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Association with other people corrupts our character.
— Friedrich Nietzsche (1844–1900), In Thus Spoke

Zarathustra.

Abstract— The success of a P2P file-sharing network highly
depends on the scalability and versatility of its search mechanism.
Two particularly desirable search features are scope (ability to
find infrequent items) and support for partial-match queries
(queries that contain typos or include a subset of keywords).
While centralized-index architectures (such as Napster) can
support both these features, existing decentralized architectures
seem to support at most one: prevailing unstructured P2P pro-
tocols (such as Gnutella and FastTrack) deploy a ”blind” search
mechanism where the set of peers probed is unrelated to the
query; thus they support partial-match queries but have limited
scope. On the other extreme, the recently-proposed distributed
hash tables (DHTs) such as CAN and CHORD, couple index
location with the item’s hash value, and thus have good scope but
can not effectively support partial-match queries. Another hurdle
to DHTs deployment is their tight control of the overlay structure
and the information (part of the index) each peer maintains,
which makes them more sensitive to failures and frequent joins
and disconnects.

We develop a new class of decentralized P2P architectures.
Our design is based on unstructured architectures such as
gnutella and FastTrack, and retains many of their appealing
properties including support for partial match queries, and
relative resilience to peer failures. Yet, we obtain orders of
magnitude improvement in the efficiency of locating rare items.
Our approach exploits associations inherent in human selections
to steer the search process to peers that are more likely to have an
answer to the query. We demonstrate the potential of associative
search using models, analysis, and simulations.

I. INTRODUCTION

Peer-to-peer (P2P) networks have become, in a short period
of time, one of the fastest growing and most popular Internet
applications. As for any heavily used large distributed source
of data, the effectiveness of a P2P network is largely a function
of the versatility and scalability of its search mechanism.

Peer-to-peer networks came to fame with the advent of
Napster [21], a centralized architecture, where the shared
items of all peers are indexed in a single location. Queries
were sent to the Napster Web site and results were returned
after locally searching the central index; subsequent downloads
were performed directly from peers. The legal issues which led
to Napster’s demise exposed all centralized architectures to a
similar fate. Internet users and the research community sub-
sequently turned to decentralized P2P architectures, where the
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search index and query processing, as well as the downloads,
are distributed among peers.

Existing decentralized architectures can be coarsely parti-
tioned into two groups [26]: unstructured, where search is
blind (independent of the query or its context) and structured,
where search is routed. The P2P architectures that spawned
in Napster’s void, eventually surpassing it in popularity, are
unstructured. One of these architectures is Gnutella [13] under
which items are only indexed by the peer that cache them;
search can be resolved only by probing these peers; and peers
are probed using flooding (that typically cover about 1000
nodes).

Flooding is one example for a blind search method used in
unstructured networks and several others are evaluated in [26].
What is common to all of them is that on average, the success
likelihood of a search probe can not be better than that of prob-
ing random peers [26]; thus for each item, the average success
likelihood on a blind search probe is equal to the fraction of
peers that index it. The recent wave of FastTrack [32]-based
P2P architectures (Morpheus, Kazaa [18], [17]) incorporate
improved design that allows for more efficient downloads
(simultaneous from several peers and ability to resume after
failure); and improved search (by designating some peers as
search-hubs supernodes that cache the index of others).

A feature that undoubtedly contributes to the beaming
success of these decentralized unstructured architectures is
support for versatile (partial-match) queries: Shared items typ-
ically have meta-attributes describing their type and properties
(e.g., title, composer, performer); the search supports partial-
match queries that populate a subset of these fields and may
contain typos. Another important feature of these architectures
is their “loose” structure, with each particular peer being
relatively dispensible; what makes the network overlay more
resilient to failures and frequent joins and disconnects. On the
flip side, unstructured architectures lack an important feature
which Napster had offered: While popular items (current hit
movies) can be located and downloaded fairly efficiently, P2P
users seemed to have lost the ability to locate less-popular
items (60’s hits).

A different class of architectures proposed by the research
community is decentralized structured P2P architectures (such
as [30], [27], [28], [12]), commonly referred to as Distributed
Hash Tables (DHTs). With DHTs, peers are required to store or
index certain data items, not necessarily those items that these
peers have contributed or interested in. Additionally, some
hashing algorithm is used to identify the peers storing a given
data item. The connections between different peers are also a
function of the architecture. Thus, while DHTs can be very
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effective for applications where queries involve unique item
identifiers (e.g., P2P Web caching), they require that peers
store data for the “common good”; they incur much larger
overhead than “unstructured” architectures when peers fail
or leave the network; and inherently, they can not efficiently
support partial-match queries.

We propose a new class of decentralized P2P architectures
which we call associative overlays. We argue that associative
overlays retains the desirable properties of existing unstruc-
tured architectures, including being fully decentralized with
“loose” structure, and supporting partial-match queries, while
on the other hand, boost the efficiency of locating infrequent
items. Another appealing feature of our design is that we
do not require peers to maintain “arbitrary” data for the
common good: the data stored and actions performed by each
peer, including answering queries, have direct self benefit.
Associative overlays integrate the formation of the overlay
with the search process so that queries can be steered to peers
that are more likely to have an answer. Our basic premise,
which we substantiate in the sequel, is that peers that would
have been able to satisfy previous queries by the originating
peer are more likely candidates to answer a current query.

A. Guide-rules overlays and Guided Search

A central ingredient in our design is guided search, which
can be viewed as a middle ground between blind search used
by unstructured networks and the routed search deployed by
DHTs: Guided search provides a mechanism to focus the
search, that is, the relevance of the peers that the query is
propagated to, without tight control of the overlay and item
locations.

A guide rule is a set of peers that satisfy some predicate. The
set of peers belonging to some guide rule should contain data
items that are semantically similar, e.g., contain documents
that deal with the philosophy of science, or contain song titles
by the artist formerly known as Prince. The propagation of
guided-search queries is restricted to guide-rules specified by
the originating peer, and thus yields more effective search
probes. P2P architectures differ in how the search is prop-
agated. While previous architectures tailor the propagation
only to the query, the premise of guide-rules overlays is to
tailor the search to the originating peer, looking to exploit
presumed correlations between the answer to the current query
and previous requests that originated at the same peer.

The particular choice of the underlying set of guide-rules
is constrained by both “networking” aspects, which require
that the overlay has certain connectivity properties and can be
formed and maintained at low cost, and the “data mining”
aspects, which require that these rules meaningfully distill
common interests; and thus, restricting the propagation of the
query to peers within the guide rules of the originating peer
yields a more focused search. In Figure 1 we see a pictorial
example of the sets of peers associated with two overlapping
guide rules.

The guide-rules dictate the overlay structure in the sense that
each peer, for each guide rule it belongs to, maintains a small
list of other peers belonging to the same guide rule. Forming

and maintaining this overlay requires a simple mechanism for
peers to join a rule and identify other peers that participate
in the rule; our design integrates this mechanism with the
search process. For each rule, the overlay induced by peers
that participate in the rule “looks like” an unstructured network
and exhibits similar connectivity and expansion properties. The
search process within a rule mimics search in unstructured
networks, by essentially performing a blind search. On the
other hand, the search strategy of the originating peer has the
flexibility of deciding which guide rules, among those that the
originating peer belongs to, to use for a given search.

B. Possession rules

Guide rules can be defined on properties extracted automat-
ically (e.g., previous selections, set of shared items, favorite
genre’s) or specified by the user. We focus on automatically-
extracted guide rules of a very particular form, which we call
possession rules. Each possession rule has a corresponding
data item, and its predicate is the presence of the item in
the local index, thus, a peer can participates in a rule only
if it shares the corresponding item. Our underlying intuition,
taken from extensive previous research in the Data-Mining
and Text Retrieval communities (see, e.g.[16], [8], [7], [20],
[15]), is that, on average, peers that share items (in particular
rare items) are more likely to satisfy each other’s queries than
random peers. More precisely, search using possession-rules
exploits presence of pairwise co-location associations between
items.

Beyond the resolution of the search, possession rules pro-
vide an easy way to locate many other peers that share
the item. This feature is useful for distributing the load of
sending large files (parallel downloads are already practiced
in FastTrack networks), or locating alternative download sites
when a peer is temporarily swamped.

Guide
Rule 2

Guide
Rule 1

Fig. 1. Two guide rules.

Our design is consistent with selfish peer behavior as
participation of a peer in appropriate guide-rules serves dual
purpose: it boosts the effectiveness of search through the peer,
but also allows the peer to focus its own search process;
peers that do not participate in guide-rules can not search
more effectively than with blind search. In addition, processing
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of queries within a guide rule can help the peer update its
neighbors within the rule.

C. The RAPIER Algorithm.

Our first search algorithm, RAPIER, is based on the follow-
ing intuition: let the areas of interest for a given peer be A,
B, C, etc., randomly choose one of these areas of interest
and perform a blind search amongst those peers that also
have interest in this area. RAPIER (Random Possession Rule)
selects a possession-rule uniformly at random from the list of
previously-requested items by the querying peer.

Evidently, if there are no correlations between items,
RAPIER has no advantage over blind search. We use a two-
pronged evaluation of RAPIER: First, we use a simple intuitive
data model (the Itemset model) to learn how the effectiveness
of RAPIER grows with the amount of “structure” in the data.
Second, we evaluate RAPIER on actual data, using large
datasets of users accessing web sites. We obtained that RAPIER

performs significantly better than blind search, in particular,
it is orders of magnitude more effective in searching for
infrequent items.

D. The GAS Algorithm.

The random choice of a guide rule is clearly non-optimal.
Some guide rules may contribute much more to the probability
of a successful search than others. Unsuccessful searches also
contribute important information. For example, imagine that
we’ve already searched extensively in one area of interest, this
greatly increases the probability that the item being searched
for actually belongs to another area of interest. Thus, if we
had a probability distribution on the query being issued, we
could in principle find an optimal sequence of guide rules to
use. Note that both what guide rules and the order in which
they are probed is important.

We propose and evaluate a theoretically-grounded GAS

strategy (Greedy Guide Rule). Each peer constructs its own
GAS strategy by preferring to invoke rules that would have
been more effective on its past selections. The GAS strategy
(Greedy Guide Rule) approximates the strategy that would
have performed best on all previous queries. GAS incurs higher
overhead than RAPIER for building the search strategies, but
our simulations indicate that GAS strategies can substantially
improve over RAPIER search.

E. Structure of the rest of this paper.

In Section II we survey related work. Section III presents
models metrics and methodology and discusses performance
of blind search. Section IV develops the associative search
framework, presents RAPIER, and compares it to blind-search
using the Itemset model. Section V presents the GAS strategy.
Section VI contains simulation results of the performance of
different search strategies.

II. RELATED WORK

The effectiveness of blind search can be boosted by aggrega-
tion, that is, by peers summarizing the content available from

other peers and routing according to this information. Promi-
nent architectures in this category are the super-peer architec-
tures (e.g. [32]). Other proposed architectures use meta-data
and query keywords for the routing: With routing-indices [14]
each node stores a summary of meta-data keywords of files
on peers in its neighborhood along with the summaries of
its neighbors, and this information is used to route queries
to the neighbor(s) whose summary are the closest matches
to the query keywords. With Neurogrid [22], peers remember
all keywords of queries and responses passed through them
and use this information for routing other queries. These
architectures fundamentally differ from our approach in that
the information nodes accumulate and remember is not related
to their local content, queries are routed solely according to
the query keywords, and there is no use of the presence of
associations between items or between keywords. Caching of
responses and proactive replication are another mechanism that
can boost blind search (see, e.g.[12]); particularly when the
number of replicas of each item is careful balanced against
its query rate [11], [26]. The main drawbacks of aggregation,
caching, and proactive replication is increased sensitivity of
the system to malicious or selfish peer behavior, to spamming,
and to very dynamic peers. Associative overlays offer an
orthogonal way to boost search that could be combined with,
but does not require, aggregation or replication.

Associative overlays tackle a networking problem using
an approach that draws from extensive existing literature in
the field of data-mining. The unique challenges of the P2P
setting, however, make for fundamentally different issues than
in traditional data-mining applications. A related classic data-
mining problem is the Market-basket problem, which assumes
a large number of items and consumers that fill their baskets
with some subset of the items. This framework applies to many
domains of human activity including supermarket shopping
(customers vs items matrix), library checkouts (readers vs
books), document classification (word/terms vs documents
matrix), Web page hyperlinks (Web pages vs Web pages), Web
browsing (Users vs Web pages), and also to P2P networks
(peers vs items). Common to all these datasets is that item
placements in baskets are not independent. Thus, the data
has certain “latent” structure [16], [23], [5], [1]. Application
of Latent Semantic Analysis on such matrices (Pioneered
by [16] on Document× Word matrices) typically reveals a
“true” dimension that is significantly smaller from the actual
one, which suggests high correlations in the data. Another
mechanism to capture structure in such datasets is extracting
Association rules [2], [3]. An example of an association rule is
pairs of items that are often purchased together such as “Cham-
paign and Caviar” or “Beer and Diapers.” Such rules had been
used for marketing (e.g., placing Beer and Diapers next to
each other in the supermarket) and recommendation systems
(e.g., recommend books to customers based on previous book
purchases) [6], [19], [24], [4]. A computationally challenging
important subproblem is to discover association rules that have
high correlation but low support (e.g., the association rule
“Champaign and Caviar” that are rare purchases but are often
purchased together) [9].

Similarly to these data-mining techniques, we exploit the
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presence of associations; but the basic differences are imposed
by our highly distributed setting. Our solution does not (and
can not) explicitly obtain association rules but does heavily
utilize their presence. Instead of clustering peers into commu-
nities we restrict the search to be more focused on relevant
communities without explicitly identifying them.

Other recent proposals that exploit “interest locality” to op-
timize p2p search include [29], where an existing p2p network
is extended by nodes linking directly to nodes that satisfied
previous queries; This basic approach does not provide a
mechanism to “focus” query propagation beyond the first hop.
At the other end of the spectrum, PeerSearch [31], attempts to
import traditional vector space Information Retrieval (at the
cost of tightly controlled DHT overlay and communication
overhead).

III. MODEL AND EVALUATION METHODOLOGY

We represent the data present in the network by the peer-
item matrix D ∈ {0, 1}n×m where n is the number of peers,
m is the number of items, and Dij = 1 if and only if peer i
contains data item j.

We define the support set of the jth item Sj ⊆ {1, . . . , n},
1 ≤ j ≤ m, to be

Sj = {�|D�j = 1}.

I.e., Sj is the set of all row indices (peers) that contain data
item j. The joint support set of two items j, k,

Sjk = Sjk = {�|D�k = 1and D�j = 1} ,

is the set of peers that contain both items. We refer to Xi =
{j|Dij = 1} (the set of items associated with peer i) as the
index of peer i. We use the notation sj = |Sj |, sjk = |Sjk|,
and xi = |Xi|.

We define Wi = xi

|D| , where |D| =
∑n

i=1 xi is the combined
size of all indexes. An item j has low support (is “rare”) if
|Sj |/n is small. An item has low support with respect to the
weights if

∑
i∈Sj

Wi � 1.
We view the peer-item matrix as a current instantiation of

the data. We measure performance of different algorithms by
treating each “1” entry, in turn, as the most recent request:
For each peer i and item j such that Dij = 1, we refer to the
request that corresponds to the i, j entry as the query (i, j).
Each query triggers a search process, which depends on the
matrix D with the entry Dij set to 0 and on the peer i.1

The search process is a sequence of probes: when a peer is
probed, it attempts to match the query against its local index
using some algorithm. We assume that this algorithm is perfect
in the sense that a query of the form (i, j) can always (and
only) be resolved by a probe to peer that contains the item
j.2 The size of a search process is a random variable, and the
Expected Search Size ESSA

ij is the expectation of this random

1Note that the search sequence does not depend on j, as query properties
(such as meta-data terms) are not used to determine where to search. It is used
only as a stopping condition. See the introduction and conclusion sections for
a discussion on this issue.

2this simplification is justified as the matching issue of queries to appro-
priate items is present with other architectures and is orthogonal to the core
of our contribution.

variable. We compare different strategies by looking at all
queries (peer-item pairs with Dij = 1). We sweep a threshold
on the maximum value of the ESS, and look at the cumulative
fraction of queries (i, j) that have ESSij below a threshold.

A. Blind Search as Random Search

Following [11], [26] we model the performance of blind
search in “traditional” unstructured networks using the Ran-
dom Search model. The intuition of why this abstraction is
valid is that the set of probed peers on a query in unstructured
networks depends only on the overlay structure which is in-
dependent of the query or previous selections by the querying
peer. Thus, on average, the effectiveness of each probe can
not be better than that of probing a random peer.

We present two associative search algorithms: RAPIER and
GAS. We compare these algorithms to blind search and to
each other. However, we must ensure that we do not compare
apples and oranges. The algorithms RAPIER and GAS are
somewhat biased towards searching in peers with relatively
many items. Thus, comparing these algorithms to a blind
search that chooses peers uniformly at random would be unfair.
One might suspect that the advantages shown experimentally
are due to the choice of peers with many items, and does not
reflect any other property of these algorithms.

To avoid this potential pitfall, we consider weighted versions
of the random search model where hosts have different likeli-
hood of receiving a probe: Each peer i has a weight wi such
that

∑
i wi = 1, and the likelihood that a peer is visited in a

random search probe is proportional to wi. Weighted random
search is used as a benchmark for the performance of our
associative search algorithms. To obtain a fair comparison, we
need to consider weights that reflect the bias of the associative
search algorithms towards peers with larger index sizes.

We shall consider both of the following natural weighting
schemes:

• Uniform Random Search (URAND) where all peers are
equally likely to be probed (wi = 1/n). This models pure
blind search.

• Proportional Random Search (PRAND), where the like-
lihood that a peer is probed is proportional to the size
of its index wi = Wi ∝

∑m
j=1Dij . This models blind

search biased towards peers with larger indices. We will
show that this bias is exactly equal to the bias introduced
by RAPIER and thus differences in performance between
the two cannot be due to this bias.

With weighted random search, the size of the search for a
query (i, j) is a Geometric random variable. The ESS is the
mean of this random variable.

A weighted random search for item j by peer i has
likelihood of success in each probe

pij =

∑
k �=i wkDkj

1 − wi
.

and thus for any weighted random search algorithm A

ESSA
ij = p−1

ij =
1 − wi∑

k �=i wkDkj
.
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(The search is performed on all peers excluding peer i).
Thus, a URAND search for item j by peer i has

ESSURAND
ij =

n− 1∑
k �=iDkj

; (1)

and a PRAND search has

ESSPRAND
ij =

1 −Wi∑
k �=iWkDkj

. (2)

IV. ASSOCIATIVE SEARCH

We present the basic ingredients of our guide-rules overlay
framework, and present the RAPIER strategy as a concrete
instantiation of a search strategy on such overlays. A guide
rule is a set of peers whose index satisfies some predicate.
An example of a guide rule is possession-rule which tests the
presence of a certain item in the index. Peers that participate in
the same guide-rule form a sub-overlay that resembles a “tra-
ditional” unstructured network. The sub-overlays of different
rules can be overlapping. Search is conducted through guide
rules. Similarly to search in traditional unstructured networks,
it is propagated from peer to neighbors but propagation is
restricted to peers belonging to the selected guide rule. To
facilitate search, it is sufficient that each guide-rule sub-overlay
has similar properties to a traditional unstructured overlay
network: for each guide-rule it is associated with, a peer
needs to remember a small list of peers which belong to the
guide rule; and neighbors should be such that guided-search
reaches a large number of peers. The specifics can vary from a
Gnutella-like design where each peer has few viable neighbors
(Typical Gnutella number is 2-4) and many other peers can be
reached through them, to a FastTrack-like design where search
is facilitated through a core network of supernodes (in our
case supernodes are associated with guide-rules). The specifics
are orthogonal to our basic approach, we only need to make
sure that our selected guide rules are such that the underlying
unstructured network can form.

Search strategy: : A search strategy defines a search
process as a sequence of guide rule and extent of search within
each rule. For example: “search 100 peers that have item A
and 200 peers that have item B, if this is unsuccessful, then
search 400 more that have item A and 50 peers with item C,
. . . ” A search within each guide-rule is essentially “blind,” and
we model its performance the same way we model search in
unstructured network, using random search [11], [26].

Our general expectation is that the total number of guide
rules may be large, but a typical peer uses a bounded num-
ber of rules. The applicability of a specific set of guide-
rules depends on the implementability of the connectivity
requirement. This requirement has two parts, first there should
be a simple mechanism to locate a peer (and through it
other peers) that belong to the same guide rule. It is also a
requirement that this selection should result in large connected
components. Below we argue that possession-rules fill the first
part. As for large components, practice shows that simple
neighbor selection strategies of current P2P implementation
result in large connected components, and thus, we argue
that selections within a guide-rule are likely to result in large

components. (Random connections are known to yield large
components and apparently actual selections are “sufficiently
random” to obtain this property). In any case, the same issue of
obtaining large components exists in traditional unstructured
architectures and the connectivity algorithms deployed in these
networks can be adapted to our context. There is thus no need
to re-tackle this issue.

There is seemingly a major issue in that a peer in a guide-
rule network may keep track of many other peers, proportional
to the number of guide rules it belongs to. Our approach is to
limit the number of guide-rules that peers with very large index
can participate in. We also argue that we have no particular
reason to severely limit the number of neighbors: Unlike
DHTs, we do not incur maintenance costs when neighbors
go offline; we may discover it when trying to search through
these peers and may then remove them from our list following
one or more unsuccessful tries; replacements are easy to find
if at least some of the guide-rule neighbors are active. More
importantly, as our search process is guided, only a small
number of peers will have the search request conveyed to them.
The vertex induced subgraph induced by the peers in a guide
rule is a low degree network.

Possession-rule overlays are such that peers that index a
certain item should maintain a list of other peers which
index that item. This infrastructure is self-boosting: If peer-
A conducts a search for item i that is resolved by peer-B then
it is able to obtain through peer-B a list of other peers that
index item i. As a result, each peer has a neighbor list which
is an array of (item,peer) pairs for (most) items in its index.
Thus, for possession rules, the construction of the overlay is
symbiotic with the search process. When a disconnected peers
wishes to rejoin rules, it can do so by iterative searches for
items it has. At first, the search is blind, and thus can reveal
only the rules for more popular items; subsequent iterations
focus on rules found in previous iterations and thus reconnect
the peer to rules of related rarer items.

In the sequel, we assume that our network is a possession-
rule overlay. Each sub-overlay resembles an unstructured net-
work and we use the model of random search used in [11],
[26] to capture the performance of search within a rule.

A. RAPIER strategy

RAPIER is a simple search strategy that uses possession-
rules overlay. RAPIER search repeats the following until search
is successful or resource limits exceeded:

1) Choose a random item from your index.
2) Perform a blind search on the possession-rule for the

item to some predetermined depth.

Random selection of guide rule is particularly appealing
since it is highly insensitive to neighbors going offline. Even
though it is important to search within a rule, all rules that
apply to the user are equally important. Thus, the search can
be pursued even if a large number of neighbors on the list are
unreachable.

The main parameter we look at is the size of the search
which is the total number of peers probed. We model RAPIER

search by the following process: For a query for item j issued
by peer i, a column k is drawn uniformly from Xi \ {j} (the
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index of i excluding j). Then a peer r is drawn uniformly
from Sk \ {i}. The search is successful iff Drj = 1.

Thus, the likelihood of success for RAPIER per step is

pij = (xi − 1)−1
∑

k∈Xi\{j}

skj − 1
n− 1

.

and thus

ESSRAPIER
ij =

(xi − 1)(n− 1)∑
k∈Xi\{j}(skj − 1)

. (3)

B. RAPIER versus PRAND

As discussed earlier, search strategies may differ to the
extent that they utilize peers of different index sizes. RAPIER,
in particular, is more likely to probe peers with larger indices,
since such peers share items with a larger number of other
peers. The following Lemma relates the probing likelihood of
each peer under RAPIER and under PRAND.

Lemma 4.1: Averaged over queries, the likelihood that a
peer is probed under RAPIER is equal to Wi (its likelihood to
be probed under PRAND).

Proof: The likelihood that a particular item j is selected
as a guide rule is the sum, over all peers in i ∈ Sj , of the
likelihood that i issued a query to an item other than j times
the likelihood that j is selected by i. The likelihood that i
issued a query to an item is Wi, the item is other than j with
likelihood (xi − 1)/xi, and the likelihood that j is selected
given the above is 1/(xi − 1). Thus, the fraction of queries
that use possession-rule j is
∑

i∈Sj

Wi((xi − 1)/xi)(1/(xi − 1)) =
∑

i∈Sj

Wi/xi

=
∑

i∈Sj

1/|D| = sj/|D| .

The likelihood that a particular peer receives a search probe
is the sum, over items in its index Xi, of the likelihood that
the item constitutes a guide rule in a query not initiated by i
times the likelihood that i receives the probe. The likelihood
of a probe to item j not initiated by i is sj/|D| − Wi/xi =
(sj − 1)/|D|. The conditional probability that i receives the
probe is ((sj − 1)/|D|)/(sj − 1) = 1/|D|. The sum of this
over all items in Xi is xi/|D| = Wi. ✷

The Lemma suggests that it is fair to use PRAND as a
benchmark for RAPIER since per-search, they have the same
bias towards peers with larger index sizes. We compare the
performance of the two algorithms on the Itemset model and
using simulations.

C. The Itemsets model

Frequency and size distributions of items and peers are
reasonably-well understood. But even though these distri-
butions capture enough aspects of the data to evaluate the
performance of blind search, they do not capture correlations
that are necessary for evaluating associative search. Models
which capture correlations present in market-basket data and
Web hyperlink structure had been proposed [3], [24], [25].

We use one such model, the Itemsets model (which resembles
models in [3], [24]), to convey intuition why and when we
anticipate RAPIER to perform well on real data.

The Itemsets model partitions items into N sets (which we
refer to as itemsets). Each peer belongs to some subset of the
itemsets, and contains f fraction of items (picked uniformly
at random) in each itemset it belongs to.

Items in different itemsets are generally not correlated, and
items in the same itemset are correlated. Our expectation is
that if peers belong to many itemsets (at the extreme, all
peers have all itemsets), there is no advantage for RAPIER

over PRAND; however, we still expect RAPIER to perform
similarly to PRAND. When peers belong a to a small number of
itemsets we expect RAPIER to perform better; and we expect
this advantage to increase as the number of itemsets decreases.
We formalize this intuition below.

D. RAPIER is no worse than PRAND

We show that even when peers can belong to a large number
of itemsets, RAPIER performs at least as well as PRAND in the
following sense: for each queried item, the average over peers
of the per-probe success probability of RAPIER is always at
least as large as that of PRAND. Note that this does not imply
that the ESS is better per search or even that the average ESS

per query is better.3

Lemma 4.2: Consider a query issued for an item j. The
average success probability, over all peers in Sj , of a probe
picked by RAPIER is no smaller than the average success
probability of a probe picked by PRAND.
Proof: Let Y be the total number of (peer,itemset) pairs, and
let yi be the number of itemsets associated with peer i. Let
Bj be the set of peers that have itemset j. Let bj = |Bj | and
let bk∩j = |Bk ∩Bj | be the number of peers containing both
itemset k and itemset j. We denote by zj =

∑
i∈Bj

yi, the
sum of the “sizes” of peers that contain itemset j.

It is easy to see that for a query q, the success likelihood of
a PRAND probe is f · zq/Y . We now consider the success
likelihood of a RAPIER probe for item q. The likelihood
that the selected guide-rule is for an item in itemset j is
bq∩j/zq. The conditional probability of success in this case
is f · bq∩j/bj . Therefore the success likelihood of a RAPIER

probe for item q is
∑

j f · b2q∩j/(zqbj).
To complete the proof of the lemma we need to show that∑
j b

2
q∩j/(zqbj) ≥ zq/Y , and

∑
j b

2
q∩j/bj ≥ (zq)2/

∑
j bj .

By substituting zq =
∑

j bj∩q we obtain
∑

j

b2q∩j/bj ≥ (
∑

j

bj∩q)2/
∑

j

(bj) .

Equivalently,
∑

j

(bj)
∑

j

(b2q∩j/bj) ≥ (
∑

j

bq∩j)2.

Cauchy’s inequality states that (
∑
a2

j )(
∑
c2j ) ≥ (

∑
(ajcj))2.

Substituting aj =
√
bj , cj = bq∩j/

√
bj completes the proof.

✷

3the average ESS is the average, over peers, of the inverse per-probe success
probability which is not the same as the inverse of the average.
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E. Bounded number of itemsets per peer

Suppose that each peer belongs to exactly k itemsets4, and
these itemsets are independent or positively correlated, that is,
if p(x) is the fraction of peers belonging to itemset x, and
p(x ∩ y) is the fraction of peers belonging both to itemsets x
and y, then p(x ∩ y) ≥ p(x)p(y).

Lemma 4.3: Let D be a peers vs. items matrix generated
according to this restricted itemset model. Let x(�) be the
itemset of item � and let p(x(�)) be the fraction of the peers
that contain itemset x(�). Consider a query made to an item
�. Then the success probability of a PRAND probe is R� =
fp(x(�)) ; and the success probability of RAPIER probe is
C� = f

k + k−1
k R(�) = f

k (1 + (k − 1)p(x(�))).
It follows from Lemma 4.3 that the ratio of the ESS under

PRAND to the ESS under RAPIER for item � by any peer is
1

kp(x(�)) + k−1
k . Since p(x(�)) ≤ 1, RAPIER is always at least

as effective as PRAND in the restricted itemset model. When
p(x(�)) � 1/k, RAPIER is much more efficient than PRAND.

This simplistic model provides some intuition to when
RAPIER is more effective than PRAND: RAPIER benefits, when
users interests are more “focused” (small k) and for items in
rare itemsets (small p(x(�))).

The difference between PRAND and RAPIER is further
illustrated by considering itemsets that are equally popular,
that is, p(x) ≡ k/N , where N is the number of itemsets.
Substituting into the formula of Lemma 4.3 we obtain that the
success probability of the probe picked by PRAND is fk/N
and the success probability of a probe picked by RAPIER is
f
k + f(k−1)

N . We note that the success likelihood of PRAND

decreases to 0 with N whereas that of RAPIER is bounded by a
constant independent of N . The performance ratio between the
two algorithms is n/k2+(k−1)/k and thus RAPIER dominates
when k �

√
N . Our intuition says that N can be very large

on a large diverse human population, but k (the interest areas
of a single human being) is inherently bounded, thus, RAPIER

would perform better with large number of peers.

V. GAS: OPTIMIZING THE SEARCH STRATEGY

As mentioned above, for a given set of guide rules, it is clear
that RAPIER need not be optimal. In this section we describe
how one can optimize the search strategy, the sequence of
guide rules to be probed. We model the problem with a matrix
P ∈ Rm×m with one row per guide rule and one column
per data item, Pjk is the probability that for a uniformly
chosen random peer � belonging to guide rule j, contains
item k (D�k = 1). Note that P is not necessarily a stochastic
matrix (neither rows nor columns necessarily sum to one). The
matrix P will not be explicitly known, and instead, each peer
deploying a GAS strategy will use an estimate of a submatrix
with rows corresponding to guide-rules the peer participates
in and columns to items in its index; the entries are estimated
by deploying guided-searches. From here on the notation P
will correspond to the submatrix of a particular peer.

Let q =< q1, q2, . . . , qm > be a vector of probabilities
that sum to one. We interpret qi as the probability that the

4Similar results would hold when we assume that each peer belongs to at
most k itemsets

query is for item i and refer to q as the query distribution.
In general, we will not know the query distribution. Given a
query distribution, one can define the optimization problem
of finding the best search strategy for the distribution.5 This
optimization problem is studied in [10], which show that it
is NP-complete, but on the positive side, a simple GREEDY

strategy gives a worst-case constant approximation ratio; that
is, the average search time according to the sequence produced
by GREEDY is within a small constant factor of the average
search time that one can achieve with any other sequence.

The GAS strategy is obtained by applying GREEDY when
P and q are selected in a certain way. Similarly to RAPIER,
GAS is constructed by each peer and is based only on past
selections by that peer. In our simulations, for each peer, we
remove one item at a time from its index, build GAS based
on the remaining index, and then apply GAS to search for the
removed item.

Below we show how the GREEDY strategy can be con-
structed from P and q, but before that we explain how GAS

selects values for P and q.

A. Choosing P and q

Let Xi be the index of peer i. Let i� be the identity of the
�th item in Xi. We explain how peer i, searching for item j,
chooses q and P based on the items in Xi \{j}. GAS assigns
to the query vector q equal probabilities of qk = 1/(xi − 1)
for all items k ∈ Xi \ {j} (all other entries are 0).

The set of guide-rules we use (rows of the matrix P )
correspond to the items in Xi \ {j}. Let Pk be the guide-rule
that corresponds to the kth item in Xi \ {j}.

For each pair of items ik and i� in Xi \ {j} (ik �= i�) we
have Pk� = (siki�

− 1)/(sik
− 1), which is simply the success

likelihood of probing for i� according to possession-rule of
the item ik.

A heuristic that requires more explanation is that GAS sets
the “diagonal” entries to Pkk = 0 (instead to 1). This heuristic
is intended to circumvents over fitting: GAS uses the same set
of items to construct both the query and the guide-rules, and
diagonal entries of 1 would result in GREEDY obtaining a
search strategy of size at most the size of the index that is
not likely to perform well on the “removed” item ij . Setting
the diagonal to 0 is similar to valuing each guide-rule Pk

according to how well it performs on items other than ik.
The construction of a GAS strategy is more involved than

that of RAPIER strategy. The underlying set of guide-rules
is the same (possession-rules), and thus both are supported
by the same overlay; but the difference is that in order to
build a GAS strategy, the peer needs to collect information
on how well (a sample or all) of its guide-rule perform
on a sample or all) items in its index. This information
can be collected by conducting guided-searches to estimate
Pk� = (siki�

− 1)/(sik
− 1); that is, determine how effective

is each guide-rule in resolving each item. The accuracy of the

5We consider the problem for general query distributions. In the GAS

strategy, we start with a query distribution that is “uniform” over previous
“examples,” but this generality is crucial because we will be modifying the
query probability distribution as time goes by and unsuccessful searches have
been performed. The posteriori probabilities can be anything.
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estimate depends on the size of the search, but fortunately, the
analysis in [10] shows that for the purposes of obtaining a good
approximation with GREEDY, it is sufficient to estimate only
the “large” entries. This means that the first steps proposed
by the GAS strategy are likely to be more accurate than later
steps; and specifically this means that GAS is more likely to
be practical if its benefit can be reaped in the first few steps
of the search. In the next Section we evaluate the performance
of GAS aagainst other search algorithms. GAS then applies
GREEDY strategy with q and P , and obtain a search sequence
of possession-rules.

B. The GREEDY search sequence

We next explain how GREEDY computes the search strategy
from P and q. Let Pj be the j’th row of the matrix P above,
Pj =< Pj1, Pj2, . . . , Pjm >. We also denote by (v, u) the
inner product of v and u. Let 1̄ ∈ Rm denote the all-one
vector.

The search strategy is a multi-sequence of guide-rules (each
guide-rule can appear multiple times.) The GAS algorithm
computes its strategy by repeatedly finding the guide-rule j
which maximizes the likelihood of resolving a query drawn
from q, and then updating q to the corresponding posterior
distribution obtained if the query is not resolved after probing
the guide-rule j:

1) Find the index j which maximizes (Pj , q) =
∑m

k=1 Pjkqk.
Output j.

2) Compute q′ = (q′
1, q

′
2, . . . , q

′
m) where

q′
k =

qk(1 − Pjk)
1 − (Pj , q)

.

Set q ← q′.

C. Metrics

We compare different search strategies by a curve which
shows the expected fraction of queries that can be answered
using a search of a certain size. The calculation we use
for GAS assumes that q and P are obtained as described
above and that the respective sequence of guide-rules σ =
σ1, σ2, . . . , σ|σ| is produced using the GREEDY algorithm.
For an item ij and peer i we calculate Ek(i, ij) which is
the success likelihood of resolving the query (i, ij) using the
sequence σ1, σ2, . . . , σk.

Formally,

Ek(i, ij) = 1 − Πk
�=1(1 −

siσ�
,ij

− 1
siσ�

− 1
) .

is the success likelihood of the following process:
1) Set Success ⇐ False, � ⇐ 0.
2) While Success �= True and � < k:

a) � ⇐ � + 1.
b) Probe the possession-rule iσ� for ij . If successful set

Success ⇐ True.

log peers items (peer,item)
ATT (18 days, Nov 8-25,96) 432 4.4K 30K

Boeing-1 (1 day, March 1,99) 57K 46K 115K
Boeing-2 (1 day, March 2,99) 57K 46K 115K
Boeing-3 (1 day, March 3,99) 57K 45K 119K

TABLE I

DESCRIPTION OF THE DATA

VI. DATA AND SIMULATION RESULTS

The experimental evaluation requires index of a large num-
ber of peers. Unfortunately, peer-item data available from
currently active distributed P2P networks reflects the limited
ability to locate rare items, and Napster data is not publicly
available. We thus opted to use similarly-structured (“market-
basket”) data of Web proxy logs obtained from AT&T Re-
search and Boeing [33]; both sets of servers constitute lower-
level proxies serving end users. From each log we extracted the
matrix of users vs hostnames 6 and eliminated all singletons
(hostnames accessed by only one user and users that accessed
only one hostname), which resulted in about 3%-5% decrease
in the size of the matrix. Since the Boeing log was sanitized
on a daily basis we use each day separately. The resulting data
matrices are described in Table I. In the sequel, we refer to
users as peers and to hostnames as items.

As typical for such data, we observed high skew in both the
size of the index peers have (see Figure 2) and the support-
size of items (see Figure 3), with large fraction of peers having
small index sizes and large fraction of items being present at a
small fraction of peers. Figure 4 shows a cumulative fraction of
queries that are issued for items with small support; Although
60% of queries are issued to items whose support is over 0.01
of peers, the remaining 40% of queries target unpopular items.
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Fig. 2. Cumulative count of fraction of peers which have at most x items.
(ATT and Boeing logs), different days of the Boeing logs had almost identical
curves, and thus were omitted.

We evaluated the performance of 4 search algorithms.

• URAND, where the ESS was computed according to
Equation 1.

• PRAND, where the ESS was computed according to
Equation 2.

• RAPIER, where the ESS was computed according to
Equation 3.

• A hybrid of PRAND and RAPIER where each step is
50% likely to be according to RAPIER and 50% likely
to be according to PRAND. The success probability per
step is the mean of the two searches; thus this hybrid
provides “insurance” against long searches as the ESS on

6Another natural choice is the URLs vs users matrix, but URLs exhibit
very high correlations, that would lead to (perhaps artificially) very good
performance results for our algorithms, as each Web pages consists of multiple
URLs that are automatically fetched together. Aggregating to the hostname
(Web site) level may better reflect the “human factor” of the selection process.
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Fig. 4. Cumulative count of queries vs fraction of peers that have the result
(ATT and Boeing logs).

any particular query is at most twice that of the better
algorithm.

Due to the large size of Boeing matrix, we computed
performance on a sample of the queries. We took a random
sample of 1800 items and computed search performance,
across all peers, on queries issued to one of these items (we
had total of 53K queries). The results of the simulations are
shown in Figures 5 (Boeing day-3 - results for other days
were very similar) and Figure 6 (ATT data). The figures show
a cumulative fraction of queries that have ESS below a certain
threshold. They show the performance for items across support
levels and also focus on items that have lower support (occur in
the index of at most 10−2-10−4 of peers). The figures show
that URAND is the worst algorithm out of the 4. The ESS

of URAND on an item is the inverse of its fraction of peers
that index it, thus, when focusing on items occurring in at
most 10−4 of users, the respective ESS is over 10K, and the
URAND curve coincides with the x-axis. The PRAND strategy
that prefers peers with larger index sizes manages to see more
items in each probe and performs considerably better than
URAND, across items of different support levels. On the ATT
dataset, each URAND search saw on average index size of
69 per probe whereas RAPIER and PRAND saw 205 items in
each probe (recall that averaged over searches, RAPIER and

PRAND have the same visit rate to each peer and thus the same
average index size seen per probe). Similarly, the respective
averages on the Boeing datasets, were 21 for URAND and 133
for PRAND and RAPIER.

We observe that RAPIER, which has the same bias towards
peers with larger index as PRAND, outperform PRAND; more-
over, the performance gap is significantly more pronounced
for items with low support. This indicates strong presence
of the semantic structure RAPIER is designed to exploit; and
also emphasizes the qualitative difference between RAPIER

and aggregation-based search strategies.

We also observe that the performance gap between RAPIER

and PRAND is larger for the Boeing dataset than in the ATT
dataset; this is explained by the much larger number of peers
in the Boeing data which allows the existence of items with
very low support.

For a typical Gnutella search size, estimated to cover about
1000 peers, the simulations on the Boeing dataset show that
RAPIER covers 52% of queries made to items that are present
on at most 10−4 fraction of peers, whereas PRAND covers
only 14% of queries. Out of all queries, RAPIER covers 95%
and PRAND covers 90%. On a smaller search size of a 100,
RAPIER and PRAND, respectively, cover 30% and 1.3% of
items with support below 10−4 fraction of peers, and cover
90% and 80% of all items. For search sizes where PRAND

covers most queries, RAPIER obtains about half the failure
rate of PRAND.

We next describe an evaluation of GAS against the 4
other search strategies. Our evaluation of GAS required us to
compute the joint support of all pairs of items a peer has. We
thus took a random sample of 866 peers that had index sizes
between 20 and 30. The sample involved 5K distinct items,
147K distinct pairs of items that shared at least one peer, and
21K queries. We calculated the performance of each of the
search strategies for all queries issued by the sampled peers;
but used the complete matrix (all peers and their indexes) in
each calculation. This simulation is more restrictive than the
previous one since it focuses only on peers of certain sizes.
The results, which are shown in Figure 7, however, show
similar performance gaps to what we observed earlier for the
4 strategies across all peers. The figures also show that GAS

is much more effective than RAPIER for small-size searches
but if the query is not resolved then it has no advantage in
subsequent steps. The reasoning for this behavior is that the
GAS strategy tends to converge; after many steps it iterates
between a small number of guide-rules; queries that are not
effectively covered by this small set of guide-rules have a
better bet of getting covered by the broader selection of guide-
rules provided by RAPIER.

As discussed in Section V, GAS is considerably more
involved than RAPIER, but the results suggest that most of the
benefit of GAS is reaped on the first few probes (small search
size). This suggests that a hybrid strategy that first applies
GAS with a small-size search then (if needed) continues with
RAPIER with a larger-size search can be effective.
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Fig. 5. Search performance on items that are available from a fraction (1e-4, 1e-3, 1e-2, all) of peers (Boeing-Day3 log).
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Fig. 6. Search performance on items that are available from a fraction (10e-2, all) of peers (ATT log).

VII. CONCLUSION AND FUTURE WORK

We argued that associative overlays retain the advantages
of unstructured architectures (such as gnutella and FastTrack);
including relative insensitivity to peer failures and support
for partial-match queries; but can offer orders of magnitude
improvement in the scalability of locating infrequent items.
Our design exploits presence of associations in the underlying
data. Such associations were previously exploited for Web
search, Data-mining, and collaborative filtering applications,

but the techniques were not portable to the P2P setting which
requires simple, resilient, and fully decentralized protocols.
Our approach can be viewed as maintaining the essence of
these techniques while striking a balance with the challenges
of the P2P setting.

We showed that RAPIER, the simplest search strategy on
possession-rule overlays, can dramatically increase the effec-
tiveness of search for rare items over that of plain unstruc-
tured networks. It is likely that better search performance on
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Fig. 7. Search performance for a sample of peers with index sizes between 20-30, on items that are available from a fraction (1e-4, all) of all peers
(Boeing-Day1 log).

possession-rule overlays can be achieved by preferring rules
that correspond to recently acquired items or rules where the
meta data of the corresponding items is more related to the
query terms.

The more involved GREEDY strategy offers a more fine-
tuned search by approximating the strategy that would have
performed best on previous queries. Its design uncovers the
more effective guide rules and takes into account dependencies
in the coverage of different rules. We observed that GREEDY

outperforms RAPIER but constructing it incurs overhead of
performing “test”searches.
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