
21/05/2009

Exploiting Correlated Keywords to
Improve Approximation Filtering

Christian Zimmer, Christos
Tryfonopoulos and Gerhand Weikum

In SIGIR 2008

21/05/2009 2

Structure
Overview
Main problem
Example
Hash Sketches
KMV Synopses
System architecture
Correlation
The algorithm USS
The algorithm CSS
Multi-key statistics
Experimental evaluation
Conclusions

21/05/2009 3

Overview
In an Information Filtering scenario users express
their interests via subscriptions and get notified when
events matching their subscriptions are published

Exact Information Filtering (IF) scenarios involve
delivering notifications from every publisher to
subscribers

In Approximate IF only a few publishers store the
user query and are monitored for new events

21/05/2009 4

Main problem
Exact IF model imposes an information overload
burden on the user

Main issue: The careful selection of few promising
publishers to store user query

Subscribers use statistical metadata to identify
promising publishers

21/05/2009 5

Main problem (continue)
Statistics are maintained in a directory on a per-
keyword basis

Possible correlation between keywords is disregarded

This work:
Improves approximate IF in a distributed setting by
exploiting correlation between keywords

21/05/2009 6

Example

Bob

q = {presidential, elections, US}

q1 = {presidential}

q2 = {elections}

q3 = {US}

Statistics for {presidential}

Statistics for {elections}

Statistics for {US}

score for publisher pi

score for publisher pi

score for publisher pi

aggregating individual scores ranking publishers

Example (continue)

Bob

Statistics for {presidential, elections}

Statistics for {elections, US}

Statistics for {US}

score for publisher pi

score for publisher pi

score for publisher pi

q = {presidential, elections, US}

q1 = {presidential, elections}

q2 = {elections, US}

q3 = {US}

aggregating individual scores +
prediction scores ranking publishers

21/05/2009 8

Structure
Overview
Main problem
Example
Hash Sketches
KMV Synopses
System architecture
Correlation
The algorithm USS
The algorithm CSS
Multi-key statistics
Experimental evaluation
Conclusions

21/05/2009 9

Hash Sketches

Usage: probabilistic estimation of the cardinality of a
multi-set S (distinct value estimation).
A number of input values are spread over a number
of output values via a hashing function.
Hash Sketch of the union of multi-sets A & B is the
bit-wise OR between Hash Sketch of A and Hash
Sketch of B.
To compute the intersection of A & B, we use:
|A ∩ B| = |A| + |B| – |A ∪ B|
But: Hash Sketches for multi-key queries impose
inaccuracy

21/05/2009 10

KMV Synopses
Assume D points are placed uniformly on the unit
interval

The expected distance between two neighboring points is
1/(D+1) ≈ 1/D
The expected value of Uk (k-th smallest point) is E[Uk] ≈ k/D
Thus, a basic DV estimator for D is D = k/Uk

Let S be a multi-set and θ(S) the domain of its
distinct values.
By applying a hash function h() to each value of θ(S)
h: θ → {0, 1, …, Μ}, the k smallest hashed values
are recorded. (KMV Synopsis for k minimum values)

KMV Synopses (continue)
Let A, B be multi-sets ,LA, LB their KMV synopses of
size kA, kB respectively and L the KMV synopses of
their intersection
DV estimator for union is D∪ = (k-1)/Uk

where k = min (kA, kB)

DV estimator for intersection is
D∩ = (K∩/k) . (k-1)/Uk

where
k = min (kA, kB)
K∩ = |{u ∈ VL: u ∈ θ(Α) ∩ θ(Β)}|
L = {h(v1), h(v2), …, h(vk)}
VL = {v1, v2, …, vk}

21/05/2009 12

System architecture
System consists of three components:

Publishers
Directory nodes
Subscribers

Distributed directory maintained by super-peers

Publishers
A publisher wants to expose its content to the system
in the form of per-key statistics (posts)
Statistics consist of inverted lists of documents
(maintained as Hash Sketches or KMV Synopses)
A publisher sends its statistics to directory nodes
periodically to help the ranking procedure made by
subscribers
Also, it is responsible for maintaining subscribers’
continuous queries

21/05/2009 13

Directory nodes
Directory nodes store statistics about the publishers’
local contents
They make them available to the subscribers
Each node is responsible for a particular subset of
keys existing in IF system
Key data set is partitioned using a DHT hash function
Directory nodes are organized using a Chord DHT
forming

21/05/2009 14

Subscribers
A subscriber seeks for publishers that will publish
interesting documents in the future

In order to subscribe to a publisher p, subscriber
forwards its continuous query q to p

There q is matched with every publication of p

21/05/2009 15

Subscribers (continue)
Let q = {k1, k2, k3, … , kn} be a continuous query
made by a subscriber s
Subscriber s

contacts directory nodes to retrieve statistics for
every key kj

ranks publishers and sends q only to top-ranked
ones

Only publishers that store q will match their content
against q
But: considering individual key statistics and not key
set statistics leads to reduced recall

21/05/2009 16

21/05/2009 17

Structure
Overview
Main problem
Example
Hash Sketches
KMV Synopses
System architecture
Correlation
The algorithm USS
The algorithm CSS
Multi-key statistics
Experimental evaluation
Conclusions

Correlation
The probability that a random document contains key
a given that it contains key b is:

Let S = {k0, k1, k2, . . ., kn} be a correlated key set.
The probability that a random document contains k0
given that it contains all other keys is:

21/05/2009 18

Correlation (continue)
All continuous queries can be considered candidates
for harvesting multi-key statistics

Consider a key pair ab that has no correlation
We consider it as interesting, if P(A|B) and P(B|A) are below
some threshold β

Interesting keyword sets
with uncorrelated keywords
with anti-correlated keywords

21/05/2009 19

The algorithm USS
Let s be a subscriber that subscribes a continuous
query q = {k1, k2 ,…, kn} in the IF system
The following steps are executed
1. For each key kj, 1 ≤ j ≤ n, subscriber s contacts directory

node d(kj) and retrieves the statistical information for key
kj

2. For publisher pi appearing in all statistics, s computes an
estimation of dfi(q) using synopses intersection techniques
and applies prediction techniques to compute a behavior
prediction score

21/05/2009 20

The algorithm USS (continue)
3. Subscriber s sends the query q only to top-
ranked publishers. These publishers only will store
q
4. Due to dynamics in publishing, steps 1-3

repeat in a periodic way

21/05/2009 21

The algorithm CSS
USS approach has problems because of single-key
statistics

higher network load
The directory has to send long lists to the subscriber
inaccuracy
synopsis for the intersection of documents containing all keys
prediction errors
single-key statistics introduce additional errors

The algorithm CSS introduces the idea of maintaining
multi-key statistics

21/05/2009 22

The algorithm CSS (continue)
Let S = {k1, k2, …, kn} be a key set. We employ a
deterministic function to select a directory node d(S)
and be responsible for this set:

1. d(S) contacts all directory nodes responsible for key kj ∈ S
and retrieves the synopses from all documents containing
that key

2. d(S) computes intersections among synopses and
computes df(S)

3. d(S) then computes the conditional probabilities for each
key kj

21/05/2009 23

Multi-key statistics
Multi-key statistics can be piggybacked on messages
that need to be send anyway

Example:
Assume that d(S) responsible for key k identified key set S
as useful
Whenever a publisher p updates its statistics for key k, d(S)
can inform p about key set S

21/05/2009 24

Multi-key statistics (continue)

Idea: computing statistics for a multi-key query by
combining statistics from subsets available in the
directory
Scoring function for calculating publisher’s score:

where predScoresi (p) represents the likelihood that p
will produce a document containing Si in the future
Intuition behind weighting prediction score with |Si|:
prediction score for small subsets dominates the sum

21/05/2009 25

Structure
Overview
Main problem
Example
Hash Sketches
KMV Synopses
System architecture
Correlation
The algorithm USS
The algorithm CSS
Multi-key statistics
Experimental evaluation
Conclusions

21/05/2009 26

Experimental evaluation
Recently proposed benchmark for evaluating p2p information
retrieval

Data set: 800,000 web documents from Wikipedia
Algorithm: distributing documents among 1,000 publishers with
controlled overlap

Continuous queries with one, two and three keys
Queries are indexed in up to 25% of publishers
Use of publication rounds; publishing 400 documents per round
Evaluation metric:
average recall = total number of notification received/total
number of documents matching the subscriptions

Results (1)

For two-key queries:
baseline algorithm: monitoring 24% of publishers to achieve average recall = 0.5
CSS algorithm: monitoring 19% of publishers to achieve equal levels of recall

Three-key queries are more selective with less matching documents, achieving higher
improvements of recall
USS-KMV algorithm outperforms USS-HS algorithm. USS-HS suffers from inaccuracy of
combining Hash Sketches of more than 2 sets.

Results (2)

CSS algorithm has no significant effect for key sets where all
keys are highly correlated. But it significantly improves
filtering for key sets with low correlations

Key sets where at least one key is highly correlated to all
others show great gains of improvement

21/05/2009 30

Conclusions
The CSS algorithm that exploits multi-key statistics
outperforms competitors achieving high average
recall scores

The usage of KMV synopses instead of Hash Sketches
improves effectiveness of USS algorithm

Multi-key queries with uncorrelated keys achieve high
gains of recall

Conclusions (critic)
Approximate IF achieves high scalability; faster
response time and lower message traffic

But: we have a loss in recall
Exploiting correlation between keywords achieves
high gains of recall (esp. for uncorrelated keywords)

But: multi-key queries lead to dimensional curse
Multi-key statistics allow subscribers to select
promising publishers easier

But: what about correlated databases
Difficulty in choosing interesting key sets

21/05/2009 31

21/05/2009 32

Thank you for your attention

Questions?

21/05/2009 33

My question

Multi-key queries with correlated keys show
low improvements of recall when CSS
algorithm is used. Why?

