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ABSTRACT
This paper presents the design of Mercury, a scalable pro-
tocol for supporting multi-attribute range-based searches.
Mercury differs from previous range-based query systems in
that it supports multiple attributes as well as performs ex-
plicit load balancing. To guarantee efficient routing and load
balancing, Mercury uses novel light-weight sampling mech-
anisms for uniformly sampling random nodes in a highly
dynamic overlay network. Our evaluation shows that Mer-
cury is able to achieve its goals of logarithmic-hop routing
and near-uniform load balancing.

We also show that Mercury can be used to solve a key
problem for an important class of distributed applications:
distributed state maintenance for distributed games. We
show that the Mercury-based solution is easy to use, and
that it reduces the game’s messaging overheard significantly
compared to a näıve approach.

Categories and Subject Descriptors
E.1 [Data Structures]: Distributed data structures

General Terms
Algorithms, Measurement

Keywords
Range queries, peer-to-peer systems, distributed hash ta-
bles, load balancing, random sampling

1. INTRODUCTION
Much recent work on building scalable peer-to-peer (P2P)

networks has concentrated on Distributed Hash Tables or
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DHTs [22, 23, 25]. DHTs offer a number of scalability ad-
vantages over previous P2P systems (e.g., Napster, Gnutella,
etc.) including load balancing and logarithmic hop routing
with small local state. However, the hash table or “exact
match” interface offered by DHTs, although fruitfully used
by some systems [5–7], is not flexible enough for many ap-
plications. For example, it is unclear how DHTs could be
modified to regain the highly desirable flexibility offered by
keyword-based lookups of file-sharing applications.

The main contribution of this paper is the design and
evaluation of Mercury, a scalable routing protocol for sup-
porting multi-attribute range queries. In our model, each
query is a conjunction of ranges in one or more attributes.
The attributes not present in the query are assumed to be
wildcards. We believe that range queries significantly en-
hance search flexibility in a number of scenarios. In addi-
tion to being useful for answering user queries, we find that
range-based queries can also be useful in the construction of
distributed applications.

A number of recent systems [11,12,16] have proposed dis-
tributed protocols which support range-based queries. Mer-
cury mainly differs from these systems since it supports
multi-attribute range-based queries and explicit load bal-
ancing.

There are two main components of Mercury’s design. First,
Mercury handles multi-attribute queries by creating a rout-
ing hub for each attribute in the application schema. Each
routing hub is a logical collection of nodes in the system.
Queries are passed to exactly one of the hubs corresponding
to the attributes that are queried, while a new data item is
sent to all hubs for which it has an associated attribute. This
ensures that queries retrieve all relevant data items present
in the system.

Second, for supporting range queries, Mercury organizes
each routing hub into a circular overlay of nodes and places
data contiguously on this ring, i.e., each node is responsi-
ble for a range of values for the particular attribute. While
the notion of a circular overlay is similar in spirit to some
existing DHT designs, due to our choice to support range
queries by placing data contiguously, we cannot use ran-
domizing hash functions for placing data. This requirement
introduces a fundamental challenge: because Mercury can-
not use hash functions, data partitioning among nodes can
become non-uniform (as we explain in Section 3.2), thus,
requiring an explicit load-balancing mechanism. However,
the load-balancing mechanism is fundamentally incompati-



ble with many of the techniques that DHTs use to guarantee
routing efficiency.

The solution to the above challenges forms the core con-
tribution of this paper. Some of the interesting algorithms
in Mercury include:

• A message routing algorithm that supports range-based
lookups within each routing hub in O(log2 n/k) hops
when each node maintains k links to other nodes.

• A low-overhead random sampling algorithm that al-
lows each node to create an estimate of system-wide
metrics such as load distribution.

• A load-balancing algorithm (which exploits the ran-
dom sampling algorithm) that ensures that routing
load is uniformly distributed across all participating
nodes.

• An algorithm for reducing query flooding by estimat-
ing how selective each of the predicates in a query is,
based on past database insertions.

In addition to describing the design of Mercury, we also
explore how the added flexibility provided by range query
lookups can simplify the state management task for dis-
tributed games. We show that, using a range query based
publish-subscribe [2, 3] system built on top of Mercury, we
can provide efficient and scalable dissemination of distributed
state updates. We believe that a range query significantly
enhances the application’s ability to precisely express its in-
terests.

The remainder of the paper is organized as follows. In the
next section, we compare Mercury to related work in this
area. Section 3 details the basic Mercury protocol for rout-
ing data-records and queries. Section 4 presents enhance-
ments which improve the performance of the basic protocol.
In Section 5, we evaluate the scalability and load-balancing
properties of the Mercury system. In Section 6, we present
the design of our publish-subscribe system, and proof-of-
concept distributed game. Finally, Section 7 concludes.

2. RELATED WORK
In this section, we compare and contrast our approach

to implementing range queries with that of related systems.
Our discussion focuses on two fundamental questions:

. Can we use existing DHTs as building blocks to imple-
ment range query predicates?

. How is our design different from other systems like
SkipNet [11], etc., which also provide rich query sup-
port?

Using existing DHTs for range queries
A large number of distributed hash table designs [11,22,23,
25] have been proposed over the past few years. They pro-
vide a hash table interface to the application, viz., insert(key,
value) and lookup(key) primitives. Recent research [4,
10] has shown that, in addition to the basic scalable rout-
ing mechanism, DHTs offer much promise in terms of load
balancing, proximity-based routing, static resilience, etc.
Hence, it is a natural question to ask if we could implement
range queries using just the insert and lookup abstractions
provided by DHTs.

Our analysis, based on analyzing possible strawman de-
signs using DHTs, indicates that the abstractions provided
by a DHT are not enough for implementing range queries.
Fundamental to our argument is the fact that all existing
DHT designs use randomizing hash functions for inserting
and looking up keys in the hash table. While hashing is cru-
cial for DHTs in order to get good load balancing properties,
it is also the main barrier in using a DHT for implementing
range queries. This is because the hash of a range is not
correlated to the hash of the values within a range. Hence,
it is necessary to create some artificial correlation between
ranges and values which is invariant under hashing.

One natural way to achieve this is to partition the value
space into buckets and map values and ranges to one or more
buckets. A bucket forms the lookup key for the hash table.
Then, a range query can be satisfied by simply performing
lookups on the corresponding bucket(s) using the underlying
DHT. However, this scheme has several fundamental draw-
backs. It requires the application to perform the partitioning
of space a priori. This can be very difficult or even impos-
sible for many applications, e.g., partitioning of file names.
Moreover, load balancing and query performance is highly
dependent on the way partitioning is performed. For exam-
ple, if the number of buckets is too small, i.e., the partition
is too coarse, queries will get mapped to a smaller set of
nodes creating load imbalance. Increasing the number of
buckets, on the other hand, will increase the routing hops
required to answer a range query.

This indicates that while a DHT-based scheme may not be
an impossibility, its implementation is likely to be awkward
and complicated. By avoiding randomizing hash functions,
Mercury seeks to remove this difficulty. At the same time,
we also note that the design of Mercury is inspired from and
similar in many respects to existing DHT designs. Hence,
we believe that it can easily build upon recent advances in
proximity-based routing and achieving resilience in DHTs
[10].

Comparison with systems supporting rich queries
In this section, we compare Mercury against recent systems
which offer rich query support. These include SkipNet [11],
PIER [12] and DIM [16].

The SkipNet DHT organizes peers and data objects ac-
cording to their lexicographic addresses in the form of a vari-
ant of a probabilistic skip list. It supports logarithmic time
range-based lookups and guarantees path locality. Mercury
is more general than SkipNet since it supports range-based
lookups on multiple-attributes. Our use of random sampling
to estimate query selectivity constitutes a novel contribu-
tion towards implementing scalable multi-dimensional range
queries. Load balancing is another important way in which
Mercury differs from SkipNet. While SkipNet incorporates
a constrained load-balancing mechanism, it is only useful
when part of a data name is hashed, in which case the part
is inaccessible for performing a range query. This implies
that SkipNet supports load-balancing or range queries – not
both.

One might argue that the query-load imbalance in Skip-
Net can be corrected by using virtual servers as suggested
in [21]. However, it is unlikely to help in this regard for
the following reason: for effective load-balancing, the num-
ber of virtual servers needed must be proportional to the
skew (ratio of max to min) in the load. The scheme pro-



posed in [21] assumes that the load skew results from the
standard deviation of random hash function distributions,
which is typically very small (O(log n), see [1]). However, in
our case, the skew results from differences in query workload,
which can grow quite large. Hence, larger number of virtual
servers would be required increasing routing hops by about
log(s) where s is the skew. Moreover, the scheme would
fare even worse for range lookups since it would increase the
number of distinct nodes accessed for processing the query
by O(s).

The DIM data structure [16] supports multi-dimensional
range queries by embedding them into a two-dimensional
space and using a geographic routing algorithm. However,
the routing cost scales only as O(

√
n), which while reason-

able in a medium-sized sensor network, is quite expensive
for larger scales. Furthermore, the “volume expansion” that
occurs while projecting from higher dimensions onto two-
dimensions can be quite large resulting in more flooding of
the query. Also, queries containing wildcards in certain at-
tributes get flooded to all nodes. On the other hand, Mer-
cury, like most databases, uses query selectivity mechanisms
to route through the attribute hubs of highest selectivity
thereby significantly reducing flooding for queries contain-
ing only a few attributes.

The PIER system is a distributed query engine based on
DHTs. While PIER provides support for some types of rich
queries, such as equi-joins, it is unclear how to extend PIER
to support efficient resolution of queries containing range-
based predicates.

All the above systems and recent work on balancing load
in such systems [1,21] treat load on a node as being propor-
tional to the range of identifier values the node is responsible
for. In other words, they assume a uniform data distribution
which is sensible for DHTs which use cryptographic hashes.
Mercury, on the other hand, defines load on a node as the
number of messages routed or matched per unit time, and
supports explicit and flexible load balancing.

We note that Mercury uses a leave-join style load balanc-
ing algorithm that is similar to [21]. Karger and Ruhl [13] as
well as Ganeshan et. al. [8] have concurrently proposed sim-
ilar leave-join based load balancing mechanisms. The pro-
tocol described in [13] is randomized and requires commu-
nication with log n random nodes in the system. Ganeshan
et. al. propose a deterministic protocol which requires the
maintenance of skip graph overlays. In the face of skewed
node range distributions (which any load balancing protocol
will yield), these tasks are far from trivial, and a significant
part of the Mercury protocol is aimed at addressing this dif-
ficulty. In general, many approaches to diffusion-based dy-
namic load balancing [9] require information about the dy-
namic distributed network that is hard to obtain, in order to
make informed decisions. Instead, Mercury uses light-weight
sampling mechanisms to track load distribution within the
overlay.

3. MERCURY ROUTING
In this section, we provide an overview of the basic Mer-

cury routing protocol. Although the protocol as described
in this section is similar in spirit to existing structured over-
lay protocols (e.g., Chord, Symphony, etc.), we present it
for completeness. At the same time, it is important to note
that it works well in only a limited set of conditions. In Sec-

tion 4, we significantly extend this basic routing protocol to
work for a wider set of operating points.

3.1 Data Model
In Mercury, a data item is represented as a list of typed

attribute-value pairs, very similar to a record in a rela-
tional database. Each field is a tuple of the form: (type,
attribute, value). The following types are recognized:
int, char, float and string.1

A query is a conjunction of predicates which are tuples
of the form: (type, attribute, operator, value). A dis-
junction is implemented by multiple distinct queries. Mer-
cury supports the following operators: <, >,≤,≥ and =.
For the string type, Mercury also permits prefix and post-
fix operators. Figure 1 presents an example.

x−coord = 50
y−coord = 100
player = "john"
team = "topgunz"

float
float

string
int score = 76

string
float
string
int

x−coord < 53float 
x−coord > 34
player = "j*"
score = "*"

   QueryData

Figure 1: Example of a data item and a query as
represented in the Mercury system.

3.2 Routing Overview
Mercury supports queries over multiple attributes by par-

titioning the nodes in the system into groups called attribute
hubs. This partition is only logical, i.e., a physical node can
be part of multiple logical hubs. Each of the attribute hubs
is responsible for a specific attribute in the overall schema.
Hubs can be thought of as orthogonal dimensions of a multi-
dimensional attribute space. The first routing hop deter-
mines which dimension to route through. The rest of the
routing is unidimensional and is based on the values of a
single attribute of the data item. We note that this mech-
anism does not scale very well as the number of attributes
in the schema increase and is suitable only for applications
with moderate-sized schemas.

To simplify the description, we will use the following nota-
tion: let A denote the set of attributes in the overall schema
of the application. AQ denotes the set of attributes in a
query Q. Similarly, the set of attributes present in a data-
record D is denoted by AD. We use the function πa to
denote the value (range) of a particular attribute a in a
data-record (query). We will denote the attribute hub for
an attribute a by Ha.

Nodes within a hub Ha are arranged into a circular over-
lay with each node responsible for a contiguous range ra of
attribute values. A node responsible for the range ra re-
solves all queries Q for which πa(Q) ∩ ra 6= φ(= {}), and it
stores all data-records D for which πa(D) ∈ ra. Ranges are
assigned to nodes during the join process.

Routing Queries and Data-Records
Queries are passed to exactly one of the hubs correspond-
ing to the attributes that are queried. In other words, a

1Our basic data types are sortable, enabling us to define nu-
meric operations (addition and subtraction) on them. Care
needs to be taken when handling string attributes.



query Q is delivered to Ha, where a is any attribute chosen
from AQ. We will see in Sections 4.3 and 5.4 that although
choosing any attribute hub suffices for matching correctness,
substantial savings in network bandwidth can be achieved if
the choice is done more intelligently using query selectivity.
Within the chosen hub, the query is delivered and processed
at all nodes that could potentially have matching values.

To guarantee that queries locate all the relevant data-
records, a data-record D, when inserted, is sent to all Hb

where b ∈ AD. This is necessary because the set of queries
which could match D can arrive in any of these attribute
hubs. Within each hub, the data-record is routed to the node
responsible for the record’s value for the hub’s attribute.

Notice that we could have ensured correctness by sending
a data-record to a single hub in AD and queries to all hubs in
AQ. At first glance, this might appear to be a better choice
since data-records could be much bigger in size than queries
and replicating them might be more expensive. However, re-
call that a query can get routed to multiple locations within
each hub depending on its selectivity. This, combined with
the fact that many queries may be extremely non-selective
in some attribute (thereby, flooding a particular hub), led us
to choose a design with data-records broadcast to all hubs.

Concerning the cost of replicating data, we note that it is
not necessary to replicate entire data records across hubs.
In cases where doing so would be prohibitively expensive,
a node within one of the hubs can hold the data record
while the other hubs can hold a pointer to the node. This
would reduces the storage requirements, at the cost of one
additional hop during query resolution.

The above arguments about query workloads and replica-
tion cost notwithstanding, Mercury could be easily modified
to support situations where replicating queries is a more ap-
propriate design choice.

Within a hub Ha, routing is done as follows: for routing
a data-record D, we route to the value πa(D). For a query
Q, πa(Q) is a range. Hence, for routing queries, we route
to the first value appearing in the range and then use the
contiguity of range values to spread the query along the
circle, as needed.

x <= 150

int

int

int

int x >= 50
y <= 250
y >= 150

[0,80)

[240,
320)

a

c

d

b
[80,160)

[160,240)

int x 100
int y 200

(query)

(data−item)

[200, 320)

[100,200)

g

e

f

H

H

x

y
[0,100)

Figure 2: Routing of data-records and queries.

Fig 2 illustrates the routing of queries and data-records.
It depicts two hubs Hx and Hy which may correspond to,
for example, X and Y coordinates of objects. The minimum
and maximum values for the x and y attributes are 0 and
320 respectively. Accordingly, the ranges are distributed to
various nodes. The data-record is sent to both Hx and Hy,
where it is stored at nodes b and e, respectively. The query

enters Hx at node d and is routed (and processed) at nodes
b and c.2

This routing places one additional requirement on the con-
nectivity of each node. In addition to having a link to the
predecessor and successor within its own hub, each node
must also maintain a link to each of the other hubs. We ex-
pect the number of hubs for a particular system to remain
low, and, therefore, do not expect this to be a significant
burden. We discuss the maintenance of these links later in
Section 3.4.

Design Rationale
In this section, we discuss some of the promising alterna-
tive designs for implementing a distributed multi-attribute
range-based search and comment qualitatively on the trade-
offs involved.

Many DHTs [18, 25] use a cryptographic hash or random
value to give IDs to nodes and data stored in the DHT. How-
ever, Mercury does not use any such cryptographic hashes or
random values. This simpler mapping of data and nodes in
the system allows the lookup of range predicates in queries
to a collection of contiguous nodes in a hub. We note that
one of the main purposes of using a cryptographic hash in
existing DHTs is to assign data to nodes uniformly and ran-
domly.3 The elimination of this randomness makes load-
balancing in Mercury a concern. Since there are likely to
be particular ranges of an attribute that are more popu-
lar for queries and data-records, nodes responsible for these
ranges from will be unfairly overloaded with both routing
and computation tasks. Mercury performs explicit load bal-
ancing (see Section 4.4) by moving around nodes and chang-
ing their responsibilities according to the loads. This en-
ables the combination of good load-balancing with support
for range predicates. However, one important side effect is
that the distribution of range sizes is no longer guaranteed
to be uniform.

With the removal of cryptographic hashes, we could have
used a variety of different DHTs as the basis for our design.
Our design treats the different attributes in an application
schema independently, i.e., routing a data item D within a
hub for attribute a is accomplished using only πa(D). An
alternate design would be to route using the values of all at-
tributes present in D, e.g., treating each attribute as a CAN
dimension [22]. Since each node in such a design is responsi-
ble for a value-range of every attribute, a query that contains
a wild-card attribute can get flooded to all nodes. We could
have merged dimensions like in the DIM data structure [16]
but this would still have had similar problems for queries
covering large areas. By making the attributes indepen-
dent, we restrict such flooding to at most one attribute hub.
Furthermore, it is quite likely that some other attribute of
the query is more selective and by routing the query to that
hub, we can eliminate flooding altogether.

3.3 Constructing Efficient Routes
Recall that most of the routing in Mercury occurs within

an attribute hub (only the first hop crosses hubs.) Thus, it

2This example uses flooding to route from d to b. Sec. 3.3
introduces long-distance links, which provide a more efficient
routing mechanism.
3Self-certifying names/security, and robustness to correlated
failures are additional valuable properties.



is essential that the overlay structure for each attribute hub
be scalable and efficient.

Simply using successor or predecessor pointers can result
in θ(n) routing delays for routing data-records and queries.
Like Symphony [18], the key to Mercury’s route optimization
is the selection of k long-distance links that are maintained
in addition to the successor and predecessor links. As a
result, each node has a routing table of size k + 2 including
its neighbors along the circle. k is a configurable parameter
here and could be different for different nodes.

The routing algorithm is simple: Let neighbor ni be in-
charge of the range [li, ri), and let d denote the clockwise
distance or value-distance between two nodes. When a node
is asked to route a value v, it chooses the neighbor ni which
minimizes d(li, v). Let ma and Ma be the minimum and
maximum values for attribute a, respectively.

Then,

d(a, b) =

{

b − a if a ≤ b,
(Ma − ma) + (b − a) if a > b

A node n whose value range is [l, r) constructs its long-
distance links in the following fashion: Let I denote the
unit interval [0, 1]. For each link, a node draws a number
x ∈ I using the harmonic probability distribution function:
pn(x) = 1/(n log x) if x ∈ [ 1

n
, 1]. It contacts a node n′

(using the routing protocol itself) which manages the value
r + (Ma − ma)x (wrapped around) in its hub. Finally, it
attempts to make n′ its neighbor. As a practical considera-
tion, we set a fan-in limit of 2k links per node. We will refer
to a network constructed according to the above algorithm
as a ValueLink network.

Under the assumption that node ranges are uniform, we
can prove (see [18]) that the expected number of routing
hops for routing to any value within a hub is O( 1

k
log2 n).

Since inter-hub routing can take at most one hop, the num-
ber of hops taken for routing is at most O( 1

k
log2 n) as well.4

This guarantee is based upon Kleinberg’s analysis of small-
world networks [14].

Unfortunately, the “uniform node ranges” assumption can
be easily violated for many reasons. For example, explicit
load-balancing would cause nodes to cluster closely in parts
of the ring which are popular. In the Section 4, we present
a novel distributed histogram maintenance scheme based on
light-weight random sampling to provide efficient routing
even with highly non-uniform ranges.

Caching
For many applications, there can be significant locality in
the generated data-items (incremental updates, for exam-
ple) as well as queries (popular searches, for example.) Mer-
cury provides hooks for the application so that it can insert
its own specific caching behavior into the protocol. Essen-
tially, Mercury allows an application to specify additional
long-distance links that represent cached destinations as an
addendum to the routing table. When looking for the neigh-
bor closest to the destination, Mercury also considers nodes
present in the cache.

3.4 Node Join and Leave
While the above describes the steady-state behavior of

Mercury, it does not address how nodes join or leave the
4For a query, we count the number of routing hops to reach
the first value in the range it covers.

system. This section describes the detailed protocol used by
nodes during join and departure.

Recall that each node in Mercury needs to construct and
maintain the following set of links: a) successor and prede-
cessor links within the attribute hub, b) k long-distance links
for efficient intra-hub routing and c) one cross-hub link per
hub for connecting to other hubs. The cross-hub link implies
that each node knows about at least one representative for
every hub in the system. In order to recover during node
departures, nodes keep a small number (instead of one) of
successor/predecessor and cross-hub links.

Node Join. Like most other distributed overlays, an incom-
ing Mercury node needs information about at least one (or
at most a few) node(s) already part of the routing system.
This information can be obtained via a match-making server
or any other out-of-band means. The incoming node then
queries an existing node and obtains state about the hubs
along with a list of representatives for each hub in the sys-
tem. Then, it randomly chooses a hub to join and contacts
a member m of that hub. The incoming node installs itself
as a predecessor of m, takes charge of half of m’s range of
values and becomes a part of the hub.

To start with, the new node copies the routing state of its
successor m, including its long-distance links as well as links
to nodes in other hubs. At this point, it initiates two main-
tenance processes: firstly, it sets up its own long-distance
links by routing to newly sampled values generated from
the harmonic distribution (as described above.) Secondly, it
starts random-walks on each of the other hubs to obtain new
cross-hub neighbors distinct from his successor’s. Note that
these processes can be run lazily, as they are not essential
for correctness, and only affect the efficiency of the routing
protocol.

Node Departure. When nodes depart, the successor/prede-
cessor links, the long-distance links and the inter-hub links
within Mercury must be repaired. To repair successor/pre-
decessor links within a hub, each node maintains a short list
of contiguous nodes further clockwise on the ring than its
immediate successor. When a node’s successor departs, that
node is responsible for finding the next node along the ring
and creating a new successor link.

A node’s departure will break the long-distance links of
a set of nodes in the hub. These nodes establish new long-
distance links to replace the failed ones. Nodes which are not
directly affected by this departure do not take any action.
The departure of several nodes, however, can distort the dis-
tribution of links of nodes which are not affected directly. To
repair the distribution, nodes periodically re-construct their
long-distance links using recent estimates of node counts.
Such repair is initiated only when the number of nodes in
the system changes dramatically (by a factor of 2 – either
by addition or departure).5

Finally, to repair a broken cross-hub link, a node consid-
ers the following three choices: a) it uses a backup cross-hub
link for that hub to generate a new cross-hub neighbor (us-
ing a random walk within the desired hub), or b) if such a
backup is not available, it queries its successor and predeces-
sor for their links to the desired hub, or c) in the worst case,
the node contacts the match-making (or bootstrap server)

5Intuitive justification: routing performance is only sensitive
to the logarithm of the number of nodes.



to query the address of a node participating in the desired
hub.

4. EFFICIENCY IN THE FACE OF
NON-UNIFORMITY

The Mercury protocol we have described thus far is largely
a derivative of previous structured overlay protocols. We
have shown that it can provide efficient (logarithmic) routing
when the responsibility of handling various attribute values
is uniformly distributed to all nodes within a hub. However,
as alluded to in Section 3.2, the desire to balance routing
load can create a highly non-uniform distribution of ranges.

We begin this section by analyzing why such non-uniform
range distributions conflict with the goal of efficient routing.
We find that Kleinberg’s basic small-world network result
makes certain assumptions which are non-trivial to satisfy in
a distributed setting when node ranges in a network are non-
uniform. We then present a novel algorithm which ensures
efficient routing even when the assumptions are violated.

We then tackle non-uniformity in two other dimensions:
query selectivity, and data popularity. We show how the
core of the algorithm for efficient routing under non-uniform
range distributions can be re-used to optimize query perfor-
mance given non-uniformity in query selectivity and data
popularity.

4.1 Small-world Networks
Let G represent a circle on n nodes. Define node-link

distance dn(a, b) between two nodes a and b as the length
of the path from a to b in the clockwise direction. The
objective is to find “short” routes between any pair of nodes
using distributed algorithms. Kleinberg [14] showed that if
each node, A, in G constructs one additional “long-link” in
a special manner, the number of expected hops for routing
between any pair of nodes becomes O(log2 n). Each node
A constructs its link using the following rule: A generates
an integer x ∈ (0, n) using the harmonic distribution, viz.,
hn(x) = 1/(n log x), and establishes a link to the node B
which is x links away in the clockwise direction from A. The
routing algorithm for each node is to choose the link which
takes the packet closest to the destination with respect to
the node-link distance. Symphony [18] extends this result
by showing that creating k such links reduces the routing
hop distance to O( 1

k
log2 n).

Creating the long-links appears deceptively straightfor-
ward. However, it may be difficult and expensive (O(x)) for
a node A to determine which node, B, is x hops away from
it. Contacting node B would be simpler if we could eas-
ily determine what value range B was responsible for. This
would allow the use of any existing long-links to contact this
node more efficiently and reduce the number of routing hops
to O(log2 n)/k.

In systems like Symphony, this problem is solved by ap-
proximating the hop distance of any node. Since Symphony
places nodes randomly along its routing hub, it makes the
assumption that all nodes are responsible for ranges of ap-
proximately the same size, r. By simply multiplying r by
x and adding to the start of the values range of A, Sym-
phony is able to estimate the start of the range that B is
responsible for. Unfortunately, this technique does not work
when not all nodes are responsible for the same range size
of values, i.e., when ranges are highly non-uniform in size.

Non-uniform range sizes, however, are exactly what we use
in order to provide load balancing. Specifically, our load bal-
ancing algorithm, which we elaborate in Sec. 4.4, balances
load by increasing the density of nodes in the portions of the
value range that are heavily loaded. Accordingly, the value
ranges for nodes in heavily loaded regions are smaller than
the value ranges for nodes in lightly loaded regions.

To enable the efficient creation of long-links over an over-
lay with non-uniform range sizes, we introduce a novel ran-
dom sampling algorithm (Sec. 4.2), and use this sampling
algorithm to create an estimate of the density of nodes in
different parts of the routing hub, i.e., a histogram of the
distribution of nodes (Sec. 4.2.1). This allows us to easily
map from x (the desired length of a long-link) to the start of
the value range for B (the node at distance x). This map-
ping, in turn, enables us to construct the long-distance links
of Section 3.3 despite non-uniform node ranges.

4.2 Random Sampling
Maintaining state about a uniformly random subset of

global participants in a distributed network, in a scalable,
efficient and timely manner is non-trivial. In the context of
our system, the näıve approach of routing a sample request
message to a randomly generated data-value works well only
if node ranges are uniformly distributed. Unfortunately, as
already explained, this assumption is easily violated.

Another obvious approach is to assign each node a random
identifier (by using a cryptographic hash, for example) and
route to a randomly generated identifier to perform sam-
pling. However, in order for the sampling process to be
efficient, we need a routing table for delivering messages
to node identifiers. Another approach is to use protocols
like Ransub [15] which are specifically designed for deliver-
ing random subset information. Unfortunately, both these
approaches require incurring the overhead of maintaining
a separate overlay – one which may not be well suited for
efficient data-value routing.

Mercury’s approach for sampling is novel – we show that
the hub overlay constructed by Mercury in a randomized
manner is an expander [19] with a high probability. An ex-
pander has the property that random walks over the links of
such a network converge very quickly to the stationary dis-
tribution of the random walk. Since the hub overlay graph
is regular, the stationary distribution is the uniform distri-
bution. We state the lemma in a semi-rigorous manner. 6

Lemma 1. Let G be a circle on n nodes with O(log n) ad-
ditional links per node generated using the harmonic proba-
bility distribution (as described in Section 4.1). Let Π∞ de-
note the stationary distribution of a random walk on G and
let Πt denote the distribution generated by the random walk
after t steps. Then, with high probability, d1(Πt, Π∞) < ε for
t > O(logc(n/ε)) for small constants c, where d1 denotes the
statistical or L1 distance between two distributions. (See [20]
for rigorous definitions.)

This leads to a very simple algorithm for performing ran-
dom sampling: send off a sample-request message with
a small (e.g., log n hop) Time-To-Live (TTL). Every node
along the path selects a random neighbor link and forwards
it, decrementing the TTL. The node at which the TTL ex-
pires sends back a sample. Notice that this algorithm uses
6The proof is omitted for reasons of space, and will be avail-
able in a related tech-report.



only local information at every stage in the sampling process
and adapts easily to a highly dynamic distributed overlay.
In addition, these messages could be piggy-backed on any
existing keep-alive traffic between neighbors to reduce over-
head. Our simulations (Sec. 5.1) show that Mercury can
indeed perform near-perfect uniform random sampling us-
ing a TTL of log n.

We now describe three important ways in which we utilize
random sampling in our system viz., to maintain node-count
histograms, for estimating the selectivity of queries and for
effective load balancing.

4.2.1 Maintaining Approximate Histograms
This section presents the mechanism used by nodes for

maintaining histograms of any system statistic (e.g., load
distribution, node-count distribution7, etc.) The basic idea
is to sample the distribution locally and exchange these esti-
mates throughout the system in an epidemic-style protocol.

Let Nd denote the “local” d-neighborhood of a node -
i.e., the set of all nodes within a distance d ignoring the
long distance links. Each node periodically samples nodes
∈ Nd and produces a local estimate of the system statis-
tic under consideration. For example, if the node-count
distribution is being measured, a node’s local estimate is
(Ma−ma)|Nd|/(

∑

k∈Nd
|rk|) where rk is the range of a node

k and ma, Ma are the minimum and maximum attribute val-
ues for the attribute a. In our experiments, we use d = 3.

In addition, a node periodically samples k1 nodes uni-
formly at random using the sampling algorithm described
in Section 4.2. Each of these nodes reports back its local
estimate and the most recent k2 estimates it has received.
As time progresses, a node builds a list of tuples of the form:
{node id, node range, time, estimate}. (The timestamp is
used to age out old estimates.) Each of these tuples repre-
sent a point on the required distribution – stitching them
together yields a piecewise linear approximation.

k1 and k2 are parameters of the algorithm which trade-off
between overhead and accuracy of the histogram mainte-
nance process. In Section 5, we show through simulations
that setting each of k1 and k2 to log(n) is sufficient to give
reasonably accurate histograms for sampling population dis-
tribution.

If the system needs to generate an average or histogram of
node properties, the collected samples can be used exactly
as they are collected. However, if the desire is to generate an
average or histogram of properties around the routing hub, a
minor modification is needed. Namely, in order to generate
unbiased node-count histograms, the samples received are
weighted differently; samples reporting lower densities are
given higher weight to account for the fact that there would
be less nodes to produce low density samples.

Once a histogram is constructed, long distance links are
formed as follows: first, the number of nodes n in the system
is estimated. For each long-distance link, a value nl between
[1, n] is generated using the harmonic distribution. This
represents the number of nodes that must be skipped along
the circle (in the clockwise direction, let’s say) to get to the
desired neighbor. The histogram is then used to estimate a
value vl that this desired neighbor will be responsible for.
Finally, a join message is sent to this value vl which will get
routed to the desired neighbor using the existing routing
network.

7Number of nodes responsible for a given range of values.

4.3 Query Selectivity
Recall that a query Q is sent to only one of the attribute

hubs in AQ. Also a query Q is a conjunction of its predicates
each of which can have varying degree of selectivity. For
example, some predicate might be a wildcard for its attribute
while another might be an exact match. Clearly, a wildcard
predicate will get flooded to every node within its attribute
hub. Thus, the query Q should be sent to that hub for
which Q is most selective to minimize the number of nodes
that must be contacted.

The problem of estimating the selectivity of a query has
been very widely studied in the database community. The
established canonical solution is to maintain approximate
histograms of the number of database records per bucket. In
our case, we want to know the number of nodes in a particu-
lar bucket. Each node within a hub can easily gather such an
histogram for its own hub using the histogram maintenance
mechanism described above. In addition, using its inter-hub
links, it can also gather histograms for other hubs efficiently.
These histograms are then used to determine the selectivity
of a subscription for each hub. We see in Section 5.4 that
even with a very conservative workload, this estimation can
reduce a significant amount of query flooding.

4.4 Data Popularity and Load Balancing
When a node joins Mercury, it is assigned responsibility

for some range of an attribute. Unfortunately, in many ap-
plications, a particular range of values may exhibit a much
greater popularity in terms of database insertions or queries
than other ranges. This would cause the node responsible
for the popular range to become overloaded. One obvious
solution is to determine some way to partition the ranges in
proportion to their popularity. As load patterns change, the
system should also move nodes around as needed.

We leverage our approximate histograms to help imple-
ment load-balancing in Mercury. First, each node can use
histograms to determine the average load existing in the sys-
tem, and, hence, can determine if it is relatively heavily or
lightly loaded. Second, the histograms contain information
about which parts of the overlay are lightly loaded. Using
this information, heavily loaded nodes can send probes to
lightly loaded parts of the network. Once the probe encoun-
ters a lightly loaded node, it requests this lightly loaded
node to gracefully leave its location in the routing ring and
re-join at the location of the heavily loaded node. This leave
and re-join effectively increases the load on the neighboring
(also likely to be lightly-loaded) nodes and partitions the
previous heavy load across two nodes.

Let the average load in the system be denoted by L̄. De-
fine the local load of a node as the average of load of itself,
its successor and its predecessor. A node is said to be lightly
loaded if the ratio of its local load to L̄ is less than 1

α
and

heavily loaded if the ratio is greater than α. This definition
ensures that if a node is lightly loaded, its neighbors will be
lightly loaded with a high probability. If this is not the case
(when the ratio of neighbor loads is > α), the lighter neigh-
bor performs a load balance with the heavier one to equalize
their loads. It is easy to show8 that the leave-rejoin protocol
described above decreases the variance of the load distribu-
tion at each step and bounds the maximum load imbalance

8We omit the proof for reasons of space. The idea is simply
that variance reduction ‘near’ the heavier node is larger than
the variance increase ‘near’ the lighter node.



in the converged system by a factor of α, provided α ≥
√

2.
By tolerating a small skew, we prevent load oscillations in
the system.

Over time, the leaves and re-joins result in a shift in the
distribution of nodes to reflect the distribution of load. How-
ever, this shift in node distribution can have significant im-
plications. Many of the properties of Mercury’s routing and
sampling rely on the harmonic distance distribution of the
random long-links. When nodes move to adjust to load,
this distribution may be changed. However, our technique
for creating long-links actually takes the node distribution
into account explicitly as stated previously.

We note that a similar leave-join based load balancing
mechanism has been proposed concurrently in [13] and [8].
However, [13] and [8] do not handle skewed node range dis-
tributions. Because it exploits our random sampling mech-
anism (from Sec. 4.2), our load balancing mechanism works
even in the presence of skewed node ranges.

5. EVALUATION
This section presents a detailed evaluation of the Mercury

protocol using simulations. We implemented a simple dis-
crete event-based simulator which assigns each application
level hop a unit delay. To reduce overhead and enable the
simulation of large networks, the simulator does not model
any queuing delays or packet loss on links. The simplified
simulation environment was chosen for two reasons: first, it
allows the simulations to scale to a large (up to 50K) num-
ber of nodes, and secondly, this evaluation is not focused on
proximity routing. Since our basic design is similar in spirit
to Symphony and Chord, we believe that heuristics for per-
forming proximity-based routing (as described in [10]) can
be adapted easily to Mercury.

Our evaluation centers on two main features of the Mer-
cury system: 1) scalable routing for queries and data-
records, and 2) balancing of routing load throughout the sys-
tem. We begin with an evaluation of our core routing mech-
anisms – random sampling and histogram maintenance. We
then study the impact of these mechanisms on the overall
routing performance under various workloads. Finally, we
present results showing the utility of caching and query se-
lectivity estimation in the context of Mercury.

Except for query selectivity estimation, most of our ex-
periments focus on the routing performance of data within
a single routing hub. Hence, n will denote the number of
nodes within a hub. Unless stated otherwise, every node
establishes k = log n intra-hub long-distance links. For the
rest of the section, we assume without loss of generality that
the attribute under consideration is a float value with range
[0, 1]. Each node in our experiments is thus responsible for
a value interval ⊂ [0, 1].

In what follows, NodeLink denotes the ideal small-world
overlay, i.e., long distance links are constructed using the
harmonic distribution on node-link distance. ValueLink de-
notes the overlay when the harmonic distribution on value-
distance is used (Section 3.3). HistoLink denotes the sce-
nario when links are created using node-count histograms
(see Section 4.) Note that the performance of the ValueLink

overlay is representative of the performance of a plain DHT
(e.g., Chord, Symphony) under the absence of hashing and
in the presence of load balancing algorithms which preserve
value contiguity.

For evaluating the effect of non-uniform node ranges on

our protocol, we assign each node a range width which is
inversely proportional to its popularity in the load distribu-
tion. Such a choice is reasonable since load balancing would
produce precisely such a distribution – more nodes would
participate in a region where load is high. The ranges are
actually assigned using a Zipf distribution. In particular,
data values near 0.0 are most popular and hence a large
number of nodes share responsibility for this region, each
taking care of a very small node range. For reference, in
our simulator setup, these are also the nodes with lowest
numeric IDs.

5.1 Random-Walk Based Sampling
The goal of our random-walk based sampling algorithm is

to produce a uniform random sample of the nodes in the sys-
tem. We measure the performance of our algorithm in terms
of the statistical distance (alternatively called L1 distance)
of the perfect uniform distribution from the distribution ob-
tained via the random walks. For these experiments, nodes
are assigned ranges using a highly-skewed Zipf distribution
(α = 0.95). In each sampling experiment, we pick a node at
random and record the distribution of the samples taken by
kn random walks starting from this node. If our sampling
algorithm is good, the random walks should hit each node
roughly k times. Note that the parameter k is just for eval-
uating the distribution obtained – the protocol does not use
it in any manner.

Figure 3(a) plots the accuracy of the sampling process
as the degree of the graph and the TTL for the random-
walks is varied. The underlying overlay we consider is a
perfect small-world network (NodeLink). We find that, over
a certain threshold (log n), the TTL of the random-walks
does not influence sampling accuracy. Also, the sampled
distribution is almost perfectly random for graph degrees
c log n, where c is a small constant. In practice, we found
that, for routing purposes, sufficiently accurate histograms
are obtained even for c = 1.

Figure 3(b) shows how the construction of the underly-
ing network affects sampling accuracy. We see that the
NodeLink and HistoLink overlays perform much better than
the ValueLink (a vanilla DHT without hashing and in the
presence of load balancing) overlay. These effects are ex-
plained using Figure 4 which plots the distribution of long-
distance links. As described earlier, in our experiments,
nodes with the lowest identifiers (responsible for values near
0.0) are the most popular while nodes at the other end of
the value range are the least popular.

Recall that, in a ValueLink overlay, nodes construct their
links by routing to values generated using a harmonic dis-
tribution. However, in this case node ranges are not uni-
formly distributed – in particular, nodes near the value 1.0
(i.e., nodes with higher IDs) are less popular, so they are
in charge of larger range values. Hence, the long-distance
links they create tend to skip over less nodes than appro-
priate. This causes all the links (and correspondingly, the
random walks) to crowd towards the least popular end of
the circle. The HistoLink overlay offsets this effect via the
maintained histograms and achieves sampling accuracy close
to that achieved by the optimal NodeLink overlay.

Each sample-request message travels for TTL hops and
hence obtaining one random sample generates TTL addi-
tional messages in the overall system. However, all these
messages are sent over existing long-distance links. Thus,
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were performed.

they can be easily multiplexed and piggy-backed (by simply
appending the IP address of the requesting node) over the
regular keep-alive pings that might be sent between neigh-
bors. Also, if the samples are uniformly distributed over
all nodes, each node receives O(1) sample requests per sam-
pling period. Hence, we conclude that the overhead of the
sampling method is very small.

5.2 Node-Count Histograms
In this section, we evaluate the accuracy of the node-

count histograms obtained by nodes using the mechanism
described in Section 4.2. These histograms, introduced in
Section 4.2.1, provide an estimate of the total number of
nodes in the system and help in establishing the long-distance
links correctly.

We measure the accuracy of the obtained histogram in
terms of its distance from the “true” histogram under the
L1 norm. Figure 5(a) plots the average accuracy of the
histogram (the average is taken over all nodes) as the pa-
rameters for the histogram maintenance process are varied.
In this experiment, 10 rounds of exchanges were performed.
We see that the error is consistently small and decreases

rapidly as the number of the nodes queried per round in-
creases.9 Although not obvious from the graph, the same
pattern is observed when the number of reports queried from
each node is increased. These effects are expected, since the
number of samples received by each node per round grows
linearly with either of these parameters.

Figure 5(b) plots the overall node-count estimates pro-
duced by each node in a system of n = 10000 nodes. The
experiment was run for 10 exchange rounds, with k1 = k2 =
log n. We see that the estimates are very tightly clustered
around the actual node-count value of 10000.

During each round of the histogram maintenance process,
each node queries k1 randomly sampled nodes and receives
k2 estimate samples from each node. The messaging over-
head per round per node is thus proportional to k1k2.

5.3 Routing Performance
We now present an evaluation of the overall routing per-

formance of Mercury. This factors in the effects of the ran-

9The graph does show some fluctuations, but their magni-
tudes are tiny (result of experimental variations).
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shows effect of changing parameters on overall routing performance.

dom sampling and histogram maintenance strategies. We
present the performance of the basic protocol with and with-
out route caching optimizations, discuss the effect of skewed
node-range distributions and validate our claim that the pro-
tocol using histograms achieves near-optimal routing delays.
As before, we concentrate on routing within a single hub. In
each of the following experiments, nodes establish k = log n
long-distance links within a hub.

We experiment with two different data workloads – uni-
form and Zipf. The Zipf workload is high-skewed and is
generated using the distribution x−α where α = 0.95. No-
tice that this means that the attribute values near 0.0 are
the most popular and those around 1.0 are the least pop-
ular. We also show the performance of two types of route
caching policies, viz., LRU replacement and a direct-mapped
cache.10 Our objective here is not to find the best possible
policy for our workload. Rather, our aim is to show the ease
with which application-specific caching can co-exist fruit-
fully with Mercury routing. In our caching experiments,
each node keeps a cache of log n route entries.

Figure 6 shows the performance of Mercury when node
ranges are uniformly distributed. The Y-axis shows the av-
erage number of hops taken by a data-item to reach its desti-
nation (node where it is stored) in the hub. Although these
graphs show results for HistoLink overlay, the performance
of NodeLink and ValueLink is very similar, as expected.

We see that, for uniform node ranges, the number of rout-
ing hops scales logarithmically (with very low constant fac-
tors) as the number of nodes increases, irrespective of the
workload used. Thus, Mercury can provide low end-to-end
routing delays to applications even for a large number of
nodes. With caching enabled, there is a significant reduc-
tion in hop count. While this is easy to see for a skewed
workload, the reduction for a uniform workload results from
the fact that a cache effectively increases Mercury’s routing
table size. We believe that caching is an important opti-
mization which Mercury can easily incorporate into its basic
protocol.

Effect of Non-Uniform Ranges
Figure 7 compares the performance of the protocol with and
without approximate histograms to guide the selection of
the long-distance links. In this experiment, the node-range

10For an n-entry cache, there is one entry for each of the
(1/n)th region of the attribute space.
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average number of routing hops. As workload, we
use the Zipf distribution with α = 0.95.

distribution and the data distribution are Zipf-skewed. For
histogram maintenance in this experiment, we used 5 ex-
change rounds, where each node queried log n nodes per
round asking each for log n estimate reports.

As explained in Section 5.1, the näıve ValueLink overlay
(vanilla DHT in the presence of load balancing) creates links
which skip the crowded and popular region (see Figure 4.)
Hence, packets destined to these nodes take circuitous routes
along the circle rather than taking short cuts provided by
the long-distance links. Although caching ameliorates the
effect, the performance is still much worse as compared to
the optimal NodeLink overlay.

On the other hand, we see that the performance of the
HistoLink overlay is nearly the same as that of the optimal
NodeLink overlay. Again, looking at Figure 4, we find that
node-count histograms enable nodes to establish a correct
link distribution (corresponding to the NodeLink overlay)
quickly using very low overheads.

Figure 5(c) shows the effect of histogram accuracy on the
overall routing performance. We see that as the parameters
k1 and k2 in the histogram maintenance process increase,
the routing performance improves as expected. We note
that this influence is limited (note the scale of the graph)
since it is directly dependent on the accuracy of the obtained
histograms (see Figure 5(a).)

5.4 Estimating Query Selectivity
To evaluate the usefulness of forwarding queries to the

most selective attribute hubs, we set up an experiment with
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3 attribute hubs. Our workload is motivated by the dis-
tributed multi-player game application we describe in Sec-
tion 6. The attribute hubs correspond to three dimensions
of virtual space. Each query contained 3 range predicates
– one for each attribute. Such a query specifies a cuboid
region of the virtual space. The range-size of each predicate
was Gaussian-distributed, while the range position within
the attribute space was Zipf-distributed. The node-range
distribution within each hub is skewed.

Figure 8 plots the average number of nodes processing a
query for different sizes of queries. The query size is mea-
sured as the average fraction of the value range that a query
covers in a single dimension. We call this the query range.
The plot shows that, even with our conservative workload,
choosing a hub based on the selectivity estimates results in
up to 25-30% reduction in the degree of flooding of a query.
With workloads exhibiting wildcards, much higher reduc-
tions would be expected. Because we lack a good model for
wildcard workloads, however, we refrain from speculating
about the exact degree of reduction that might be achieved.

5.5 Load Balancing
For evaluating the efficiency of load balancing achieved by

Mercury’s load balancing algorithm, we conduct the follow-
ing experiment: In a system of 1000 nodes, we assign load
to each node using a Zipf distribution with varying values
of the initial skew (Zipf parameter). The system is said to
be load-balanced when 1

∆
≤ load/avg load ≤ ∆ holds for all

nodes in the system.
In the experiment, we run multiple rounds of the load

balancing algorithm, until the system is load-balanced. Each
round consists of the following steps:
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1. Each node samples its neighbors, to determine the lo-
cal node-count. This requires one round-trip.

2. Each node runs one round of the histogram mainte-
nance algorithm. (Recall that a round of the histogram
maintenance algorithm involves sending log n probes in
parallel, each of which must traverse 1 + log n hops.)

3. Nodes check their histograms to determine if they are
heavily loaded. If a node is heavily loaded, it sends
a probe to a lightly loaded node. This probe must
traverse log n hops.

4. Lightly loaded nodes leave and re-join the network. To
re-join, the lightly loaded nodes must establish new
long links. The link establishment messages traverse
1 + log n hops, in expectation.

Figure 9 plots the number of rounds of load-balancing
required to achieve load balance. We see that Mercury can
load-balance to within a factor of ∆ = 2 within 100 rounds
despite heavy skews in the workload (Zipf with α = 0.95).
In practical terms, consider an overlay with 10000 nodes,
and a 50 ms delay between nodes. The time to complete
one round of load-balancing is the product of the number of
hops traversed by messages in the load balancing algorithm
11, and the inter-node delay. Thus the time to complete one
round is 50 ∗ (4 + 3 log n) ms. The time to load-balance the
entire overlay is then 100∗50∗ (4+3 log n) ms, or about 220
seconds, which is reasonable for such a large network.

11Since the messages in step 2 are sent in parallel, we count
the number of hops once, rather than multiplying by the
number of messages. Similarly for step 4.



6. DISTRIBUTED APPLICATION DESIGN
Previous sections have demonstrated that Mercury pro-

vides scalable range-based lookups. In this section, we de-
scribe how the range query support provided by Mercury can
also be used as a building block for distributed applications.
Specifically, we consider a multiplayer game, and demon-
strate how multi-attribute range queries can be fruitfully
applied to solve the game’s distributed state maintenance
problem.

6.1 Distributed State Maintenance
One of the difficulties in designing distributed multiplayer

games is managing the game state. Game state includes
such information as where a player is located, the resources
(such as ammunition) he has, and how healthy he is. For a
distributed game, this state must be available at multiple,
perhaps physically distributed, machines. This is necessary
so that the players in the game (who may be running the
game on different nodes) have accurate views of the game.
Thus, the central challenge is providing a way for the nodes
in the game to update each others’ view of the game state.

While distributed state maintenance, in its full gener-
ality, is a large and difficult problem, a few observations
about games in particular enable us to simplify the prob-
lem. First, observe that a node in a game is interested in
only a small subset of the entire game state. Second, note
that the objects belonging to this subset are not arbitrary,
but are related to each other. For example, in most mul-
tiplayer games, a player is primarily interested in entities
geographically nearby (such as within the player’s room).
Third, note that games do not require strong consistency
guarantees. In particular, even centralized games trade-off
strict consistency to provide interactive response times.

These observations suggest a publish-subscribe [3] archi-
tecture for managing state updates. Specifically, a game
node registers a “subscription” describing the objects which
it wishes to keep updated. Also, whenever a node changes
the state of a game object, the node creates a “publica-
tion” which is delivered to the other nodes interested in that
object. Note that the subscription essentially implements
“area-of-interest” filtering (which we describe in further de-
tail in Section 6.4).

A key requirement of this design is a flexible subscrip-
tion language which allows the game to express its object-
subscriptions precisely. If the language is coarse, the game
may end up receiving a large number of irrelevant updates
which will have to be filtered locally. But a language may
also be so flexible as to preclude scalable routing of object
updates. Fortunately, we can use the multi-attribute range
query primitive, which Mercury implements scalably, as the
subscription language for distributed games.

In the remainder of this section, we describe the publish-
subscribe system we have built on top of the Mercury rout-
ing layer; describe Caduceus, our simple multiplayer dis-
tributed game; compare publish-subscribe to other possi-
ble solutions, and present some basic performance measure-
ments.

6.2 Implementing Publish-Subscribe with
Mercury

To explain the implementation of publish-subscribe with
Mercury, we begin with the application programmer’s inter-

face. We then explain how Mercury is used to implement
this API.

The publish-subscribe system exposes a simple interface
for applications. This API has three basic calls: send_

publication, register_interest, and unregister_interest.
The send_publication call is used to disseminate an ob-
ject update via Mercury. The call takes the updated ob-
ject as its argument. When an application invokes this call,
the publish-subscribe system assumes responsibility for de-
livering the object update to other interested nodes. The
register_interest is used to subscribe to updates. This
call takes a multi-attribute range query as its argument.
After an application invokes this call, the publish-subscribe
system is responsible for delivering an update to the appli-
cation whenever an object matching the query is added or
modified. The unregister_interest call simply cancels a
subscription.

Our implementation of publish-subscribe using Mercury
is relatively straightforward. Publications are routed as reg-
ular data items in Mercury. Subscriptions are similar to
Mercury queries, but with one important difference. Mer-
cury queries can be discarded immediately after they are
answered. Subscriptions, however, must match not only ob-
jects currently existing in the system, but must return fu-
ture matching objects as well. Thus, subscriptions must be
retained at the nodes which receive them. In our current
implementation, subscriptions are hard state: they are re-
tained until they are cancelled by the querying node. To
provide robustness in the face of node failures, however, we
plan to implement subscriptions as soft state.

6.3 Caduceus
Caduceus is a two-dimensional, multi-player, shooter game.

Each player in the game has a ship and a supply of mis-
siles. Players pursue each other around the two-dimensional
space, and fire missiles when their opponents are in range.
The goal is simply to kill as many opponents are possible.
Figure 10(a) presents a screenshot of the game. At any given
time, a player sees the other ships in her immediate vicinity,
as defined by the game window. The virtual game world is
larger than the window. Thus, there might, for example,
be opponents located beyond any of the edges of the game
window.

The state of the game is represented using two kinds of
objects: ships and missiles. A ship consists of a location, ve-
locity, and ancillary information such as fuel level. A missile
is created whenever a ship fires shots. A missile consists of a
location, velocity, and owner information.12 The main loop
of Caduceus, shown in Figure 10(b), is relatively simple.

6.4 Alternative Update Routing Architectures
As stated previously, a central problem in distributed mul-

tiplayer gaming is ensuring that all nodes have (weakly) con-
sistent views of the game state. To provide this (weak) con-
sistency, nodes send updates to other nodes whenever the
game state has changed. To date, most games have used
either broadcast messaging, or a centralized server, to de-
liver these updates. Unfortunately, both these designs scale
poorly to a large number of nodes.

To improve scalability, researchers have proposed area-of-
interest filtering [17,24] schemes, which divide the world into

12The owner is used to credit the appropriate player when
an opponent is killed.



void GameApp::timerEvent(QTimerEvent *) {
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Figure 10: a) Screenshot of Caduceus b) Caduceus main loop c) Example subscriptions

a fixed set of regions and map them to IP multicast groups.
However, the fixed regions result either in the delivery of
a large number of irrelevant updates to clients, or in the
maintenance of a large number of IP multicast groups at
routers.

In contrast, Mercury’s subscription language is ideal for
implementing area-of-interest filtering. In particular, the
subscription language makes it easy to describe arbitrary
physical regions. As an example, Figure 10(c) shows two
nodes expressing their interests in the rectangular regions
near them. Of interest is the fact that the regions do not,
for example, need to fit a pre-defined tiling of the space.
Note that while tiling the space, and assigning these tiles
to different channels, would be possible for a simple two-
dimensional game, it becomes far more difficult in games
with irregular spaces, such as corridors, or which have to
deal with visibility constraints such as horizons. It is also
difficult for multicast group-based schemes to support arbi-
trary interests such as “the location of all my teammates”.

As shown in Figure 6(b), Mercury is able to handle 10000
nodes while keeping the number of routing hops below 8. As-
suming that the average-case, one-way delay between nodes
is about 20ms (e.g., they are all well connected and within
the U.S. west coast), this results in an end-to-end delay of
less than 160ms. We believe that game-specific caching algo-
rithms could further improve the routing performance, mak-
ing Mercury-based games scalable to thousands of nodes.

6.5 Performance Evaluation
We evaluate the performance of our system with two met-

rics: hop count, and message count. We run a varying
number of players. The players move through the world
according to a random waypoint model, with a motion time
chosen uniformly at random from (1, 10) seconds, a des-
tination chosen uniformly at random, and a speed chosen
uniformly at random from (0, 360) pixels per second. The
size of the game world is scaled according to the number of
players. The dimensions are 640n × 480n, where n is the
number of players. All results are based on the average of 3
experiments, with each experiment lasting 60 seconds. The
experiments include the benefit of a log n sized LRU cache
at each node, but do not include the benefits of any long
pointers. 13

Table 1 summarizes the results. With respect to hop
count, we find that the hop count increases only slightly

13We did not implement long-distance links because we were
primarily interested in assessing the suitability of the Mer-
cury service for distributed games. However, we were curi-
ous about performance.

as we double the number of nodes. To evaluate Mercury’s
messaging efficiency, we compare it to two alternatives. In
the “broadcast messages” column of the table, we report
the number of messages that would have been transmitted
if every update were sent to every node (as was done in
first-generation distributed games). In the “optimal mes-
sages” column, we report the number of messages required
to exactly satisfy each node’s interests, without any control
message overhead. We find that Mercury performs substan-
tially better than a broadcast scheme (43% as many mes-
sages transmitted for 20 nodes), and that this performance
difference increases when we increase the number of nodes,
with Mercury using only 29% as many messages as broad-
cast for 40 nodes.

# of
Players

Average
Hops

Broadcast
Messages

Mercury
Messages

Optimal
Messages

20 4.44 170000 74295 28154
40 4.61 695240 199076 58644

Table 1: Routing overheads for Caduceus, without

long pointers.

7. CONCLUSION
In this paper, we have described the design and imple-

mentation of Mercury, a scalable protocol for routing multi-
attribute range-based queries. Our contributions as com-
pared to previous systems include support for multiple at-
tributes and explicit load balancing. Mercury incorporates
novel techniques to support random sampling of nodes within
the system. Random sampling enables a number of light-
weight approaches to performing load-balancing, node count
estimation and query selectivity estimation. Our evaluation
clearly shows that Mercury scales well, has low lookup la-
tency and provides good load balancing properties.

In addition to providing high query-routing performance,
Mercury provides a flexible range-based query primitive.
Using this primitive, we are able to build an easy-to-use
publish-subscribe facility for the maintenance of weakly con-
sistent distributed state. We find that this facility is well
suited for distributed state maintenance in distributed games.
While we have only directly shown the suitability of Mercury
for distributed games, we believe that the classes of applica-
tions that will benefit from our system include collaborative
applications, such as shared whiteboards, distributed inven-
tories and possibly sensing applications as well.
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