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Overview
In an Information Filtering scenario users express 
their interests via subscriptions and get notified when 
events matching their subscriptions are published

Exact Information Filtering (IF) scenarios involve 
delivering notifications from every publisher to 
subscribers

In Approximate IF only a few publishers store the 
user query and are monitored for new events
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Main problem
Exact IF model imposes an information overload 
burden on the user

Main issue: The careful selection of few promising 
publishers to store user query

Subscribers use statistical metadata to identify 
promising publishers
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Main problem (continue)
Statistics are maintained in a directory on a per-
keyword basis

Possible correlation between keywords is disregarded

This work:
Improves approximate IF in a distributed setting by 
exploiting correlation between keywords
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Example

Bob

q = {presidential, elections, US}

q1 = {presidential}

q2 = {elections}

q3 = {US}

Statistics for {presidential}

Statistics for {elections}

Statistics for {US}

score for publisher pi

score for publisher pi

score for publisher pi

aggregating individual scores ranking publishers



Example (continue)

Bob

Statistics for {presidential, elections}

Statistics for {elections, US}

Statistics for {US}

score for publisher pi

score for publisher pi

score for publisher pi

q = {presidential, elections, US}

q1 = {presidential, elections}

q2 = {elections, US}

q3 = {US}

aggregating individual scores + 
prediction scores ranking publishers
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Hash Sketches

Usage: probabilistic estimation of the cardinality of a 
multi-set S (distinct value estimation). 
A number of input values are spread over a number 
of output values via a hashing function.
Hash Sketch of the union of multi-sets A & B is the 
bit-wise OR between Hash Sketch of  A and Hash 
Sketch of B.  
To compute the intersection of A & B, we use:
|A ∩ B| = |A| + |B| – |A ∪ B| 
But: Hash Sketches for multi-key queries impose 
inaccuracy 
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KMV Synopses
Assume D points are placed uniformly on the unit 
interval

The expected distance between two neighboring points is
1/(D+1) ≈ 1/D
The expected value of Uk (k-th smallest point) is E[Uk] ≈ k/D
Thus, a basic DV estimator for D is D = k/Uk

Let S be a multi-set and θ(S) the domain of its 
distinct values.
By applying a hash function h() to each value of θ(S) 
h: θ → {0, 1, …, Μ}, the k smallest hashed values 
are recorded. (KMV Synopsis for k minimum values)



KMV Synopses (continue)
Let A, B be multi-sets ,LA, LB their KMV synopses of 
size kA, kB respectively and L the KMV synopses of 
their intersection
DV estimator for union is D∪ = (k-1)/Uk

where k = min (kA, kB)

DV estimator for intersection is 
D∩ = (K∩/k) . (k-1)/Uk

where 
k = min (kA, kB) 
K∩ = |{u ∈ VL: u ∈ θ(Α) ∩ θ(Β)}|
L = {h(v1), h(v2), …, h(vk)}
VL = {v1, v2, …, vk}
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System architecture
System consists of three components:

Publishers
Directory nodes
Subscribers

Distributed directory maintained by super-peers



Publishers
A publisher wants to expose its content to the system 
in the form of per-key statistics (posts)
Statistics consist of inverted lists of documents 
(maintained as Hash Sketches or KMV Synopses)
A publisher sends its statistics to directory nodes 
periodically to help the ranking procedure made by 
subscribers
Also, it is responsible for maintaining subscribers’
continuous queries
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Directory nodes
Directory nodes store statistics about the publishers’
local contents
They make them available to the subscribers
Each node is responsible for a particular subset of 
keys existing in IF system
Key data set is partitioned using a DHT hash function
Directory nodes are organized using a Chord DHT
forming
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Subscribers
A subscriber seeks for publishers that will publish 
interesting documents in the future

In order to subscribe to a publisher p, subscriber 
forwards its continuous query q to p

There q is matched with every publication of p
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Subscribers (continue)
Let q = {k1, k2, k3, … , kn} be a continuous query 
made by a subscriber s
Subscriber s

contacts directory nodes to retrieve statistics for 
every key kj

ranks publishers and sends q only to top-ranked 
ones

Only publishers that store q will match their content 
against q
But: considering individual key statistics and not key 
set statistics leads to reduced recall
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Correlation
The probability that a random document contains key 
a given that it contains key b is:

Let S = {k0, k1, k2, . . ., kn} be a correlated key set. 
The probability that a random document contains k0
given that it contains all other keys is:
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Correlation (continue)
All continuous queries can be considered candidates 
for harvesting multi-key statistics

Consider a key pair ab that has no correlation
We consider it as interesting, if P(A|B) and P(B|A) are below 
some threshold β

Interesting keyword sets
with uncorrelated keywords
with anti-correlated keywords 
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The algorithm USS
Let s be a subscriber that subscribes a continuous 
query q = {k1, k2 ,…, kn} in the IF system
The following steps are executed
1. For each key kj, 1 ≤ j ≤ n, subscriber s contacts directory 

node d(kj) and retrieves the statistical information for key 
kj

2. For publisher pi appearing in all statistics, s computes an 
estimation of dfi(q) using synopses intersection techniques 
and applies prediction techniques to compute a behavior 
prediction score 
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The algorithm USS (continue) 
3. Subscriber s sends the query q only to top-
ranked publishers. These publishers only will store 
q
4. Due to dynamics in publishing, steps 1-3 

repeat in a periodic way
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The algorithm CSS
USS approach has problems because of single-key 
statistics

higher network load
The directory has to send long lists to the subscriber 
inaccuracy
synopsis for the intersection of documents containing all keys
prediction errors
single-key statistics introduce additional errors

The algorithm CSS introduces the idea of maintaining 
multi-key statistics
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The algorithm CSS (continue)
Let S = {k1, k2, …, kn} be a key set. We employ a 
deterministic function to select a directory node  d(S)
and be responsible for this set:

1. d(S) contacts all directory nodes responsible for key kj ∈ S
and retrieves the synopses from all documents containing 
that key

2. d(S) computes intersections among synopses and 
computes df(S)

3. d(S) then computes the conditional probabilities for each 
key kj
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Multi-key statistics
Multi-key statistics can be piggybacked on messages 
that need to be send anyway

Example:
Assume that d(S) responsible for key k identified key set S
as useful
Whenever a publisher p updates its statistics for key k, d(S)
can inform p about key set S
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Multi-key statistics (continue)

Idea: computing statistics for a multi-key query by 
combining statistics from subsets available in the 
directory
Scoring function for calculating publisher’s score:

where predScoresi (p) represents the likelihood that p
will produce a document containing Si in the future
Intuition behind weighting prediction score with |Si|:
prediction score for small subsets dominates the sum
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Experimental evaluation
Recently proposed benchmark for evaluating p2p information 
retrieval

Data set: 800,000 web documents from Wikipedia 
Algorithm: distributing documents among 1,000 publishers with 
controlled overlap

Continuous queries with one, two and three keys
Queries are indexed in up to 25% of publishers
Use of publication rounds; publishing 400 documents per round 
Evaluation metric: 
average recall = total number of notification received/total 
number of documents matching the subscriptions



Results (1)

For two-key queries:
baseline algorithm: monitoring 24% of publishers to achieve average recall = 0.5
CSS algorithm: monitoring 19% of publishers to achieve equal levels of recall

Three-key queries are more selective with less matching documents, achieving higher 
improvements of recall
USS-KMV algorithm outperforms USS-HS algorithm. USS-HS suffers from inaccuracy of 
combining Hash Sketches of more than 2 sets.



Results (2)

CSS algorithm has no significant effect for key sets where all 
keys are highly correlated. But it significantly improves 
filtering for key sets with low correlations

Key sets where at least one key is highly correlated to all 
others show great gains of improvement



21/05/2009 30

Conclusions
The CSS algorithm that exploits multi-key statistics 
outperforms competitors achieving high average 
recall scores

The usage of KMV synopses instead of Hash Sketches 
improves effectiveness of USS algorithm

Multi-key queries with uncorrelated keys achieve high 
gains of recall



Conclusions (critic)
Approximate IF achieves high scalability; faster 
response time and lower message traffic

But: we have a loss in recall
Exploiting correlation between keywords achieves 
high gains of recall (esp. for uncorrelated keywords)

But: multi-key queries lead to dimensional curse
Multi-key statistics allow subscribers to select 
promising publishers easier

But: what about correlated databases
Difficulty in choosing interesting key sets
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Thank you for your attention

Questions?
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My question

Multi-key queries  with correlated keys show 
low improvements of recall when CSS 
algorithm is used. Why?


