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Topic of Presentation

Peer to Peer applications need to locate  efficiently 
the node that stores a particular data item
Chord, a distributed lookup protocol, addresses this 
problem

Given a key, Chord maps the key onto a node
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Introduction 
P2P systems and applications are distributed systems 
without any centralized control or hierarchical 
organization
The software that runs at each node is equivalent in 
functionality
The core operation in most P2P systems is the 
efficient location of data items
Chord is a scalable protocol for lookup in a dynamic 
P2P systems with frequent node arrivals and 
departures
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Introduction
The Chord protocol supports just one operation: 
given a key, it maps the key onto a node
Chord uses a variant of consistent hashing to assign 
keys to Chord nodes 
Consistent hashing tends to balance load

Each node receives roughly the same number of keys
Involves little movement of keys when nodes join and 
leave the system
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Introduction
Each Chord node needs “routing” information about 
only a few other nodes

The routing table is distributed
In an N-node system, each node maintains 
information only about O(logN) other nodes, and 
resolves all lookups via O(logN) messages to other 
nodes 
Chord maintains its routing information as nodes 
join and leave the system; with high probability each 
such event results in no more than O(log2N) 
messages
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Introduction
Features that distinguish Chord from other P2P 
lookup protocols are:

Simplicity
Provable correctness
Provable performance

A Chord node requires information about O(logN) 
other nodes for efficient routing
Performance degrades gracefully when information 
is out of date

Nodes join and leave arbitrarily
Only one piece information per node needs to be 
correct (slower lookup)
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System Model
Load balance: Chord acts as a distributed hash 
function, spreading keys evenly over the nodes

This provides a degree of natural load balance

Decentralization: Chord is fully distributed: no node 
is more important than any other

This improves robustness 

Scalability: The cost of a Chord lookup grows as the 
log of the number of nodes

Very large systems are feasible
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System Model
Availability: Chord automatically adjusts its internal 
tables to reflect newly joined nodes as well as node 
failures

The node responsible for a key can always be found
This is true even if the system is in a continuous state of 
change

Flexible naming: Chord places no constraints on the 
structure of the keys it looks up
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System Model
An application interacts with Chord in two main 
ways:

Chord provides a lookup(key) algorithm that yields the IP 
address of the node responsible for the key
The Chord software on each node notifies the application 
of changes in the set of keys that the node is responsible 
for 

This allows the application to move corresponding values to their 
new homes when a new node joins 
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Examples of Applications
Cooperative Mirroring:

In order to balance the load across all servers, data is replicated and 
cached

Time-Shared Storage:
If a person wishes some data to be always available, but their machine 
is only occasionally available, they can offer to store others’ data 
while they are up, in return for having their data stored elsewhere 
when they are down

Distributed Indices:
Each machine maintains lists of machines that offer documents. Each 
document is specified by a keyword. The lookup is faster when using 
these lists

Large-Scale Combinatorial Search:
In this case, keys are candidate solutions to the problem. Chord maps 
these keys to the machines responsible for testing them as solutions
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The Base Chord Protocol 
The Chord protocol specifies:

how to find the locations of keys
how new nodes join the system
how to recover from the failure (or planned departure) of 
existing nodes

Here we describe a simplified version of the protocol 
that does not handle concurrent joins or failures
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The Base Chord Protocol
Chord uses consistent hashing in order to map keys 
to nodes responsible for them 
With high probability the hash function balances 
load 
With high probability, when an Nth node joins (or 
leaves) the network, only an O(1/N) fraction of the 
keys are moved to a different location
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Consistent Hashing
The consistent hash function assigns each node and 
key an m-bit identifier using a base hash function 
such as SHA-1
A node’s identifier is chosen by hashing the node’s 
IP address
A key’s identifier is produced by hashing the key
The identifier length m must be large enough to 
make the probability of two nodes or keys hashing to 
the same identifier negligible
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Consistent Hashing
Identifiers are ordered in an 
identifier circle modulo 2m

Key k is assigned to the first 
node whose identifier is equal to 
or follows (the identifier of) in 
the identifier space 
This node is called the successor 
node of key 
If identifiers are represented as a 
circle of numbers from 0 to 2m -
1, then successor(k) is the first 
node clockwise from k
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Consistent Hashing
Consistent hashing is designed to let nodes enter and 
leave the network with minimal disruption
When a node n joins the network, certain keys 
previously assigned to n’s successor now become 
assigned to n
When node n leaves the network, all of its assigned 
keys are reassigned to n’s successor
No other changes in assignment of keys to nodes 
need occur
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Scalable Key Location
Each node need only be aware of its successor node 
on the circle 
Queries for a given identifier can be passed around 
the circle via these successor pointers until they first 
encounter a node that succeeds the identifier
Chord protocol maintains these successor pointers
It may require traversing all N nodes to find the 
appropriate mapping 
Chord maintains additional routing information
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Scalable Key Location
m: number of bits in the key/node identifiers
finger table: each node n maintains a routing table 
with at most m entries
The ith entry in the table at node n contains the 
identity of the first node, s, that succeeds n by at 
least 2i-1 on the identifier circle, i.e., s=successor(n + 
2i-1), where 1≤i≤m and all arithmetic is modulo 2m

A finger table entry includes the Chord identifier and 
the IP address of the relevant node
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Scalable Key Location
Each node stores 
information about nodes 
closely following it on 
the identifier circle 
A node’s finger table 
generally does not 
contain enough 
information to determine 
the successor of an 
arbitrary key 



19

Scalable Key Location
When a node n does not know the successor of a key 
k, it finds a node whose ID is closer than its own to k 
That node will know more about the identifier circle 
in the region of k than n does 
By repeating this process, n learns about nodes with 
IDs closer and closer to k
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Search Process
Lookup for id’s successor

Find id’s predecessor
Return predecessor’s successor

Find id’s predecessor
If n is the predecessor

Return n 
Else, return the closest preceding finger

Find the closest preceding finger
Search finger table from last item to first, in order to find 
a node which is closer to id, among the nodes in the finger 
table 
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Search Process
n.find_successor(id) //ask node n to find id’s successor

n’ = find_predecessor(id);
return n’.successor;

n.find_predecessor(id) // ask node n to find id’s predecessor
n’ = n;
while(id ∉ (n’, n’.successor])

n’ = n’.closest_preceding_finger(id);
return n’;

n.closest_preceding_finger(id) //return closest finger preceding id
for i=m downto 1

if(finger[i].node ∈(n, id))
return finger[i].node;

return n;
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Lookup Examples
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2) Node 0 searches for id 5
Firstly, searches for 5’s predecessor 
Node 0 is not the 5’s predecessor
Searches for the closest preceding 
finger
Scans finger table from the last entry to 
the first
The first node that is between 0 and 5 is 
returned (node 3)
Node 3 is checked and it is 5’s 
predecessor
Node 3’s successor is returned (this is 
5’s successor)

1) Node 0 searches for id 2
Node 0 examines its finger table
Id 2 has as a successor node 3
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Lookup Examples
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3) Node 1 searches for id 7
Search 7’s predecessor
Node 1 is not 7’s predecessor
Search for the closest preceding finger
Scan finger table from last entry to first
The first node that is between 1 and 7 is 
returned (node 3)
Node 3 is checked and it is not 7’s 
predecessor
Search for the closest preceding finger 
from node 3
Scan 3’s finger table from last entry to 
first
The first node that is between 3 and 7 is 
returned (node 6)
Node 6 is checked and it is 7’s 
predecessor
Node 6’s successor is returned (this is 7’s 
successor)
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Node Joins
In a dynamic network, nodes can join and leave at 
any time 
The main goal is to have the ability to locate every 
key in the network at any time 
Chord preserves two invariants

Each node’s successor is correctly maintained
For every key k, node successor(k) is responsible for k

In order for lookups to be fast, it is also desirable for 
the finger tables to be correct
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Node Joins
To simplify the join and leave mechanisms, each 
node in Chord maintains a predecessor pointer
A node’s predecessor pointer contains the Chord 
identifier and IP address of the immediate 
predecessor of that node, and can be used to walk 
counterclockwise around the identifier circle
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Node Joins
Chord must perform three tasks when a node 
joins the network: 

Initialize the predecessor and fingers of node n
Update the fingers and predecessors of existing 
nodes to reflect the addition of n 
Notify the higher layer software so that it can 
transfer state (e.g. values) associated with keys 
that node n is now responsible for
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Initializing Fingers and Predecessor
In order to find the 
predecessor of n:

Find the predecessor of 
n’s successor

Now, the predecessor of 
n’s successor is n and 
the old predecessor of 
n’s successor is n’s
predecessor 

n

n

x

x

y

y

First, y is the successor of x
After n’s insertion, the successor of
x is n and the successor of n is y
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Initializing Fingers and Predecessor
The naively way to make the finger table is to 
find the successor of each entry
Better solution: if two sequential entries have 
the same successor there is no need to find the 
successor of the second one

This reduces the number of remote calls
Practical optimization: ask an immediate 
neighbor for a copy of its complete finger 
table and its predecessor
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Updating Fingers of existing Nodes
Node n will need to be entered into the finger 
tables of some existing nodes
Node n will become the ith finger of node p if 
and only if 

p precedes n by at least 2i-1

The ith finger on node p succeeds n
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Updating Fingers of Existing Nodes
Find the predecessor p of n
Check if the ith finger of p needs update
The same check occurs to the predecessor of p for ith

finger 
Recursively, do the same thing for all others

The above steps are repeated for every i 
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Transferring Keys
When a node n joins the network we have to move 
responsibility for all the keys for which node n is 
now the successor
Exactly what this entails depends on the higher-layer 
software using Chord
This would involve moving the data associated with 
each key to the new node
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Node Join Example
3 is the only node in the network
3’s predecessor is 3
3’s successor is 3
The successor for all the keys in the 
finger table is 3
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Node Join Example
Node 6 joins the network
Node 0 helps 6’s insertion by 
providing information
Firstly, node 6 must find its 
successor which is 0
6’s predecessor becomes 0’s 
predecessor which is 3
0’s predecessor becomes 6
The next step is to initialize 6’s 
finger table 
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Node Join Example
The start column of 6’s table is 
calculated using the formula 
n+2i-1

We calculate the successor of 
each finger
The successor of id 7 and 0 is 
node 0 
The successor of id 2 is node 3

Note: in case two sequential ids 
have the same successor, there is 
no need to calculate the second 
one
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Node Join Example
Here, the finger tables of other 
nodes are updated
It checks the first finger entry 
of node 3. The new value is 6
Then it checks the first entry of 
3’s predecessor, i.e., node 1
This entry is not updated 
The same process is repeated 
for the 2nd and 3rd entry of the 
finger table

0
1

3

2

4

5

6

7

nodestart

07
0 65
0 64

nodestart

0 64
32
11

nodestart

0 65
33
32

nodestart

32
00
07



36

Node Leave Example
Node 1 leaves the network
All the keys that node 1 was 
responsible for, are now 
assigned to 1’s successor, 
which is 3
All the entries at the finger 
tables of the other nodes that 
have node 1 as a successor 
must be updated
The new value is node 3       
(1’s successor)
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The End


