of Qs(d), where Qs(d) is the cumulative
number of sites at distance d or less from s

30
P2p, Spring 05

Spatial Distribution and Anti-Entropy

Extensive simulation on the actual topology with a number of
different spatial distributions

A different class of distributions less sensitive to sudden
increases of Qs(d)
Let each site s build a list of the other sites sorted by their distances from s

Select anti-entropy exchange partners from the sorted list according to a
function f(i), where i is its position on the list

(averaging thee probabilities of selecting equidistant sites)

Non-uniform distribution induce less overload on critical links

6

31
P2p, Spring 05

Spatial Distribution and Rumors

Anti-entropy converges with probability 1 for a spatial
distribution such that for every pair (s’, s) of sites there is a
nonzero probability that s will choose to exchange data with s’

However, rumor mongering is less robust against changes in
spatial distributions and network topology

As the spatial distribution is made less uniform, we can
increase the value of k to compensate

32
P2p, Spring 05

Replication II:

A Push&Pull Algorithm

Updates in Highly Unreliable, Replicated Peer-to-Peer
Systems [Datta, Hauwirth, Aberer, ICDCS04]

33
P2p, Spring 05

Replication in P2P systems

Routing table
(route keys with prefix P to peer X)

Legend:

Peer X

Data store
(keys have prefix P)

stores data
with key

01 : 2
1 : 5

prefix 00

query(6, 100)

query(5, 100)

stores data
with key
prefix 00

01 : 2
1 : 3

stores data
with key
prefix 01

00 : 6
1 : 4

stores data
with key

0 : 6

stores data
with key
prefix 10

11 : 5
0 : 2

11 : 5

prefix 10

stores data
with key
prefix 11

10 : 4
0 : 6

"virtual binary search tree"

0

00 01 10 11

1

query(4, 100), found!

1 6 2 3 4 5

X

P

P:X

P-Grid

CAN

Unstructured P2P (sub-)
network of replicas

How to update them?

34
P2p, Spring 05

Updates in replicated P2P systems

P2P system’s search
algorithm will find a random
online replica responsible
for the key being searched.

The replicas need to be
consistent (ideally)

Probabilistic guarantee:
Best effort!

online
offline

35
P2p, Spring 05

Problems in real-world P2P systems

• All replicas need to be informed of updates.

• Peers have low online probabilities and quorum can not be
assumed.

• Eventual consistency is sufficient.

• Updates are relatively infrequent compared to queries.

• Communication overhead, latency and percentage of replicas
getting updates determine the critical metrics for performance.

Updates in Highly Unreliable, Replicated Peer-to-Peer
Systems [Datta, HauwirthAberer, ICDCS04]

36
P2p, Spring 05

Problems in real-world P2P systems (continued)

• Replication factor is substantially higher than what is assumed
for distributed databases.

• Connectivity among replicas is high.

• Connectivity graph is random.

Updates in Highly Unreliable, Replicated Peer-to-Peer
Systems [Datta, HauwirthAberer, ICDCS04]

7

37
P2p, Spring 05

Updates in Highly Unreliable, Replicated Peer-to-Peer
Systems [Datta, HauwirthAberer, ICDCS04]

Update Propagation combines

A push phase is initiated by the originator of the update
that pushes the new update to a subset of responsible peers
it knows, which in turn propagate it to responsible peers
they know, etc (similar to flooding with TTL)

A pull phase is initiated by a peer that needs to update its
copy. For example, because (a) it was offline (disconnected)
or (b) has received a pull request but is not sure that it has
the most up-to-date copy

Push and pull are consecutive, but may overlap in time

38
P2p, Spring 05

Algorithms

Push:
If replica p gets Push(U, V, Rf, t) for a new (U, V) pair

Define Rp= random subset (of size R*fr) of replicas known to p

With probability PF(t): Push(U, V, Rf U Rp, t+1) to Rp \ Rf

U item

V version

t (counter, similar to TTL)

Rf partial list of peers that have received the update

39
P2p, Spring 05

Selective Push

1

2

2

3
t

t

t+1

t+1

extra update message

avoid parallel redundant update:
messages are propagated only
with probability PF < 1 and to
a fraction of the neighbors

1

2

2
t

t
t+1

extra update message

avoid sequential redundant update:
partial lists of informed neighbors are
transmitted with the message

40
P2p, Spring 05

Algorithms

Strategy: Push update to online peers asap, such that later,
all online peers always have update (possibly pulled) w.h.p.

Pull:
If p coming online, or got no Push for time T

Contact online replicas

Pull updates based on version vectors

41
P2p, Spring 05

Scenario1: Dynamic topology

1 2

4
5

3

7

6 9

8

42
P2p, Spring 05

Scenario2: Duplicate messages

1 2

4
5

3

7

6 9

8

Necessary messages
Avoidable duplicates

Unavoidable (?) duplicates

8

43
P2p, Spring 05

Results: Impact of varying fanout

0

50000

100000

150000

200000

250000

300000

350000

400000

0 0.2 0.4 0.6 0.8 1

To
ta

l m
es

sa
ge

s
(u

nt
il

th
at

 ro
un

d)

F_aware

Sigma = 0.9
PF = 1
R_on[0] = 1000
F_r = *

F_r = 0.005
F_r = 0.01
F_r = 0.02
F_r = 0.05

How many peers learn
about the update

A limited fanout (fr) is sufficient to spread the update, since flooding is
exponential. A large fanout will cause unnecessary duplicate messages

44
P2p, Spring 05

Results: Impact of probability of peer staying online in consecutive
push rounds

0

10

20

30

40

50

60

70

80

90

100

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = *
PF = 1
R_on[0] = 1000
F_r = 0.01

Sigma = 1
Sigma = 0.95

Sigma = 0.8
Sigma = 0.7
Sigma = 0.5

Sigma (σ) probability of online peers staying online in consecutive push
rounds:

45
P2p, Spring 05

Results: Impact of varying probability of pushing

0

10

20

30

40

50

60

70

0 0.2 0.4 0.6 0.8 1

T
ot

al
 m

es
sa

ge
s/

R
_o

n[
0]

F_aware

Sigma = 0.9
PF = *
R_on[0] = 1000
F_r = 0.01

PF = 1
PF = 0.8

PF(t)=1-0.1t assuming t<10
PF(t) = 0.9^t
PF(t) = 0.7^t
PF(t) = 0.5^t

Reduce the probability of forwarding updates with the increase in the
number of push rounds

46
P2p, Spring 05

Related work

• Replication and updates in databases
– Centralized
– Fewer replicas, Infrequent ‘failures’
– Xerox Parc’ Bayou (frequent but brief network partitions)

• Group communication and lazy epidemic algorithms
– All participants known
– Faults are exception
– Bimodal multicast, Randomized Rumor Spreading

• Peer-to-peer systems
– Napster/Gnutella/Kazaa: No notion of updates
– Freenet: Propagate update downstream (no guarantees,

particularly for offline peers or network changes)
– OceanStore: Updates create new versions. 2-tier architecture

using inner-ring and secondary replicas (caches) for consistency. No
analysis. Since inner-ring uses Byzantine agreement protocol,
implicitly assumes limited number of peer failures.

47
P2p, Spring 05

CUP: Controlled Update Propagation in Peer-to-Peer
Networks [RoussopoulosBaker02]

PCX: Path Caching with Expiration

Cache index entries at intermediary nodes that lie on the path
taken by a search query

Cached entries typically have expiration times

Which items need to be updated as well as whether the interest
in updating particular entries has died out

CUP: Controlled Update Propagation

Asynchronously builds caches of index entries while answering
search queries

It then propagates updates of index entries to maintain these
caches

48
P2p, Spring 05

CUP: Controlled Update Propagation in Peer-to-Peer
Networks [RoussopoulosBaker02]

Every node maintains two logical channels per neighbor:

a query channel: used to forward search queries

an update channel: used to forward query responses
asynchronously to a neighbor and to update index entries that
are cached at the neighbor (to proactively push updates)

Queries travel to the node holding the item

Updates travel along the reverse path taken by a query

Query coalescing: if a node receives two or more queries for an item
pushes only one instance

All responses go through the update channel: use interest bits so it knows
to which neighbors to push the response

9

49
P2p, Spring 05

CUP: Controlled Update Propagation in Peer-to-Peer
Networks [RoussopoulosBaker02]

For each key K, node n stores

a flag that indicates whether the node is waiting to receive an
update for K in response to a query

an interest vector: each bit corresponds to a neighbor and is
set or clear depending on whether the neighbor is or is not
interested in receiving updates for K

a popularity measure or request frequency of each non-local
key K for which it receives queries

The measure is used to re-evaluate whether it is
beneficial to continue caching and receiving updates
for K

50
P2p, Spring 05

CUP: Controlled Update Propagation in Peer-to-Peer
Networks [RoussopoulosBaker02]

For each key, the authority
node that own the key is the
root of the CUP tree

Updates originate at the
root of the tree and travel
downstream to interested
nodes

Types of updates: deletes,
refresh, append

51
P2p, Spring 05

CUP: Controlled Update Propagation in Peer-to-Peer
Networks [RoussopoulosBaker02]

Handling Queries for K:

1. Fresh entries for key K are cached

2. Key K is not in cache

added and marked it as pending (to coalesce potential
bursts)

3. All cached entries for K have expired

Handling Updates for K:

An update of K is forwarded only to neighbors have registered interest
in K

Also, an adaptive control mechanism to regulate the rate of pushed
updates

52
P2p, Spring 05

CUP: Controlled Update Propagation in Peer-to-Peer
Networks [RoussopoulosBaker02]

Adaptive control mechanism to regulate the rate of pushed updates

Each node N has a capacity U for pushing updates that varies with its
workload, network bandwidth and/or network connectivity

N divides U among its outgoing update channels such that each channel
gets a share that is proportional to the length of its queue

Entries in the queue may be re-ordered

53
P2p, Spring 05

V. Gopalakrihnan et al, Adaptive Replication in Peer-to-Peer
Systems, ICDCS 2004

App-cache

Copies of the requested file are placed in the caches of all
servers traversed as the query is routed from the source to
the server that finally replies with the file

The LAR protocol

Two types:

replicas of files (contain the data itself are advertised on the
query path)

cache hints (caches of routing/index information to decide
which of the replicas to use during routing)
Cache entries: data item id, home address, a set of known replica
locations, LRU policy

