Mavematuio Kpntng, Tunua EmaoTtAung YTroAoyioTwy
Avoign 2009

HY463 - Zuathuata Avaktnang MNMAnpogopiwy
Information Retrieval (IR) Systems

EupeTnpiaon, AtoBrikeuon kai Opydvwon Apxeiwv
(Indexing, Storage and File Organization)

Kegpdhaio 8

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

B Louéc Eupempiou: AiipBpwon ArieEns

» Eicaywyn - KivnTpo

= AveoTpappéva Apxeia (Inverted files)
= Aévdpa KataAAgewv (Suffix trees)

= Apxeia Ymoypagwyv (Signature files)

= 2eiplakn) Avalntnon oe Keipevo (Sequential Text Searching)
= Amdvinon Etrepwthocwy “TaipidopaTog MpotuTTou”
(Answering Pattern-Matching Queries)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Avaktnon lNAnpogopiag 2008-2009

Eupetnpiaoudc Kelpévou:Eloaywyn

= 2KOTTOG

= YxeSI00NOG OOpWYV OBeSOPEVWV TTOU EMITPETTOUV TNV
a1modOoTIK} UAOTTOINoN TNG YAWOOAG ETTEPWTNONG

= ATtAoiky TTpocéyyion: oegipiakr) avalntnon (online sequential
search)
= |KQVOTTOINTIKF) JOVO av N CUAANOYH TwV KEIPEVWV €ival MIKPRA
= Eival n pévn emAoyn av n culoyn Kelpévwy gival EUPETABANTN

= oXedlaopdg OSopwv dedopévwy, TOU ovopdlovTal
gupetApla (called indices), yia gmTdXUVONn TNG
avagnTnong

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Xpion Kataroyov

Ta cvotpoto avaktnong ondvia avalntovv v TAnpogopia arevdeiog
GTN GLALOYT EYYPAP®V. ZVVIHOMC, ¥PNOYLOTOLOVVTOL KA TAAOYOL Ol OTTO{0L
emIToyHVOLV TN dtdkacio avalntnong.

GLALOYN
E - EYYPOPOV
- ors T h
Yz]
ava(;ﬁrncsn / / : 'I . \ 5np.lol)p'yia
KataAdyov E_éé KataAdyov

AvakTtnon lNAnpogopiag 2008-2009

Avaykec N \woowv ETrepwytnong
(kal HOVTEAWY aVAKTNONG YEVIKOTEPQ)

= ATTAEG

= Bpeg Eyypaga TTou TTEPIEXOUV pIa AEEN t

= Bpeg mOOEG POopéG eppavideTal N AéEnt e Eva Eyypago

= Bpeg TIg BEoEIg TV guPavioewy NG AEENG t aTo £yypago
= [1io ouvBeTEQ

= AoyIkéG (Boolean) eTTepwTAoEIg

= €TTEPWTNOEIG yYUTNTOG (phrase/proximity queries)

= TaIpIGOPATOG TTPOTUTTOU (pattern matching)

= KOVOVIKEG eK@pAoelg (regular expressions)

= JOMIKEG ETTEPWTACEIS (structure-based queries)

>xedliafoupe 1o eUPETAPIO avaAoya Pe TO HOVTEAO avAKTNONG Kal TN YAwooa
ETTEPWTNONG

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 5

["evikn (AOYIKN) JOPPr) EVOC EUPETNPIOU

Indexing Items
S Kk k... k... k . ’
) Cji: TO KeAi TTOU QVTIOTOIXEI OTO
o d1 Cii €1 o Cit o Ci1 é\l;vpqu)o d, kar aTov 6po k;, To
c . . oo,
: d2 Ciy Cy2 . Cin . Cyp | Omolo umopei va Trepiéxer:
éva w; TIou va dnAwvel
m LY .. e e e e e L\ 'ITC(pOUOiG l']
e .)) 7 amouaia Tou k; 070 d; (1)
n dl Cl,] C2,J U U CLJ m onouécuéTﬁTa ToU k;
t oto d)
S * TIg BéOoEIG OTIG OTT0IEG O
dN cl,N c2,N s ci,N s Ct,N 6pog k eppavigetal
oto d, (av Tpayuarn
ey@avigeTar)
Epwtnpara:
Ti TTpETTel va €xEl TO KABE Cj
Mwg va uhoTroiooupe autr TN AoyiKr dour WOTE va £XOUUE KOAL atrodoaon;
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 6

AvakTtnon lNAnpogopiag 2008-2009

TexvikeG Eupetnplaopou (Indexing Techniques)

= AveoTpappéva Apxeia (Inverted files)
= n o JIadedoPEVN TEXVIKN

= Aévdpa kai MNivakeg KartaAfgewv (Suffix trees and arrays)
* ypAyopeg yia “phrase queries” aAA@ n KOTOOKEUR Kal N GUVTAPNON TOUg
gival BUCKOAGTEPN Kal akpIROTEPN

= Apxeia Ymroypagwv (Signature files)
= XpnoipgotroinBnkav oAU Tn dekacTia Tou 80. ZTTavIOTEPQ CGriUEPA.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

AveoTpaupéva Apxeia (Inverted Files)

AvakTtnon lNAnpogopiag 2008-2009

AveaTtpaupévo Apxeio

Noyikl Mopoen Eupetnpiou Mopopr} AveaTtpauuévou Eupetnpiou
Ci1

O Index terms
Ca e N e s s
[o\ | T
dy ¢y N CiN :

— L |

\w / ——

Postings lists

Apa dev OeOUEUOUHE XWPEO YIA TA .. «UNOEVIKA KEAIGY» TNG AOYIKNG
MOPQNG TOU EUPETNPIOU

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 9

Inverted Files (AveoTpauuéva apyeia)

Inverted file = a word-oriented mechanism for indexing a text
collection in order to speed up the searching task.

* An inverted file consists of:
— Vocabulary: is the set of all distinct words in the text

— Occurrences: lists containing all information necessary for
each word of the vocabulary (documents where the word
appears, frequency, text position, etc.)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 10

AvakTtnon lNAnpogopiag 2008-2009

AVECTPANMEVO apPXEIo yIa Eva POVOo £yypago Kal
atroBrnkeuon BECEWV ENPAVIONS KABE AEENG

Keipevo

That house has a garden. The garden has many flowers. The flowers are beautiful

1 6 12 1618 25 29 36 40 45 54 58 66 70
Inverted File: Vocabulary Occurrences
beautiful 70
flowers 45, 58
garden 18,29
house 6

Ti dAdo Ba kdvare (kparouoare) av gixaue ToAAG éypapa kai BéAaue va uAomoinoouue 1o
Aiavuopartiké MovréAo;

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

AvVECTPAPHEVO apXEIo yIa TTOAAG £yypaa,

kal Bapuvon tf-idf
To df (document frequency, TTou pa e1dleTa)
(docu . quency, Trou H' 5 Xpe! i,T ! To Bapog tf (term frequency)
yla 1o IDF) apkei va amoBnkeuTei pia gopd
Vocabulary ESW Ba uTTopoUcapE va EXOUHE
Kol TIG Ofoeig eppaviong TG
Index terms df AéENG computer oTo £yypago D
computer 3———| Dp4 | | |
database 5 —t— D.,3 | |
LN]
science 4 — | Dy, 4 | | | |
system | T—{,7
Vocabulary file Postings lists
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

AvakTtnon lNAnpogopiag 2008-2009

Mapddelyua aveoTPAPUEVOU OPXEIOU OTTOU VIO KABE AECN i
Kl £yypago j kpatape pévo To freq;

Document Corpus

Inverted File

CS463 - Information Retrieval Systems

Doc Text
1| Pease porridge hot
2 | Pease porridge cold
3 | Pease porridge in the pot
4 | Pease porridge hot, pease porridge not cold
5 | Pease porridge cold, pease porridge not hot
6 | Pease porridge hot in the pot
Vocabulary Inverted Lists
cold {1 [<arsl<s1>]
hot —{ <>l <a1> 1 <515 <615 |
in <6,1>
not
pease <ll>| <2]>| <2]>| <42>| <52>| <6l>l
porridge <11>[<21>1<31>[<42>1<52> [<61>
pot <6,1>
the

Yannis Tzitzikas, U. of Crete 13

Another example

term
1 Algorithms
2 Application
3 Delay
4 Differsntial
5 Bouations
¢ Implemsntation
7 Integral
g8 Introducticn
9 Methods
10 Nonlinesar
11 oOrdinary
12 llation
13 1
14 Problem
15 Systems
16 Theory
CS463 - Information Retrieval Systems

Q.
=

]

L P R e L vy
[a3 .

[Ts]

L T S T T T T S T R T S = I I % I V%

Ld oo O s o

document ids

5 7

17

12

8 10 11 12 13 14 15

2 4 8 10 1 12 13 14 15
7

17

6

13

10

12

13

7

8 9

11 1z 17

Yannis Tzitzikas, U. of Crete 14

AvakTtnon lNAnpogopiag 2008-2009

Physical Organization of Inverted Files

main memory

2007 /8, Karl Aberer, EPFL-IC, Laboratnire de systémes d'informations répartis

Access Index file Posting file
structure Key, #Docs, Pos Doc# Document file
k1 f1 pl Di D1 abcdefghijkl
k2 f2 p2 D] D2 abedefghijkl
\ . D3 abedefghijkl
. ' Di abedefghijkl
km fm pm :
access structure fo one entry for DJ abcdefghijkl .
the vocabulary can be each term of
B+-Tree, Hashing the vocabulary '
or Sorted Array . . .
space requirement space requirement O(’) Dk Dn abedefghijkl
0. 4(‘5:’0' o occurrences of words are documents stored
(Heap's faw) stored ordered lexicographically in a contiguous file
.
) I

space requirement O() space requirement O{rl)/

Igformation Retrieval - &

secondary sfora

=1 :u‘

[S T O R S

Differential

L

CS463 - Information Retrieval Systems

B1 A Course on Integral Equations

B2 Aftractors for Semigroups and Evolution
Equations

B3 Automatic Differentiation of Algorithms:
Theory, Implementation, and Application

B4 Geometrical Aspects of Partial Differential
Equations

BE Tdeals, Varieties, and Algorithms: An

Introduction to Computfational Algebraic
Geometry and Commutative Algebra

B& Introduction to Hamiltenian Dynamical Systems
and the N-Body Problem

B7 Knapsack Problems: Algorithms and Computer
Implementations

B8 Methods of Solving $ingulctr‘ Systems of
Ordinary Differential Equations

BO Monlinear Systems

B10 Ordinary Differential Equations

B11 Oscillation Theory for Neutral Differential
Equations with Delay

Yannis Tzitzikas, U. of Crete

16

AvakTtnon lNAnpogopiag 2008-2009

AvaoTtpaupévo Apxeio: Kataokeun kal Avalrtnon

Y1oBaBpo/ETavaAnyn: Tries

Tries
= multiway trees for stroring strings

= able to retrieve any string in time proportional to its length
(independent from the number of all stored strings)

= Description

= every edge is labeled with a letter
= searching a string s

= start from root and for each character of s follow the edge that is
labeled with the same letter.

= continue, until a leaf is found (which means that s is found)

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete

AvakTtnon lNAnpogopiag 2008-2009

Tries: [Napadeiyua

1 6 911 1719 24 28 33 40 46 50 55 60

‘This is a text. A texthas many words. Words are made from letters.

Vocabulary | | Vocabulary (ordered) Vocabulary trie

text (11) letters (60) letters:60
text (19) made (50)
many (28) | | many (28)
words (33) | |text (11,19)

words (40) | | words (33,40)
made (50)

letters (60)

Epwrnaon: ©a utmmopouae éva trie va fonbnaei 1n oteAéxwaon Keluévou
Baoer ¢ Texvikng Successor variery?

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 19

Mapdadeiyua augnTiKAG dnuioupyiag evog trie

1] 12 16 18 25 29 3 40 45 54 5B a6 70

the house has a garden. the garden has many flowers. the flowers are beautiful

(each word = one document, position = document identifier)

[]
the: 1

.

house: & the: 1

a: 16 garden: 18 the: 1
a
has: 12 house: & has: 12 house: 6
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 20

AvakTtnon lNAnpogopiag 2008-2009

10

AveoTpaupéva Apxeia: AtTrairioeig Xwpou

HIKPEC pEYAAeg

m

k1

|

k2]

\/ Postings lists

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 21

AveoTtpaupéva Apxeia: ATTaitnoelig Xwpou

Notations
* n: the size of the text (of all documents in the collection)

* V: the size of the vocabulary

For the Vocabulary:
= Rather small.

= According to Heaps’ law (fo be described in a subsequent lecture) the
vocabulary grows as O(nf), where g is a constant between 0.4 and 0.6 in
practice. So V ~ sqrt(n) // dpa avéhoyo Tng TETpaywVIKAG pifag Tou pey£Boug TNG GUAOYAG)

For Occurrences:
= Much more space.

= Since each word appearing in the text is referenced once in that structure (i.e.
we keep a pointer), the extra space is O(n)

= To reduce space requirements, a technique called block addressing is used

. . . B . how?
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 22

AvakTtnon lNAnpogopiag 2008-2009

11

Block Addressing

= The textis divided in blocks
= The occurrences point to the blocks where the word appears

CS463 - Information Retrieval Systems

Yannis Tzitzikas, U. of Crete 23

Block Addressing: Example

That house has a garden. The garden has many flowers. The flowers are beautiful
1 6 12 1618 25 29 36 40 45 54 58 66 70
beautiful 70
Vocabulary flowers Occurrences | 4358
garden 18,29
house 6
Block 1 Block 2 Block 3 Block 4
’ That house has a‘ garden. The garden has ‘many flowers. The flowers ‘are beautiful
beautiful 4
Vocabulary flowers Occurrences |-
garden 2
house 1
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 24

AvakTtnon lNAnpogopiag 2008-2009

12

Block Addressing

= Advantages:
= the number of pointers is smaller than positions
= all the occurrences of a word inside a single block are collapsed to one reference

= (indices of only 5% overhead over the text size can be obtained with this
technique. Of course this depends on the block size).

= In many cases instead of defining the block size, we define the number of
blocks (in this way we know how many bits we need per pointer)
= Disadvantages:
= online sequential search over the qualifying blocks if exact positions are required
= e.g. for finding the sentence where the word occurs
= e.g. for evaluating a context (phrasal or proximity) query

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

25

Size of Inverted Files as percentage of the size of
the whole collection

45% of all words are stopwods

Index Small collection Medium collection Large collection
(1Mb) (200Mb) (2Gb)
Addressing words 45% 73% 36% 64% 35% 63%
Addressing 64K blocks 27% 41% 18% 32% 5% 9%
Addressing 256 blocks 18% 25% 1.7% 2.4% 0.5% 0.7%
Without All words Without All words Without All words
stopwords stopwords stopwords

Addressing words: 4 bytes per pointer (2432 ~ giga)
Addressing 64K blocks: 2 bytes per pointer
Addressing 256 blocks: 1 byte per pointer

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

26

AvakTtnon lNAnpogopiag 2008-2009

13

Searching an inverted index

Searching an inverted index

General Steps:

1/ Vocabulary search:
— the words present in the query are searched in the vocabulary

2/ Retrieval occurrences:
— the lists of the occurrences of all words found are retrieved

3/ Manipulation of occurrences:
— The occurrences are processed to solve the query

— If block addressing is used we have to search the text of the blocks in order to
get the exact positions and number of occurrences

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

28

AvakTtnon lNAnpogopiag 2008-2009

14

1/ Vocabulary search

As Searching task on an inverted file always starts in the vocabulary, it is
better to store the vocabulary in a separate file

— this file is not so big so it is possible to keep it at main memory at search
time

Suppose we want to search for a word of length m.

The structures most used to store the vocabulary are hashing, tries or B-trees.
Options:

= Cost of searching a sequential file: O(V)

= Cost of searching assuming hashing: O(m)

= Cost of searching assuming tries: O(m)

= Cost of searching assuming the file is ordered (lexicographically): O(log V)

— this option is cheaper in space and very competitive

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 29

1/ Vocabulary Search (lIl)

Remarks

= prefix and range queries
= can also be solved with binary search, tries or B-trees but not with hashing

= context queries
= are more difficult to solve with inverted indices
1. each element must be searched separately and
2. alist (in increasing positional order) is generated for each one

3. The lists of all elements are traversed in synchronization to find places
where all the words appear in sequence (for a phrase) or appear close
enough (for proximity).

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 30

AvakTtnon lNAnpogopiag 2008-2009

Inverted Index: A general remark

Experiments show that both the space requirements and the amount of text
traversed can be close to O(n*0.85). Hence, inverted indices allow us to
have sublinear search time and sublinear space requirements. This is not
possible on other indices.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

31

Constructing an Inverted File

AvakTtnon lNAnpogopiag 2008-2009

16

Constructing an Inverted File

= All the vocabulary is kept in a suitable data structure storing for each
word a list of its occurrences

= e.g.in a trie data structure

= Each word of the text is read and searched in the vocabulary

= f a trie data structure is used then this search costs O(m) where m the
size of the word

= |f it is not found, it is added to the vocabulary with an empty list of
occurrences and the new position is added to the end of its list of
occurrences

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

33

Constructing an Inverted File (Il)

= Once the text is exhausted the vocabulary is written to disk with
the list of occurrences. Two files are created:
= in the first file, the list of occurrences are stored contiguously

= in the second file, the vocabulary is stored in lexicographical order and, for
each word, a pointer to its list in the first file is also included.

= The overall process is O(n) time

2nd file 1st file

Trie: O(1) per text character

Since positions are appended (in the postings
file) O(1) time

It follows that the overall process is O(n)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

34

AvakTtnon lNAnpogopiag 2008-2009

17

Example of constructing an inverted file
(in our example we assume that:
each word = one document, position = document identifier)

Once the complete trie

structure is constructed
the house has a garden. the garden has many flowers. the flowers are beautiful the inverted file can be

1 & 12 16 18 25 29 36 40 45 54 58 66 7O

derived from it:

The trie is traversed

_—“’—-- —
a—"b_— ——t top-down and left-to-
a: 16 o ® right.
beautiful: 70 many: 40 the: 1, 25, 54
" flowers: 45, 58
® = whenever an index term
are: 66 has: 12 36 house: & is encountered, it is added
s ' to the end of the inverted
a: 16 file. Note that if a term is
are: 6_6 prefix of another term
‘I:rauhful:“ ;053 (such as "a" is prefix of
) . owers: . Woram i
inverted file T oongan: 18, 20 16, 66, 70, 45, 58, 18, 29, 12, 36, 6, 40 are”) index terms can
ans_ 12 36)) occur on internal nodes of
house: 6 postings file the trie.
many: 40
the: 1. 23. 54 = analogously the posting
file is derived.
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 35

Example (cont)

» The trie structure constructed is a possible access structure to the index file in
main memory. Thus the entries of the index files occur as leaves (or internal
nodes) of the trie. Each entry has a reference to the position of the postings file
that is held in secondary storage.

1 L] 12 & 12 25 29 I] 45 54 68 66 TO

the house has a garden. the garden has many flowers. the flowers are beautiful

@] "y
baau'riful@ .
r \ :
are tj | has: 8 house: 10

—— i
16, 66, 70, 45, 58, 18, 29, 12, 36, 6, 40, 1, 25, 54
postings file
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 36

AvakTtnon lNAnpogopiag 2008-2009

18

What if the Inverted Index does not fit in main memory ?

A technique based on partial Indexes:
= Use the previous algorithm until the main memory is exhausted.

= When no more memory is available, write to disk the partial index [,
obtained up to now, and erase it from main memory

= Continue with the rest of the text

Once the text is exhausted, a number of partial indices I; exist on
disk

The partial indices are merged to obtain the final index

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Merging two partial indices I1 and 12

= Merge the sorted vocabularies and whenever the same word
appears in both indices, merge both list of occurences

= By construction, the occurences of the smaller-numbered index
are before those at the larger-numbered index, therefore the lists
are just concatenated

= Complexity: O(n1+n2) where n1 and n2 the sizes of the indices

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

AvakTtnon lNAnpogopiag 2008-2009

Example of two partial indices and their merging

concatenate inverted lists

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

16 12 16 18 25 20 36 0 45 54 =8 86 70
the house has a garden. the garden has many flowers. the flowers are beautiful
a: 16 are: 66
inverted gdf‘d@.ﬂ: 18, 29 beautiful: 70 inverted
file T1 has: 12, 36 flowers: 45, 58 e 17
house: & many: 40
the: 1, 25 the: 54
a: 16
are: 66
beautiful: 70
flowers: 45, S8
garden: 18, 29
has: 12, 36
house: 6
many: 40
1,25 +54 -» 1, 25, 54 the: 1, 25, 54

total cost: Ofh log.(n/M))
M size of memory

Merging partial indices to obtain the final

‘ final index
level 3
I ‘
level 2
| s |
level 1
a ‘ ‘17 ‘ ‘Is ‘ initial dumps
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

AvakTtnon lNAnpogopiag 2008-2009

20

Merging all partial indices: Time Complexity

Notations

n: the size of the text
V: the size of the vocabulary
M: the amount of main memory available

The total time to generate partial indices is O(n)

The number of partial indices is O(n/M)

To merge the O(n/M) partial indices are necessary log,(n/M) merging levels
The total cost of this algorithm is O(n log(n/M))

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

41

Maintaining the Inverted File

Addition of a new doc
— build its index and merge it with the final index (as done with partial indexes)

Delete a doc of the collection

— scan index and delete those occurrences that point into the deleted file
(complexity: O(n) : extremely expensive!)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

42

AvakTtnon lNAnpogopiag 2008-2009

21

Evaluating Phrasal and Proximity Queries with
Inverted Indices

e Phrasal Queries

— Must have an inverted index that also stores positions of each keyword in a
document.

— Retrieve documents and positions for each individual word, intersect
documents, and then finally check for ordered contiguity of keyword
positions.

— Best to start contiguity check with the least common word in the phrase.

* Proximity Queries

— Use approach similar to phrasal search to find documents in which all
keywords are found in a context that satisfies the proximity constraints.

— During binary search for positions of remaining keywords, find closest
position of k; to p and check that it is within maximum allowed distance.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 43

ATtroTtipnon Boolean eTTepwTAcEwyY UE Xpron
QAVECTPOUMEVWV APXEIWV

ATTOTiUNON ME XPAON AVECTPAUMEVWYV APXEIWV
— Primitive keyword: Retrieve containing documents using the inverted index.
— OR: Recursively retrieve e, and e, and take union of results.
— AND: Recursively retrieve e, and e, and take intersection of results.
— BUT: Recursively retrieve e, and e, and take set difference of results.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 44

AvakTtnon lNAnpogopiag 2008-2009

Inverted Index: KatakAgida

= |s probably the most adequate indexing technique

Appropriate when the text collection is large and semi-static

If the text collection is volatile online searching is the only option
Some techniques combine online and indexed searching

Eidaue TpéT1TOUG VIO VO HEIWOOUHE TO HEYEBOG EVOG AVECTPAUUEVOU EUPETNPIOU
(Aégeig atTokAelopoU, block addressing). ©a doUpe kal GAAOUG TPOTTOUG OTO
paBnua Trepi ocupTTieong

(ouyKeKpIPEVA TPOTTOUG PEIWONG TOU XWPEOU TTOU KATAAAUBAVOUV o1 AiOTEG EUPAVICEWY)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

45

Aévdpa kal Mivakes KataAAgewyv
(Suffix Trees and Suffix Arrays)

AvakTtnon lNAnpogopiag 2008-2009

23

Aévdpa kai MNivakeg KataAngewv
(Suffix Trees and Arrays)

+ Kivnrpo
— Ipriyopn atroTiunon Twv phrase queries
— H évvoia g Aégng (otnv ottoia Bacifovral Ta inverted files) dev uttdpyel o€
GANEG EQAPUOVYEG (TT.X. OTIG YEVETIKEG BAOEIG DESOUEVWIV), APa UTTAPXEI
avaykn yia dIaQOPETIKEG DOPEG BEDOUEVWIV.

Mia aAugida DNA eivar pia akoAouBia atréd diatetaypéva (euydpia BAcEwy.

Ymapyouv 4 Bdoeig: n adevivn (A), n youavivn (G), n kutoaivn (C) kai n Bupivn (T).

KdaBe Ceuydpl Bdoswyv Tou DNA atroTteAeital atmé SIapopeTIKEG BAOEIG.

Juykekpiyéva, n adevivn (A) putropei va guvdéetal poévo pe Tn Bupivn (T), evw n youavivn (G) ptropei
va ouvdéetal povo pe Tnv kutooivn (C). ‘Eva mapddeiypa amootrdopartog aAugidag DNA
aKoAoubei:

AGGCTACCCTTA
TCCGATGGGAAT

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 47

Aévdpa kai MNivakeg KataAngewv
(Suffix Trees and Arrays)

"evikn 10€a
BA£TTOUE OAO TO KEipEVO WG pia pakpid cupBolooelpd (long string)
Otwpoupe KAOe BEan Tou Kelpévou wg KaTtdAngn keipévou (text suffix)
Ao kataAAgeig Tou Eekivouv aTTd BIAQPOPETIKEG BEoEIG gival As€IKoypa@IKa
OIOPOPETIKES
* dpa k&Be kKatdAnén TpoadiopileTal povadikéd atrd Tn B€on TG apxNnNSg NG
EmAoyég
» Eupetnpiafoupe OAeg TIG BECEIG TOU KEIPMEVOU
» Eupetnpidfoupe kamroleg Béoeig Tou Kelyévou (T1.X. HMOVO TIG ApPXEG
AeCewv)
— Apa £dW £XOUME TNV £vvola TOU onueiou eupeTnpiou (index point)
— Ta onueia 1Tou dev cival onueia eupetnpiou dev gival TTapaddoiua
(deliverable)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

48

AvakTtnon lNAnpogopiag 2008-2009

24

Mapadelypa KaTaAAgewy
(BewpwvTag wg onueia eupetnpiou (index points) TIG APXES TWV AEEEWV)

This is a text. A text has many words. Words are made from letters.
!

letters.

ade from letters.

Words are made from letters.

words. Words are made from letters.

many words. Words are made from letters.

text has many words. Words are made from letters.

text. A text has many words. Words are made from letters.

49

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

Aévdpa Katahnéewv (Suffix Trees)

Aévdpo KaTtaAnéewv:
— To &évdpo kataAnewv evog kelwévou eival éva trie Tavw ge OAeg TIG
KOTOAAEEIC TOU KEIPEVOU.
— O BeiKTEG TTPOG TO KEIPEVO aTToBNKEUOVTAl OTA QUAAQ TOU DEVOPOU.

MNa peiwon Tou xwpou, To trie CUPTTUKVWVETAI WG éva Patricia tree
— Patricia = Practical Algorithm To Retrieve Information Coded in
Alphanumerical

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 50

AvakTtnon lNAnpogopiag 2008-2009

25

Suffix Trie yia 1n Aégn "cacao”
(BewpwvTag KABe BEon WG onueio eupeTnpiou)

KataAAgeig:
o}

ao

cao

acao
cacao

CS463 - Information Retrieval Systems

Trie KataAn&ewv

Yannis Tzitzikas, U. of Crete

51

KataAngeig:
0

ao

cao

acao
cacao

CS463 - Information Retrieval Systems

M cao

cac .
caca .

cacao

Yannis Tzitzikas, U. of Crete

52

AvakTtnon lNAnpogopiag 2008-2009

26

Mapddelyua KaTtaAngewv
kai Tou avrioTtoixou Suffix Trie

1 6 911 1719 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from Jetters.

‘ ‘ letters.
made from letters.
Words are made from letters.
words. Words are made from letters.
many words. Worﬂs are made from letters.

text has many words. Words are ma

from letters.
text. A text has marly words. Words are made from letters.

Suffix Trie

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete 53

Suffix tree
= Suffix trie compacted into a Patricia tree

This involves compressing unary paths, 1.e. paths where each node has just
one child.

If unary paths are not present, the tree has O(n) nodes instead of the worst-
case O(n?) of the trie.

Suffix Trie Suffix Tree

CS463 - Information Retrieval Systems

Yannis

Ti givar auroi o1 apibuoi; ‘

AvakTtnon lNAnpogopiag 2008-2009

27

[Mivakeg KataAngewyv (Suffix arrays)

Mivakeg KataAhcewv (Suffix arrays)
(Space efficient implementation of suffix trees)

= Suffix trees have a space overhead of 120%-240% over the text
size (assuming that index points = word beginnings)
= assuming node size of 12 or 24 bytes

= Now we will present a data structure with space requirements
like those of the inverted file (~40% overhead over the text size)

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

56

AvakTtnon lNAnpogopiag 2008-2009

28

Mivakeg KataAfgewv (Suffix arrays)

£ (Space efficient implementation of suffix trees)

Mivakac KataAnZewv:
* [livakag pe BeIKTEG TTPOG OAEG TIG «KATAANEEIGH O€ Ae€IKOYPa@IKN OEIpd
* Ta va Tov dnuioupyfooupue apkei pia depth-fist-search didoxion Tou suffix tree.

1 6 911 1719 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from letters.

Suffix Array

I m m t t w w

msp [60[50|28]19] 1140 33|

Suffix Tree

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

57

LW Mivakec KataAncewv(ll)

1 6 911 1719 24 28 33 40 46 50 55 60

This is a text. A text has many words. Words are made from letters.

Suffix Array
Suffix Tree

I m m t t w w

ms) [60]50[28[19]11]40]33]

O@éAn:
* Meiwon xwpou
— kpatdpe 1 8eiktn avd katdAngn (7 kataAAgelg,
TTivakag 7 KeAIwV)
— (space overhead ~ that of inverted files)
* AuvatotnTta binary search

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

58

AvakTtnon lNAnpogopiag 2008-2009

29

Mivakeg KataAngewv(lIl)

1 6 911 1719 24 28 33

40 46 50 55 60

This is a text. A text has many words. Words are made from letters.

Suffix Tree

=)

Suffix Array

I m m t t w w

[6050]28]19]11]40]33]

Avalitnon Bdoel Suffix Array

MNa va doupe av uttdpxel pia KatdAnén oTo
Keipevo kavoupe duadiki avaditnon (binary
search) 01O TTEPIEXOUEVO TWV OEIKTWV

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

59

[Mivakeg KataAngewv(lV)

Avalntnon Baoel Suffix Array

lMNa va doupe av uTTdpxel hia KAaTaAngn oTo Keipevo kavoupe duadikr) avalrtnon
(binary search) oTo TTEPIEXOUEVO TWV BEIKTWV

\ Mrropei va 0dnyroel o€ TToAAG disk accesses

Therefore if vocabulary is big (and the suffix array does not fit in main
memory), supra indices are employed
— they store the first | characters for each of every b entries of the suffix array

Supra-Index |[lett| , [text| | | word HJ =4, b=3

Suffix Array [60]50 2819 11]40]33]
I m m t t w w
CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

60

AvakTtnon lNAnpogopiag 2008-2009

30

Mivakeg KataAngewv (ue supra-index) Evavri
AveoTpapuévwy Apxeiwv

= For word-indexing suffix array, it has been suggested that a new
sample could be taken each time the first word of the suffix
changes, and to store the word instead of | characters

= This is exactly as having a vocabulary of the text plus pointers to
the array

= The only important difference between this structure and an
inverted index is that the occurrences of each word in an
inverted index are stored by text position, while in a suffix array
they are stored lexicographically by the text following the word.

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

61

Aévdpa kai MNivakeg KataARgewv
KoéoTog AtroTipnong Etrepwtroswyv

+ KéoT0g avalntnong piag cuPBoAoCcEIpdg HAKOUG M XAPOKTHPWV
— O(m) oTtnv TTEPITITWON TwV BEVOPWYV KaTaARgewV (suffix tree)
— O(log n) oTnv TrePITITWON TV TTIVAKWVY KaTtaAAgewv (suffix array)
* BuunBeite o1l KABE onueio Tou Kelévou TTPOCdIoPICel Yia KATAANEN

« Armotiynon phrase queries
— H ¢pdon avalnreitar cav va Atav yia cupyBoAoceipd

« ATtroTtignon proximity queries
— proximity queries have to be resolved element wise

CS463 - Information Retrieval Systems Yannis Tzitzikas, U. of Crete

62

AvakTtnon lNAnpogopiag 2008-2009

31

