Evgetnpioon
MEPOX II1

Ene&eoyaoioa Ketpevoo

Avéxrnon Thngogogieg 2009-2010

Content

® Recap: Faster posting lists with skip pointers, Phrase and
Proximity Queries, Dictionary

= Wild-Card Queries
Permutex
k-gram indexes

* Spelling Corrections
= Pattern Matching

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

‘ Aveotpappévo Apyeto

Mopodn Aveotpappévou Eupetnpiou
Noyikr) Mopdn Eupetnpiou

Cis
Index terms
K —— | | |

dy ¢y 2.1 1 1
S PR B -
. o, o (\
dN Cin Con Cin ee | | | |

I

Vo [|

Vocabulary Postings lists

Avéxrnon Thngogogieg 2009-2010

Inverted Files (Aveotpappeva apyeto)

Inverted file = a word-oriented mechanism for indexing a text
collection in order to speed up the searching task.

An inverted file consists of:
— Vocabulary: is the set of all distinct words in the text

— Occurrences: lists containing all information necessary for
each word of the vocabulary (documents where the word
appears, frequency, text position, etc.)

— Tu €iboug mAnpodopia kpataue otig posting lists e§aptdtar andé 1o Aoylké povtélo kat to
HOVTEAO EPWTHOEWV

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Searching an inverted index

General Steps:

1. Vocabulary search:
the words present in the query are searched in the vocabulary

2. Retrieval occurrences:
the lists of the occurrences of all words found are retrieved

3. Manipulation of occurrences:
The occurrences are processed to solve the query

Avéxrnon Thngogogieg 2009-2010

Augment postings with (at indexing time)
41 128
81141 [+148 [641128

31

H

Why?

To skip postings that will not figure in the search results.

How?
Where do we place skip pointers?

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Phrase queries

Want to be able to answer queries such as “stanford university” —
as a phrase

Why?
0 The concept of phrase queries has proven easily

understood by users; one of the few “advanced search”
ideas that works -- 10% explicit phrase queries (“”)

o Many more queries are implicit phrase queries (such as
person names)

Avéxrnon Thngogogieg 2009-2010

1. Biword Indexes:

Index every consecutive pair of terms in the text as a phrase

2. Positional Indexes:

In the postings, store, for each term the position(s) in which tokens of it appear

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Proximity queries

LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
o Again, here, /k means “within k words of”.

Clearly, positional indexes can be used for such
gueries; biword indexes cannot.

Avéxrnon Thngogogieg 2009-2010

Positional index size

We can compress position values/offsets

Nevertheless, a positional index expands postings storage substantially

Nevertheless, a positional index is now standardly used
because of the power and usefulness of phrase and
proximity queries ... whether used explicitly or implicitly
in a ranking retrieval system.

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Combination schemes

= These two approaches can be profitably combined

o For particular phrases (“Michael Jackson”, “Britney Spears”) it is
inefficient to keep on merging positional postings lists

= Even more so for phrases like “The Who”

In general:

Potential biwords: common (based on recent query behavior)
and expensive

Avéxrnon Thngogogieg 2009-2010 11

| Dictionary data structures

» Two main choices:
o Hash table
o Tree

= Some IR systems use hashes, some trees

Avéxrnon Thngogogicg 2009-2010 12

AvakTtnon NMAnpogopiag 2009-2010

Trees

Simplest: binary tree
More usual: B-trees

Trees require a standard ordering of characters and hence
strings ... but we standardly have one

Pros:
0 Solves the prefix problem (terms starting with hyp)
Cons:
o Slower: O(log M) [and this requires balanced tree]

0 Rebalancing binary trees is expensive
But B-trees mitigate the rebalancing problem

Avéxrnon Thngogogieg 2009-2010

WILD-CARD QUERIES

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Wild Card Queries

B-trees handle prefixes

Suffix B-trees to handle * at the beginning

Other solutions:
= permuterms

= k-grams

= Both build additional data structures

= Used to locate possible matches + a filtering step to check for
false positives

Avéxrnon Thngogogieg 2009-2010 15

Permuterm index

A special symbol S to indicate the end of a word

Construct a permuterm index, in which the various rotations of each term
(augmented with $) all link to the original vocabulary term.

Permuterm vocabulary (the vocabulary consists of all such permutations)

A query with one wildcard

= Rotate so that the wildcard (*) appears at the end of the query
= Lookup the resulting string in the permuterm index (prefix query — trailing

wildcard) and get all words in the dictionary
Example: word, walled, w*d, w*r*d

Avéxrnon Thngogogicg 2009-2010 16

AvakTtnon NMAnpogopiag 2009-2010

| Bigram (k-gram) index

| A k-gram is a sequence of k characters |

= Use as special character $ to denote the beginning or the end of a term

= Inak-gram index, the dictionary contains all k-grams that occur in any term
in the vocabulary

= Maintain a second inverted index from bigrams to dictionary terms that
match each bigram.

= Gets terms that match AND version of our wildcard query.

Example: word, walled, w*d, w*r*d

Avéxrnon Thngogogieg 2009-2010

SPELLING CORRECTION

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

Spell correction

Britney Spears

Britian spears

Britney’s spears

Brandy spears

Pritanny spears (brittany spears)

(all corrected in Google)

Avéxrnon Thngogogieg 2009-2010 19

Spell correction

Two principles for correcting:

1. Of various alternatives: choose the nearest one (proximity,
distance)

2. When two correctly spelled queries are (nearly) tied, select the
most common one (common? #occurrences in the collection,
most common among queries typed in by the users)

Avéxrnon Thngogogicg 2009-2010 20

AvakTtnon NMAnpogopiag 2009-2010

10

Spell correction

Two principal uses

o Correcting document(s) being indexed
o Correcting user queries to retrieve “right” answers

Avéxrnon Thngogogieg 2009-2010 21

Document correction

Especially needed for OCR’ed documents
o Correction algorithms are tuned for this: rn/m
o Can use domain-specific knowledge

E.g., OCR can confuse O and D more often than it would confuse O and |
(adjacent on the QWERTY keyboard, so more likely interchanged in

typing).
But also: web pages and even printed material has typos
Goal: the dictionary contains fewer misspellings
But often we don’t change the documents but aim to fix the query-document
mapping

Avéxrnon Thngogogicg 2009-2010 22

AvakTtnon NMAnpogopiag 2009-2010

11

Query mis-spellings

Our principal focus here

o E.g., the query Alanis Morisett

We can either

0 Retrieve documents indexed by the correct spelling, OR

0 Return several suggested alternative queries with the
correct spelling
Did you mean ... ?

Avéxrnon Thngogogieg 2009-2010 23

Spell correction

Two main flavors:
o Isolated word

Check each word on its own for misspelling
Will not catch typos resulting in correctly spelled words
e.g., from — form
o Context-sensitive
Look at surrounding words,
e.g., | flew form Heathrow to Narita.

Avéxrnon Thngogogicg 2009-2010 24

AvakTtnon NMAnpogopiag 2009-2010

12

Isolated word correction

Fundamental premise — there is a lexicon from
which the correct spellings come

Two basic choices for this

o A standard lexicon such as

Webster’s English Dictionary

An “industry-specific” lexicon — hand-maintained
0 The lexicon of the indexed corpus

E.g., all words on the web

All names, acronyms etc.

(Including the mis-spellings)

Avéxrnon Thngogogieg 2009-2010

25

Isolated word correction

Given a lexicon and a character sequence Q, return
the words in the lexicon closest to Q

What’s “closest”?

o We'll study several alternatives
Edit distance (Levenshtein distance)
Weighted edit distance
n-gram overlap

Avéxrnon Thngogogicg 2009-2010

26

AvakTtnon NMAnpogopiag 2009-2010

13

Edit distance

Given two strings S; and S,, the minimum number of
operations to convert one to the other

Operations are typically character-level
0 Insert, Delete, Replace, (Transposition)

E.g.,

o the edit distance from dof to dog is 1

o From catto actis 2 (Just 1 with transpose.)
o from cat to dog is 3.

Avéxrnon Thngogogieg 2009-2010

27

Edit distance

Generally found by dynamic programming.

Oa t0 S0UUE OTN CUVEXELN

See http://www.merriampark.com/ld.htm for
a nice example plus an applet.

Avéxrnon Thngogogicg 2009-2010

28

AvakTtnon NMAnpogopiag 2009-2010

14

Weighted edit distance

As above, but the weight of an operation depends on
the character(s) involved

0 Meant to capture OCR or keyboard errors, e.g. m more
likely to be mis-typed as nthan as g

0 Therefore, replacing m by n is a smaller edit distance than
by q
0 This may be formulated as a probability model

Requires weight matrix as input
Modify dynamic programming to handle weights

Avéxrnon Thngogogieg 2009-2010

29

Using edit distances

1. Given query, first enumerate all character
sequences within a preset (weighted) edit
distance (e.g., 2)

Intersect this set with list of “correct” words
Show terms you found to user as suggestions

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

15

Using edit distances

= Alternatively,
o We can look up all possible corrections in our inverted
index and
= return all docs ... slow, or

= we can run with a single most likely correction

= The alternatives disempower the user, but save a
round of interaction with the user

Avéxrnon Thngogogieg 2009-2010

31

Using edit distances

Google

Query: Powr

Mnnwc evvoeite: power Epdavion 2 KUPLOTEPWY ATIOTEAECUATWY

Power Magazine Online

Av g€xete Egxdoel ta doa avadépape oto Part I, £xete To POWER 128 TpOXELPO KOl TIAUE VO
EavadoU e TL ylvetal Le Ta KauoaépLa, OTav EEUMOUKAEPOUY amo TLG ...

Power Test - Mitsubishi EVO X by NS Racing - Tests - Image Gallery

www.powermag.gr/ - Npoowplvd amoBnkeupévn - MapOUoLEg

Power - Wikipedia, the free encyclopedia

- [Metddpaon avtig tng oglidog]

Power (philosophy), the ability to control one's environment or other entities ... Power (physics), the
rate at which work is performed or energy is ...

en.wikipedia.org/wiki/Power - [Tpoowpvd aroBnkevpévn — NapOoUoLeg

ATIOTEAECLOTA LA TOUG OPOUG: POWT

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

16

Edit distance to all dictionary terms?

Given a (mis-spelled) query — do we compute its edit
distance to every dictionary term?

o Expensive and slow

o Alternative?

How do we cut the set of candidate dictionary
terms?

Simple: words that start with the same letter

Other possibility : use n-gram overlap for this

o This can also be used by itself for spelling correction.

Avéxrnon Thngogogieg 2009-2010

n-gram overlap

Enumerate all the n-grams in the query string as well
as in the lexicon

Use the n-gram index (recall wild-card search) to
retrieve all lexicon terms matching any of the query
n-grams

Threshold by number of matching n-grams

o Variants — weight by keyboard layout, etc.

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

17

Matching trigrams

Consider the query lord — we wish to identify words
matching 2 of its 3 bigrams (lo, or, rd)

lo {toc—>| alone [lord | sloth
or ii———> border%» lord — morbicﬂ

vd io——>| grdent | border |

<L

card

A
'Standard postings “merge” will enumerate ... |

Avéxrnon Thngogogieg 2009-2010 35

Example with trigrams

Suppose the text is november

o Trigrams are nov, ove, vem, emb, mbe, ber.
The query is december

o Trigrams are dec, ece, cem, emb, mbe, ber.

So 3 trigrams overlap (of 6 in each term)

How can we turn this into a normalized measure of
overlap?

Avéxrnon Thngogogicg 2009-2010 36

AvakTtnon NMAnpogopiag 2009-2010

18

One option — Jaccard coeftficient

A commonly-used measure of overlap
Let X and Y be two sets; then the J.C. is

X AY[/|X VY]

Equals 1 when X and Y have the same elements and zero when they
are disjoint

X and Y don’t have to be of the same size

Always assigns a number between 0 and 1

o Now threshold to decide if you have a match

o E.g., if).C.>0.8, declare a match

Avéxrnon Thngogogieg 2009-2010 37

Matching trigrams

Consider the query lord — we wish to identify words
matching 2 of its 3 bigrams (lo, or, rd)

lo {oc—>| alone [lord || sloth
or ini———> bordeﬁL lord —— morbicﬂ

rd i——>| grdent || border -

-+

card

We know the #k-grams for the query, for the term (if it is encoded)?

just need its length

Avéxrnon Thngogogicg 2009-2010 38

AvakTtnon NMAnpogopiag 2009-2010

19

Context-sensitive spell correction

Text: I flew from Heathrow to Narita.

Consider the phrase query “flew form Heathrow”
We’d like to respond
Did you mean “flew from Heathrow”?
because no docs matched the query phrase.

Avéxrnon Thngogogieg 2009-2010 39

Context-sensitive correction

Need surrounding context to catch this.

First idea:
1. retrieve dictionary terms close (in weighted edit distance) to each
query term
2. Now try (run) all possible resulting phrases with one word “fixed” at
atime
flew from heathrow
fled form heathrow
flea form heathrow

3. Hit-based spelling correction: Suggest the alternative that has lots
of hits.

Avéxrnon Thngogogicg 2009-2010 40

AvakTtnon NMAnpogopiag 2009-2010

20

Exercise

Suppose that for “flew form Heathrow” we have 7
alternatives for flew, 19 for form and 3 for heathrow.

How many “corrected” phrases will we enumerate in
this scheme?

As we expand the alternatives, retain only the most frequent
combinations on the collection (biwords) or in the query log

Avéxrnon Thngogogieg 2009-2010 4

General issues in spell correction

We enumerate multiple alternatives for “Did you mean?”
Need to figure out which to present to the user
Use heuristics
o The alternative hitting most docs
o Query log analysis + tweaking
For especially popular, topical queries

Spell-correction is computationally expensive

o Avoid running routinely on every query?
o Run only on queries that matched few docs

Avéxrnon Thngogogicg 2009-2010 42

AvakTtnon NMAnpogopiag 2009-2010

21

Resources

IR 3, MG 4.2

Efficient spell retrieval:

o K. Kukich. Techniques for automatically correcting words in text. ACM Computing Surveys 24(4),
Dec 1992.

0 J.Zobel and P. Dart. Finding approximate matches in large lexicons. Software - practice and
experience 25(3), March 1995. http://citeseer.ist.psu.edu/zobel95finding.html

o Mikael Tillenius: Efficient Generation and Ranking of Spelling Error Corrections. Master’s thesis
at Sweden’s Royal Institute of Technology. http://citeseer.ist.psu.edu/179155.html

Nice, easy reading on spell correction:
0 Peter Norvig: How to write a spelling corrector

http://norvig.com/spell-correct.html

Avéxrnon Thngogogieg 2009-2010

43

Pattern Matching

Avéxrnon Thngogogicg 2009-2010

44

AvakTtnon NMAnpogopiag 2009-2010

22

Searching Allowing Errors

Aedopéva:

o ‘Eva keipevo (string) T, pikoug n

o ‘Eva pattern P pijkoug m

0 k emurpenodpeva ocpaipata

ZntoUpevo:

0 Bpeg 0AeG TG BETELG TOU KELWMEVOU OToL TOo pattern P epdaviletal pe to moAu k
odaApata (oo yeviko)

Recall: Edit (Levenstein) Distance:
Minimum number of character deletions, additions, or replacements
needed to make two strings equivalent.

“misspell” to “mispell” is distance 1
“misspell” to “mistell” is distance 2

“misspell” to “misspelling” is distance 3

Avéxrnon Thngogogieg 2009-2010

45

Searching Allowing Errors

Naive algorithm
0 Produce all possible strings that could match P (assuming k
errors) and search each one of themon T

Avéxrnon Thngogogicg 2009-2010

46

AvakTtnon NMAnpogopiag 2009-2010

23

Searching Allowing Errors:
Solution using Dynamic Programming

= Dynamic Programming is the class of algorithms, which includes the most
commonly used algorithms in speech and language processing.

= Among them the minimum edit distance algorithm for spelling error correction.

= Intuition:

0 a large problem can be solved by properly combining the solutions to various
subproblems.

Avéxrnon Thngogogieg 2009-2010 47

Searching Allowing Errors:
Solution using Dynamic Programming

‘Evav m x n miivaka C

lpappécg Ooelg Tou pattern

YTAAEG B€oeLg Tou text

CIi, j]: o eAdxiotog apBu6s Aabwv yia va taipldgoupe to P, ; pe éva sufix tou T,

C[o,jl=0
C[i, 0] =i /* delete i characters

H 16éa elval o UTOAOYLOPOG [LaG TIMAC Tou TivoKa e BAon TG MPONYOUUEVEC
(6nAadn, &N UTIOAOYLOEVEG) YELTOVIKEG TNG

Avéxrnon Thngogogicg 2009-2010 48

AvakTtnon NMAnpogopiag 2009-2010

Searching Allowing Errors:
Solution using Dynamic Programming

C[i, jI: o eAdlotog apBudg Aabwv yla va taupldfoupe to P, ; e €va suffix tou Ty

Cli, jl=
av P, =T,
tote C[i-1, j-1]

AMLWG 0 KAAUTEPOG TPOTIOC ATO TO TOPAKATW
replace P, pe T, () To ouppeTpiko) kootog 1+C[i-1,j-1]
delete P, k6otog 1+ C[i-l, j]
delete T, 1 + C[i,j-1]
add ??

Avéxrnon Thngogogieg 2009-2010

Searching Allowing Errors:
Solution using Dynamic Programming (11)

Problem Statement: T[n] text string, P[m] pattern, k errors

Example: T = “surgery”, P = “survey”, k=2
To explain the algorithm we will use a m xn matrix C

one row for each char of P, one column for each char of T

(latter on we shall see that we need less space)

R
o= = s -

¥

Avéxrnon Thngogogicg 2009-2010

50

AvakTtnon NMAnpogopiag 2009-2010

25

Searching Allowing Errors:
Solution using Dynamic Programming (I1IT)

T ="“surgery”, P = “survey”, k=2
oL ypappéG Tou C ekdpAalouv mOoa YpAUaTa TOU pattern €Xoupe NéN KATAVAAWOEL
(otn O-ypapun timota, otn m-ypappr oAokAnpo to pattern)
C[0,j] :==0 for every column j
(no letter of P has been consumed)
C[i,0] ;=i for every row i
(i chars of P have been consumed, pointer of T at 0. So i errors (insertions) so far)

T

T
o= = s -
Tnfh| | ea =

¥

Avéxrnon Thngogogieg 2009-2010

Searching Allowing Errors:
Solution using Dynamic Programming (IV)

if P[i]=T[j] THEN C[i,j]:= C[i-1,j-1]

// €ywve match apa ta “Aadn” nrav ooa kat wptv
Else C[i,j] := 1 + min of:
o Cli-1,j]
// i-1 chars consumed P, j chars consumed of T
// ~delete a char from T

o C[i,j-1]
// i chars consumed P, j-1 chars consumed of T
// ~ delete a char from P

o C[i-1,j-1]
// i-1 chars consumed P, j-1 chars consumed of T
// ~ character replacement

Avéxrnon Thngogogicg 2009-2010

52

AvakTtnon NMAnpogopiag 2009-2010

26

Searching Allowing Errors:
Solution using Dynamic Programming: Example

T ="“surgery”, P = “survey”, k=2

T
] u r g a r ¥
]]]] 0 0 0 0
s 1 0 1 1 1 1 1 1
u 2 1 1] 1 2 2 2 2
P r 3 2 1] 1 2 2 3
v 4 3 2 1 1 2 3 3
e 5 4 3 2 2 1 2 3
v f 9 4 3 3 2 2 2
Avésernoy Thngowogiag 2009-2010
Solution using Dynamic Programming:
Example
T ="“surgery”, P = “survey”, k=2 T
s u r g £ T ¥
] 1] 1]] 0 0 0 0
s 1 0 1 1 1 1 1 1
u 2 1 1] 1 2 2 2 2
P r 3 2 1] 1 2 2 3
v 4 3 2 1 1 2 3 3
e 5 4 3 2 2 1 2 3
v f 9 4 3 3 2 2 2

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

27

Solution using Dynamic Programming:

Example
T ="“surgery”, P = “survey”, k=2 T
5 u I g a I ¥
0 0 0 0 0] 0 0
5 1 i 1 1 1 1 1 1
u 2 1 0 1 2 4 2 2
P r 3 2 1 0 1 2 2 3
v 4 3 2 1 1 2 3 3
e 3 4 3 2 2 1 2 3
¥ £ 5 4 g 3 2 2 2
Avésernoy Thngowogiag 2009-2010
Solution using Dynamic Programming:
Example
T ="“surgery”, P = “survey”, k=2 T
5 1 I g 2 I ¥
0 0 0 0 0] 0 0
5 1] 1 1 1 1 1 1
u 2 1 o 1 2 4 2 2
P r 3 2 1) 1 2 2 3
v 4 3 2 1 1 2 3 3
e 3 4 3 2 2 1 2 3
¥ £ 5 4 g 3 2 2 2

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

28

Solution using Dynamic Programming:
Example

T ="“surgery”, P = “survey”, k=2

T
s u r g] r ¥
0 0 0 0 0] 0 0
s 1 0 1 1 1 1 1 1
u Z 1 o 1 2 2 2 2
P r 3 2 1 o] 1 2 2 3
v 4 3 2 1 1 2 3 3
e 5 4 3 Z 2 1 2 8
¥ £ 5 4 3 3 2 2 2
(i —

Avéxrnon Thngogogieg 2009-2010 57

Solution using Dynamic Programming:
Example

T ="“surgery”, P = “survey”, k=2

T

5 u r g =] r il

0 0 0 0 0 i 0 0

s 1 0 1 1 1 1 1 1

u 2] i] 2 2 2 2

P r 3 2 1 0 2 2 3

v 4) 1 i E 3 3

e 5 4] 3 2 2 1 2 3

¥ £ 5 | 4 3 3 2 F] 2
1+

Avéxrnon Thngogogicg 2009-2010 58

AvakTtnon NMAnpogopiag 2009-2010

29

Solution using Dynamic Programming:
Example

T ="“surgery”, P = “survey”, k=2

T

5 u T g B I ¥

0 0 0 0 0 0 0 0

s 1 0 1 T T 1 1 1

u 2 1 0 1 2 2 2 2

P r 3 2 1 0 2 2 3

v 4 i 1 1 2 3 3

e 5 4] 3 2 2 1 2 3

¥ £ 5 | 4 3 3 1 2 2
1+

Avéxrnon Thngogogieg 2009-2010 59

Solution using Dynamic Programming:
Example

T ="“surgery”, P = “survey”, k=2

T
5 u r g =] r il

0 0 0 0 0 i 0 0

s 1 0 1 1 1 1 1 1

u 2] i] 2 2 2 2

P r 3 2 1 0 2 2 3
v 4) 1 i E 3 3

e 5 4] 3 2 2 T 2 3

¥ £ 5 | 4 3 3 2 F] 2

Avéxrnon Thngogogicg 2009-2010 60

AvakTtnon NMAnpogopiag 2009-2010

30

Solution using Dynamic Programming:
Example

T ="“surgery”, P = “survey”, k=2

T
5 u T g B I ¥

0 0 0 0 0 0 0 0

s 1 0 1 T T 1 1 1

u 2 1 0 1 2 2 2 2

P r 3 2 1 0 2 2 3
v 4 i 1 1 2 2 3

e 5 4] 3 2 2 T 2 1 3

¥ £ 5 | 4 3 3 ¥ 2 2

Bold entries indicate matching positions.

= Cost: O(mn) time where m and n are the lengths of the two strings being compared.
= [lapatipnon: n moAUTTAOKOTNTA Eival aVEEAPTNTN TOU K

Avéxrnon Thngogogieg 2009-2010 61

Solution using Dynamic Programming:
Example

T ="“surgery”, P = “survey”, k=2

-
5 u r g =] r il

0 0 0 0 0 0 0 0

s 1 4] 1 1 1 1 1 1

u ;) 1 0 | B 2 3)

P 2 3 2 1 0 1 B 2 3
v 4 3 5 | I 7 3 3

B 5 4 3 2 2 1 2 3

¥ E 5 a 3 3 2 3)

= Cost: O(mn) time where m and n are the lengths of the two strings being compared.
= O(m) space as we need to keep only the previous column stored

= So we don't have to keep a mxn matrix

Avéxrnon Thngogogicg 2009-2010 62

AvakTtnon NMAnpogopiag 2009-2010

31

Eyappoyn oto groogle

grOOGLE™ ™™ |

Search

results per page | []clustering | [

RDF/ XML results

list of documents matching the search

Your search - Movermmenimo -
did not match any documents.

Did you mean ?
L O novemigTrpio

1

Avéxrnon Thngogogieg 2009-2010

63

Constructing an Inverted File

Avéxrnon Thngogogicg 2009-2010

64

AvakTtnon NMAnpogopiag 2009-2010

32

Content
= Hardware basics

= Blocked sort-based index
= Distributed index

* Dynamic Indexing

Avéxrnon Thngogogieg 2009-2010

65

Index construction

How do we construct an index?
What strategies can we use with limited main memory?

Avéxrnon Thngogogicg 2009-2010

66

AvakTtnon NMAnpogopiag 2009-2010

33

Hardware basics

Many design decisions in information retrieval are
based on the characteristics of hardware

We begin by reviewing hardware basics

Avéxrnon Thngogogieg 2009-2010

67

Hardware basics

Access to data in memory is much faster than access to data
on disk.

Caching (keeping frequently used disk data in memory)

Disk seeks: No data is transferred from disk while the disk
head is being positioned. (seek time)

m Therefore: Transferring one large chunk of data from disk to memory is faster than
transferring many small chunks.

Disk 1/0 is block-based: Reading and writing of entire blocks
(as opposed to smaller chunks).

Block sizes: 8KB to 256 KB.

Data transfers are handled by the system bus, not by the
processor

Avéxrnon Thngogogicg 2009-2010

68

AvakTtnon NMAnpogopiag 2009-2010

34

Hardware basics

Servers used in IR systems now typically have several GB of
main memory, sometimes tens of GB.

Available disk space is several (2—3) orders of magnitude larger.

Fault tolerance is very expensive: It's much cheaper to use
many regular machines rather than one fault tolerant machine.

Avéxrnon Thngogogieg 2009-2010

69

Hardware assumptions

symbol statistic value

S average seek time 5ms=5x103s

b transfer time per byte 0.02pus=2x102%s
processor’s clock rate 10° st

p low-level operation 0.01 us=1028s

(e.g., compare & swap a word)

size of main memory several GB
size of disk space 1 TB or more

Avéxrnon Thngogogicg 2009-2010

70

AvakTtnon NMAnpogopiag 2009-2010

35

RCV1: Our collection for this lecture

As an example for applying scalable index construction algorithms, we will use
the Reuters RCV1 collection.

= This is one year of Reuters newswire (part of 1995 and 1996)

The collection we’ll use isn’t really large enough either, but it’s publicly
available and is at least a more plausible example.

71

Avéxrnon Thngogogieg 2009-2010

A Reuters RCV1 document

REUTERS B Note: we ignore multimedia types

You are here: Home = News = Science = Article

Gotoa Section: US International Business Markets Foltics Entertainment Technolegy Sports Oddly Enouc

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET
Email This Articke | Print This Article | Reprints

Text [+
SYDMEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a
possible indication of global warming, Australian scientists said on

Tuesday.
Known as nacreous clouds, the spectacular formations showing delicate

wisps of colors were photegraphed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Avéxrnon Thngogogicg 2009-2010 72

AvakTtnon NMAnpogopiag 2009-2010

Reuters RCV1 statistics

symbol statistic value

N documents 800,000

L avg. # tokens per doc 200

M terms (= word types/distinct) 400,000
avg. # bytes per token 6

(incl. spaces/punct.)
avg. # bytes per token 4.5
(without spaces/punct.)
avg. # bytes per term 7.5
T (tokens) non-positional postings 100,000,000

4.5 bytes per word token vs. 7.5 bytes per word type: why?

Avéxrnon Thngogogieg 2009-2010

73

Recall IIR 1 index construction N
s
= Documents are parsed to extract words and these are chaesar

saved with the Document ID. was
killed
i
the
capitol
brutus
killed
me

DOC 1 DOC 2 ﬁ so

let

it

be

with

caesar

the

noble

brutus

hath

told

you

caesar

was

ambitious

Avéxrnon Thngogogicg 2009-2010

9}
o
0
*

NNNNNNNNNNNNNNNRRRRRBRRRERRRERRRR

Avaktnon lNAnpogopiag 2009-2010

37

9]
o
o
#

Term
Key step

enact

julius
= After all documents have chaesar

been parsed, the inverted file e

. -
is sorted by terms. the
capitol
brutus
killed

me

SO

let

it

be

with
caesar

. the
Note: present terms by termid noble
brutus
hath

told

you
caesar
was
ambitious

(on the fly or in two passes)

Avéxrnon Thngogogieg 2009-2010

NNNNNNNNNNNNNNNRRPRRPRPRRPRPRPRPRPRRPRERPRPR

Term
ambitious
be
brutus
brutus
capitol
caesar
caesar
caesar
did
enact
hath

I

I

i

it
julius
killed
killed
let

me
noble

the
the
told
you
was
was
with

v)
o
o
H

NNPNNNRPNNRNRPRPRENRPRREPERPNNRENRNN

Scaling index construction

= In-memory index construction does not scale.

= How can we construct an index for very large
collections?

just learned about . ..

Memory, disk, speed, etc.

» Taking into account the hardware constraints we

Avéxrnon Thngogogicg 2009-2010

76

Avaktnon lNAnpogopiag 2009-2010

38

Sort-based index construction

As we build the index, we parse docs one at a time.

o While building the index, we cannot easily exploit compression tricks (you
can, but much more complex)

The final postings for any term are incomplete until the end.
At 12 bytes per non-positional postings entry (term, doc, freq),
demands a lot of space for large collections.

T =100,000,000 in the case of RCV1

o So ... we can do this in memory in 2009, but typical collections are much
larger. E.g. the New York Times provides an index of >150 years of newswire

Thus: We need to store intermediate results on disk.

Avéxrnon Thngogogieg 2009-2010

77

Use the same algorithm for disk?

Sorting T = 100,000,000 records on disk is too slow
—too many disk seeks.

We need an external sorting algorithm.

Avéxrnon Thngogogicg 2009-2010

78

AvakTtnon NMAnpogopiag 2009-2010

39

Bottleneck

= Parse and build postings entries one doc at a time

= Now sort postings entries by term (then by doc within
each term)

= Doing this with random disk seeks would be too slow
— must sort T=100M records

Avéxtnon L1AQogogiug ZUUY-2010 79

‘ BSBI: Blocked sort-based Indexing
(Sorting with fewer disk seeks)

= 12-byte (4+4+4) records (term, doc, freq).
These are generated as we parse docs.
= Must now sort 100M such 12-byte records by term.

= Define a Block ~ 10M such records
o Can easily fit a couple into memory.
o Will have 10 such blocks to start with.
= Basicidea of algorithm:
1. Accumulate postings for each block, sort, write to disk.
2. Then merge the blocks into one long sorted order.

Avéxrnon Thngogogicg 2009-2010 80

Avaktnon lNAnpogopiag 2009-2010

40

postings

d2
d3
d1l
d4
d1l
d2
d3
d4

to be merged brutus

brutus

brutus d3 brutus d2 caesar
caesar d4 caesar dl caesar
noble d3 julius d1 — julius
with d4 killed d2 killed
noble

with

disk

merged
postings

AvéxTnon TTAMg0%00 U09-Z0T0

81

disk

Avéxrnon Thngogogicg 2009-2010

0 But can optimize this

Sorting 10 blocks of 10M records

First, read each block and sort within:
0 Quicksort takes 2N In N expected steps
0 Inourcase 2 x (10M In 10M) steps

total time to read each block from disk and quicksort it.

10 times this estimate — gives us 10 sorted runs of
10M records each.

Done straightforwardly, need 2 copies of data on

82

AvakTtnon NMAnpogopiag 2009-2010

41

BSBINDEXCONSTRUCTION()

1 n<—0

2 while (all documents have not been processed)
3 don<—n+1

4 block «+— PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, f,)

7 MERGEBLOCKS(fi,.. .. fr; fmerged)

Avéxrnon Thngogogieg 2009-2010 83

How to merge the sorted runs?

= Can do binary merges, with a merge tree of log,10 = 4 layers.
= During each layer, read into memory runs in blocks of 10M, merge, write back.

1
1112
. 2 | | Merged run. |
3| 4
3
\ /4

Avéxrnon Thngogogicg 2009-2010 - 84

Avaktnon lNAnpogopiag 2009-2010

42

How to merge the sorted runs?

But it is more efficient to do a n-way merge, where you are
reading from all blocks simultaneously

Providing you read decent-sized chunks of each block into
memory and then write out a decent-sized output chunk,
then you’re not killed by disk seeks

Avéxrnon Thngogogieg 2009-2010

85

Remaining problem with sort-based
algorithm

Our assumption was: we can keep the dictionary in memory.

We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping.

Actually, we could work with term,docID postings instead of
termID,doclID postings . . .

... but then intermediate files become very large. (We would end
up with a scalable, but very slow index construction method.)

Avéxrnon Thngogogicg 2009-2010

86

AvakTtnon NMAnpogopiag 2009-2010

43

SPIMI:
Single-pass in-memory indexing

» Keyidea 1: Generate separate dictionaries for each block —
no need to maintain term-termID mapping across blocks.

» Key idea 2: Don’t sort. Accumulate postings in postings lists
as they occur.

= With these two ideas we can generate a complete inverted
index for each block.

» These separate indexes can then be merged into one big
index.

Avéxrnon Thngogogieg 2009-2010 87

‘ SPIMI-Invert

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
2 dictionary = NEWHASH()
3 while (free memory available)
4 do token — next(token_stream)
5 if term(token) ¢ dictionary
6 then postings_list = ADDTODICTIONARY (dictionary, term(token))
7 else postings_list = GETPOsTINGSLIST(dictionary, term(token))
8 if full(postings_list)
9 then postings_list = DouBLEPosTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list. doclD(token))
11 sorted_terms «— SORTTERMS(dictionary)
12 WrITEBLoCK T oDIsK(sorted _terms, dictionary, output_file)
13 return output_file

Merging of blocks is analogous to BSBI.

Avéxrnon Thngogogicg 2009-2010 88

AvakTtnon NMAnpogopiag 2009-2010

44

SPIMI: Compression

Compression makes SPIMI even more efficient.
o Compression of terms
o Compression of postings

Avéxrnon Thngogogieg 2009-2010 89

Vocabulary: Tries

= Vocabulary: Btree but also trie

Tries

multiway trees for stroring strings

able to retrieve any string in time proportional to its length (independent
from the number of all stored strings)

Description
every edge is labeled with a letter

searching a string s

start from root and for each character of s follow the edge that is labeled with
the same letter.

continue, until a leaf is found (which means that s is found)

Avéxrnon Thngogogicg 2009-2010 90

AvakTtnon NMAnpogopiag 2009-2010

45

Tries: [Tapaderypo

1 6 911 1719 24 28 33 40 46 50 55

60

‘This is a text. Atexthas many words. Words are made from letters.

Vocabulary | | vocabulary (ordered) Vocabulary trie

text (11) letters (60)
text (19) made (50)
many (28) | | many (28)
words (33) | |text (11,19)

words (40) | | words (33,40)
made (50)

letters:60

text:11,19
words:33,40

letters (60)

BaoeL TnG TEXVIKAG Successor variety?

Avéxrnon Thngogogieg 2009-2010

Epwtnon: Oa pnopoloe €va trie va BonBroeL tn oteAéxwon KeLUEVOU

91

[Tocpdderypo avéntinng SnpLovEyiag evog trie

1] 12 16 18 25 29 3 40 45 54 5B a6 70

the house has a garden. the garden has many flowers. the flowers are beautiful

(each word = one document, position = document identifier)

[]
the: 1

.

house: & the: 1

a: 16 garden: 18 the: 1
a

has: 12 house: 6 has: 12 house: 6

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

46

Constructing an Inverted File

= All the vocabulary is kept in a suitable data structure storing for each word
a list of its occurrences

= e.g.in atrie data structure

= Each word of the text is read and searched in the vocabulary

= if a trie data structure is used then this search costs O(m) where m the size of
the word

= |f it is not found, it is added to the vocabulary with an empty list of
occurrences and the new position is added to the end of its list of
occurrences

Avéxrnon Thngogogieg 2009-2010 93

Constructing an Inverted File

= Once the text is exhausted the vocabulary is written to disk with the list
of occurrences. Two files are created:
= in the first file, the list of occurrences are stored contiguously

= in the second file, the vocabulary is stored in lexicographical order and, for each
word, a pointer to its list in the first file is also included.

= The overall process is O(n) time

2nd file 1stfile

BL A Course on Entegral Equetions

tien ‘ N e - Trie: O(1) per text character

E | Since positions are appended (in the postings
file) O(1) time
It follows that the overall process is O(n)

BIL Gsciliation Theary for Mewtral Dif ferential
Equations mith Deleyy

Avéxrnon Thngogogicg 2009-2010 9

AvakTtnon NMAnpogopiag 2009-2010

47

1 & 12 16 18 25 29 36 40 45 54 58 66 7O

the house has a garden. the garden has many flowers. the flowers are beautiful

a—"b_—

many: 40 the: 1, 25, 54

a: 16
beautiful: 70
" flowers: 45, 58
[]

are: 66 has: 12, 36 house: 6

a: 16

are: 66

beautiful: 70
inverted file T ;:::;:r::' : 35" 2598

has: 12, 36

house: &

many: 40

the: 1. 25. 54

16, 66, 70, 45, 58, 18, 29, 12, 36, 6, 40
postings file

Avéxrnon Thngogogieg 2009-2010

Example of constructing an inverted file

(in our example we assume that: each word = one document, position = document identifier)

Once the complete trie
structure is constructed
the inverted file can be

derived from it:

The trie is traversed top-
down and left-to-right.

= whenever an index term is
encountered, it is added to
the end of the inverted file.
Note that if a term is prefix
of another term (such as "a"
is prefix of "are") index
terms can occur on internal
nodes of the trie.

= analogously the posting
file is derived.

95

Example (cont)

The trie structure constructed is a possible access structure to the index file in
main memory. Thus the entries of the index files occur as leaves (or internal
nodes) of the trie. Each entry has a reference to the position of the postings file
that is held in secondary storage.

1 L] 12 & 12 25 29 I] 45 54 68 66 TO

the house has a garden. the garden has many flowers. the flowers are beautiful

@] "'
baau'riful@
r \ :
ure-tj | has: 8 house: 10

— A
16, 66, 70, 45, 58, 18, 29, 12, 36, 6, 40, 1, 25, 54
postings file

Avéxrnon Thngogogicg 2009-2010 96

AvakTtnon NMAnpogopiag 2009-2010

What if the Inverted Index does not fit in main memory ?

= A technique based on partial Indexes:

= Use the previous algorithm until the main memory is
exhausted.

= When no more memory is available, write to disk the partial
index |, obtained up to now, and erase it from main memory

= Continue with the rest of the text

" Once the text is exhausted, a number of partial indices |,
exist on disk

= The partial indices are merged to obtain the final index

Avéxrnon Thngogogieg 2009-2010 97

Merging two partial indices I1 and 12

Merge the sorted vocabularies and whenever the same word
appears in both indices, merge both list of occurences

By construction, the occurences of the smaller-numbered index
are before those at the larger-numbered index, therefore the lists
are just concatenated

Complexity: O(n1+n2) where n1 and n2 the sizes of the indices

Avéxrnon Thngogogicg 2009-2010 98

AvakTtnon NMAnpogopiag 2009-2010

49

Example of two partial indices and their merging

16 12 16 18 25 20 36 0 45 54 =8 86 70
the house has a garden. the garden has many flowers. the flowers are beautiful
a: 16 are: 66
inverted gdf‘d@.ﬂ: 18, 29 beautiful: 70 inverted
file T1 has: 12, 36 flowers: 45, 58 e 17
house: & many: 40
the: 1, 25 the: 54
a: 16
are: 66
beautiful: 70
flowers: 45, S8
garden: 18, 29
has: 12, 36
house: 6
many: 40
1,25 +54 -» 1, 25, 54 the: 1, 25, 54

total cost: Ofh log.(n/M))
M size of memory

concatenate inverted lists

Avéxrnon Thngogogieg 2009-2010 99

Merging partial indices to obtain the final

‘)3 ‘ final index
*
level 3
5.5 |
level 2
| (1]
level 1
"5‘ ‘Ie‘ ‘|7‘ ‘IB ‘lmtlaldumps
Avénernon TThngogoging 2009-2010 .

AvakTtnon NMAnpogopiag 2009-2010

50

Merging all partial indices: Time Complexity

* n:th

Notations

e V: the size of the vocabulary

e M: the amount of main memory available

e size of the text

= The total tim

e to generate partial indices is O(n)

= The number of partial indices is O(n/M)
= To merge the O(n/M) partial indices are necessary log,(n/M) merging levels
= The total cost of this algorithm is O(n log(n/M))

Avéxrnon Thngogogieg 2009-2010

101

Distributed indexing

Avéxrnon Thngogogicg 2009-2010

102

AvakTtnon NMAnpogopiag 2009-2010

51

Distributed indexing

For web-scale indexing (don’t try this at home!):
must use a distributed computing cluster

Individual machines are fault-prone

0 Can unpredictably slow down or fail

How do we exploit such a pool of machines?

Avéxrnon Thngogogieg 2009-2010

103

Distributed indexing

Web search engines, therefore, use distributed
indexing algorithms for index construction.

Constructed index is partitioned across several
machines —
0 either according to term

0 or according to document.

Avéxrnon Thngogogicg 2009-2010

104

AvakTtnon NMAnpogopiag 2009-2010

52

Google data centers

Google data centers mainly contain commodity machines.
Data centers are distributed around the world.

Estimate: a total of 1 million servers, 3 million processors/cores
(Gartner 2007)

Estimate: Google installs 100,000 servers each quarter.
o Based on expenditures of 200-250 million dollars per year
This would be 10% of the computing capacity of the world!?!

Avéxrnon Thngogogieg 2009-2010

105

Google data centers

If in a non-fault-tolerant system with 1000 nodes,
each node has 99.9% uptime, what is the uptime of
the system?

Answer: 63%

Calculate the number of servers failing per minute for
an installation of 1 million servers.

Avéxrnon Thngogogicg 2009-2010

106

AvakTtnon NMAnpogopiag 2009-2010

53

Distributed indexing

Maintain a master machine directing the indexing job
— considered “safe”.

Break up indexing into sets of (parallel) tasks.

Master machine assigns each task to an idle machine
from a pool

m Divide data into chunks, re-assign task if a task on a chunk fails

Avéxrnon Thngogogieg 2009-2010

107

Parallel tasks

We will use two sets of parallel tasks
o Parsers
a Inverters

Break the input document collection into splits

Each split is a subset of documents (corresponding to
blocks in BSBI/SPIMI)

Avéxrnon Thngogogicg 2009-2010

108

AvakTtnon NMAnpogopiag 2009-2010

54

Parsers

Master assigns a split to an idle parser machine

Parser

reads a document at a time and emits (term, doc)

pairs

writes pairs into j partitions

Each partition is for a range of terms’ first letters
o (e.g., a-f, g-p, g-z) —herej=3.

Now to complete the index inversion

Avéxrnon Thngogogieg 2009-2010

109

Inverters

An inverter collects all (term,doc) pairs (= postings) for one term-
partition.

Sorts and writes to postings lists

Avéxrnon Thngogogicg 2009-2010

110

AvakTtnon NMAnpogopiag 2009-2010

55

Data flow

assi nw assign .

[

splits

000
(]
000

o

Map Segment files Reduce
Avéxrnon IThngogogiug 2009-2010 phase phase m
MapReduce
The index construction algorithm we just described is an instance
of MapReduce.

MapReduce (Dean and Ghemawat 2004) is a robust and
conceptually simple framework for distributed computing ...

... without having to write code for the distribution part.

They describe the Google indexing system (ca. 2002) as consisting
of a number of phases, each implemented in MapReduce.

Avéxrnon Thngogogicg 2009-2010 12

AvakTtnon NMAnpogopiag 2009-2010

56

MapReduce

Index construction was just one phase.
Another phase: transforming a term-partitioned index
into a document-partitioned index.

a Term-partitioned: one machine handles a subrange of
terms

0 Document-partitioned: one machine handles a subrange of
documents

most search engines use a document-partitioned
index ... better load balancing, etc.

Avéxrnon Thngogogieg 2009-2010

113

MapReduce

To minimize write times, before inverters reduce the data, each parser writes
its segment files to its local disk.

In the reduce phase, the master communicates to an inverter the locations of
the relevant segment files (e.g., of the r segment files of the a—f partition).

Each segment file only requires one sequential read because all data relevant to
a particular inverter were written to a single segment file by the parser. This
setup minimizes the amount of network traffic needed during indexing.

Avéxrnon Thngogogicg 2009-2010

114

AvakTtnon NMAnpogopiag 2009-2010

57

Schema for index construction in

MapReduce

Schema of map and reduce functions
map: input = list(k, v) reduce: (k,list(v)) > output
Instantiation of the schema for index construction
map: web collection = list(termID, doclD)
reduce: (<termlID1, list(docID)>, <termID2, list(docID)>, ...) = (postings
listl, postings list2, ...)
Example for index construction
map: d2 : Cdied. d1: Ccame, Cc’ed. - (<C, d2>, <died,d2>, <C,d1>,
<came,d1>, <C,d1>, <c’ed, d1>
reduce: (<C,(d2,d1,d1)>, <died,(d2)>, <came,(d1)>, <c’ed,(d1)>) >
(<C,(d1:2,d2:1)>, <died,(d2:1)>, <came,(d1:1)>, <c’ed,(d1:1)>)

Avéxrnon Thngogogieg 2009-2010

115

Dynamic indexing

Avéxrnon Thngogogicg 2009-2010

116

AvakTtnon NMAnpogopiag 2009-2010

58

Dynamic indexing

Up to now, we have assumed that collections are
static.
They rarely are:

o Documents come in over time and need to be inserted.
o Documents are deleted and modified.

This means that the dictionary and postings lists have
to be modified:

o Postings updates for terms already in dictionary
o New terms added to dictionary

Avéxrnon Thngogogieg 2009-2010 17

Simplest approach

Maintain “big” main index
o New docs go into “small” auxiliary index
0 Search across both, merge results

Deletions

0 Invalidation bit-vector for deleted docs

0 Filter docs output on a search result by this
invalidation bit-vector

Periodically, re-index into one main index

Avéxrnon Thngogogicg 2009-2010 18

AvakTtnon NMAnpogopiag 2009-2010

59

Issues with main and auxiliary indexes

Problem of frequent merges — you touch stuff a lot
Poor performance during merge
Actually:

o Merging of the auxiliary index into the main index is efficient if we keep a
separate file for each postings list.

0o Merge is the same as a simple append.
o But then we would need a lot of files — inefficient for O/S.

Assumption for the rest of the lecture: The index is one big file.

In reality: Use a scheme somewhere in between (e.g., split very large postings
lists, collect postings lists of length 1 in one file etc.)

Avéxrnon Thngogogieg 2009-2010

119

Logarithmic merge

Maintain a series of indexes, each twice as large as
the previous one.

Keep smallest (Z,) in memory

Larger ones (I, I, ...) on disk

If Z, gets too big (> n), write to disk as |,
or merge with |, (if I, already exists) as Z;
Either write merge Z; to disk as |, (if no |,)
Or merge with |, to form Z,

etc.

Avéxrnon Thngogogicg 2009-2010

120

AvakTtnon NMAnpogopiag 2009-2010

60

LMERGEADDTOKEN(indexes, Zy, token)
1 Zo «— MERGE(Zo, {token})
2 if |Zo|=n
3 then for / — 0 to
4 do if /; € indexes
5 then Z; 1 «— MERGE(/;, Z;)
6 (Zi+1 is a temporary index on disk.)
7 indexes «— indexes — {I;}
8
9

else [; — Z; (Z; becomes the permanent index I;.)
indexes «— indexes U {I;}
10 BREAK
11 Zo — 0

LOGARITHMICMERGE()

1 Zop«— 0 (Zo is the in-memory index.)

2 indexes « ()

3 while true

4 do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())

Avéxrnon Thngogogieg 2009-2010

121

Logarithmic merge

Auxiliary and main index: index construction time is O(T?) as each posting is
touched in each merge.

Logarithmic merge: Each posting is merged O(log T) times, so complexity is O(T
log T)
So logarithmic merge is much more efficient for index construction
But query processing now requires the merging of O(log T) indexes
0 Whereas it is O(1) if you just have a main and auxiliary index

Avéxrnon Thngogogicg 2009-2010

122

AvakTtnon NMAnpogopiag 2009-2010

61

Further issues with multiple indexes

Collection-wide statistics are hard to maintain

E.g., when we spoke of spell-correction: which of several corrected
alternatives do we present to the user?

o We said, pick the one with the most hits

How do we maintain the top ones with multiple indexes and
invalidation bit vectors?

o One possibility: ignore everything but the main index for such
ordering

Will see more such statistics used in results ranking

Avéxtnon L1AQogogiug ZUUY-2010

123

Dynamic indexing at search engines

All the large search engines now do dynamic indexing

Their indices have frequent incremental changes

o News items, blogs, new topical web pages
Sarah Palin, ...

But (sometimes/typically) they also periodically
reconstruct the index from scratch

0 Query processing is then switched to the new index, and
the old index is then deleted

Avéxrnon Thngogogicg 2009-2010

124

AvakTtnon NMAnpogopiag 2009-2010

62

Get Search News Recaps!

Email:

I paily & Monthly

& Feeds and more info

« Local Store And Inventory Data Poised To Transform "Online Shopping” | Main | SEO Company
Fathom Online, Acquired By Geary Interactive »

Google Dance Is Back'-‘ Plus Google s First Live Chat Recap
& Hyperactive Yahoo Slurp

Is the Google Dance back? Well, not really, but | am noticing Google Dance-like behavior from
Google based on reading some of the feedback at a WebmasterWorld thread.

The Google Dance refers to how years ago, a change to Google's ranking algorithm often began
showing up slowly across data centers as they reflected different results, a sign of coming changes.
These days Google's data centers are typically always showing small changes and differences, but
the differences between this data center and this one seem to be more like the extremes of the past
Google Dances.

So either Google is preparing for a massive update or just messing around with our heads. As of
now, these results have not yet moved over to the main Google.cormn results.

| Go.gle | VaHoo! | Microsoftt = Columns Markeating Searching | Ask, ACL &
Land Land Land Land Land Land More Lands

| Newsletters | Conte
& Feeds &) & Wel

e I

netkli

Click here for
$40 Free

Advertising

Qsearch~

the leading
provider of search
marketing jobs

PREMIUM MEMBERSHIP

AveATAoN IT U0UI-Z0TT

125

Other sorts of indexes

= Positional indexes
o Same sort of sorting problem ... just larger

» Building character n-gram indexes:

0 Astext is parsed, enumerate n-grams.
“postings”.
docs — need efficient hashing to keep track of this.

each text occurrence of deciduous
= Only need to process each term once

o For each n-gram, need pointers to all dictionary terms containing it — the
o Note that the same “postings entry” will arise repeatedly in parsing the

= E.g., that the trigram uou occurs in the term deciduous will be discovered on

Avéxrnon Thngogogicg 2009-2010

126

AvakTtnon NMAnpogopiag 2009-2010

63

Maintaining the Inverted File

Addition of a new doc

o build its index and merge it with the final index (as done
with partial indexes)

Delete a doc of the collection

0 scan index and delete those occurrences that point into the
deleted file (complexity: O(n) : extremely expensive!)

Avéxrnon Thngogogieg 2009-2010

127

A Complete Search System

Avéxrnon Thngogogicg 2009-2010

128

AvakTtnon NMAnpogopiag 2009-2010

64

Cluster pruning: query processing

Process a query as follows:

0 Given query Q, find its nearest leader L.

0 Seek K nearest docs from among L’s

followers.
Visualization e -
e N
’\3,.'1 o
.T'\ .)
¢ 0 A
® o .Query
¢ L
Q@
) ¢ ..
[° , ..
[
o0
@Leader @®rollower

Avéxrnon Thngogogicg 2009-2010

130

AvakTtnon NMAnpogopiag 2009-2010

65

Why use random sampling

Fast
Leaders reflect data distribution

Avéxrnon Thngogogieg 2009-2010 131

General variants

Have each follower attached to b,=3 (say) nearest
leaders.

From query, find b,=4 (say) nearest leaders and their
followers.

Can recur on leader/follower construction.

132

Avéxrnon Thngogogicg 2009-2010

AvakTtnon NMAnpogopiag 2009-2010

66

Top-k Aggregation

Avéxrnon Thngogogieg 2009-2010 133

Top-k Rank Aggregation

‘Exoupe N avtikeipeva kal toug BaBpoig toug BAcel m SLadopETIKWY KpLTnpiwv.
‘Exoupe évav Tpomo va cuvSUAl{oUUE T M oKop KAOE QVTIKELUEVOU OE Eva
EVOTIOLNUEVO OKOP

O TLX. Min, avg, sum
YTOX0G: Bpeg Tal K avTikeipeva pe To UPNAGTEPO EVOTIOLNEVO OKOP.

Edappoyég:
YToAOYLoMOG TwV Kopudaiwv-K OTOLXELWY TNG AMAVTNONG
— €v0¢ AN mou Baociletal oTto SLavUCUOTIKO HOVTENO (T m KpLTApLa Elval oL m GpoL TG EMEPWTNONG)
— &vOG peoitn (m.x. METO-HNXaVAG avalntnong) mdvw and m Zuotripata Avaktnong MAnpodoplwv
— HLOG EMEPWTNONG O€ pia Baon MoAupéowyv
e KpLtripLa (kaL cuvapa xapoktnplotikd/features): xpwpa, popdn, uodn, ...

Avéxrnon Thngogogicg 2009-2010 134

AvakTtnon NMAnpogopiag 2009-2010

67

AMO EVX THOAOELYULY EQXOIUOYNC
QXOELYU EQUOUOYT]
Evornoinon anavticewv oe Mecohafntég (middleware) mavw amo nnyég mou anobnkelouv SopnUEVES
TAnpodopieg
0 €0TW HLo UTtnpeoia eVPEONG E0TLATOPIWY BATEL TPLWV KPLTNPiwv:
andotaon anod éva onpeio
Katdtagn eotiatopiov
TR YEUUATOG, Kot GAAQ
0 Omou o Xprotng Unopei va opioet Tov emBupuNTd TPOTo UTTOAOYLOOU TOU VOTMOLNUEVOU GKOP EVAG
EgTLaTopLov
nx. Zkop(gotX) = Stars(eotX)*0.25 + 0.75*DistanceFromHome(gotX)
0 numnpecia autr VAOTIOLEITOL HE XPAON TPLWV OITOUOKPUCUEVWY UTINPECLWY
() getRestaurantsByStars

0 enotpedel OAa ta eotiatopla o dBivouoa oeLPd WG TIPOG TaL AOTEPLA TTOU £XOUV (KAOE 0TLOTOPLO
ouvodeleTal e éva oKop)

(B) getRestaurantsByDistance(x,y)

0 enotpedel OAa ta otiatopla o dBivouoa oELPE WG TIPOG TNV AOCTACH TOUG ATtd £Va CUYKEKPLUEVO
onueilo pe ouvtetaypéveg (x,y) // kaBe eotiatdplo ouvodeletal amnd thv andotaon Tou and o (X,y)

Avéxrnon Thngogogieg 2009-2010 135

AMO eV TORAOELY LU EPAOUOYNG

Nwg unopw va eAaxLlotonotjow To NMARO0G TWV OTOLXEIWV TIOU TIPENEL va SLaBdow amno thv
andvinon tng kabe unnpeoiag, mpokepnévou va Bpw ta kKopudaia 5 eotiatopla (Baocel
oKop Onwg utoAoyiletal anod tng cuvaptnon PaduoAoynong mou €8waoe o Xprotng);

Avéxrnon Thngogogicg 2009-2010 136

AvakTtnon NMAnpogopiag 2009-2010

Ebpeon twv x-nopupalnv

Amnhotnog AlyoptBpog

1. Avéktnoe oAOKANPEC TIG M ALOTEG

. YMOAOYLOE TO EVOTIOLNUEVO OKOP TOU KABE QVTLKELUEVOU

3. Tafvounoe ta avtlkeipevo BACEL TOU OKOp Kal EMEAEEE T
TpWTA K

N

Mapartnpnoeig
KOOoTog YPaUULKO WG TTPOC TO UAKOG TWV ALOTWV
Agev aflomolel To yeyovog OTL oL AlOTEG gival TAELVOUNUEVEC

Avéxrnon Thngogogieg 2009-2010 137

Ebpeon twv n-nopupatwv
[Topaderypo: Amdotnog Tponog

‘Eotw OtTL B€Aoupe va cuvaBpoloou e TG SLaTALELS TToU
enotpédouv 3 mnyeg S1, S2, S3 kat o TPOMOG cuvabpolong elval to aBpolopa.

S1=<A09, €08, EO.7, BO.5, FO.5, GO0.5, HO0.5>
S2=<B1.0, E08, FO0.7, A0.7, C0.5 HO.5, G05>
S3=<A08, C08, EO0.7, BO.5, FO.5, G0.5 HO0.5>

O AmAoikég TpoTTog

Score(A)= 0.9+0.7 +0.8 =2.4
Score(B)= 0.5+1.0 +0.5 =2
Score(C)= 0.8+0.5 +0.8 =2.1
Score(E)= 0.7+0.8 +0.7 =2.2
Score(F)= 0.5+0.7 +0.5 =1.7
Score(G)= 0.5+0.5 +0.5 =1.5
Score(H)= 0.5+0.5 +0.5 =1.5
Tehwn Sidtaén: <A, E, C, B, F, G, H>

Avéxrnon Thngogogicg 2009-2010 138

AvakTtnon NMAnpogopiag 2009-2010

69

Ebpeon twv x-nopupainv
[Tio Anodotmot AkyopiBpor
revikn W6éa: Apytoe va dtaBaleic tig diataéeis ano tnv

kopun. lMpoonadnos va kataAaBelg mote NpEneL va
OTOUATHOELC.

AAyopLBpot
o Fagin Algorithm (FA) [Fagin 1999, J. CSS 58]
o Threshold Algorithm (TA) [Fagin et al., PODS’2001]

Avéxrnon Thngogogieg 2009-2010

139

Ebpeon twv n-nopupaiwv

[Tio Amodotxot Akyoptbuot

YnoBéoelg

1. YrmoOétoupe OtL éxoupe otn Stabeon pog 2 TPOMoUC POcRACNC OTA AMOTEAECHATA ULOG
mnyAg:
Zelplakn npdoPaon otig Slatdlels: pOivouca wg mpog To okop
Tuxaia npoomnélaon: AuvatdtnTa eUPECNG TOU OKOP EVOG CUYKEKPLUEVOU OVTIKELUEVOU
pe pio poofaon

2. Zuvaptnioelg Babuoloynong (okop)
Ta okop avrkouv oto Staotnpua [0,1]
H ouvdptnaon evomolnuévou okop ivat povotovn
av 6Aa (m) ta okop evOg aVTIKELLEVOU A glval peyaAlTtepa i {oa Twv avTioTolywv oKop
€VOG QVTIKELEVOU B, TOTE olyoupa To evomotnpévo okop tou A gival peyaUtepo 1| ico tou
okop tou B

Avéxrnon Thngogogicg 2009-2010

140

AvakTtnon NMAnpogopiag 2009-2010

70

Ebpeon towv n-nopuaiwy

O AlyopiBpog tov Fagin (FA) [1999]
1.0/ K@ve o€lplakr) avaktnon avilkeLWEVWY amnod kabe Aiota
(apxiovtag amo tnv Kopudr)), EWG N TOMK TWV OVTIKELUEVWY Qo KABe

AloTa va €XEL K QVTLIKELLEVA

1.8/ MNa kaBe avtikeipevo mou avaktiOnke (oto 1.a) cuvéletes ta
OKOPp TIOU A€lIOuV (UE Xxprion Tou pnxaviopou tuxoaiag mpoomnéAaong)

2/ YIoAOYLOE TO EVOTIOLNLEVO OKOP TOU KABE QVTIKELUEVOU
3/ Tafvounoe T aVTLKELEVA BACEL TOU EVOTIOLNEVOU OKOP KOl

eMéNee Ta MpWTA K

Avéxrnon Thngogogieg 2009-2010

141

Ebpeon twv n-nopupaiwv

O AlyoiBpog Tov Fagin (FA) [1999]

Mo omoLOSATIOTE UN ETUAEYMEVO QVTIKEIHEVO UTIAPXOUV (TOUAAXLOTOV) K TtoU €ival
KaAUTEpPQ ATO AUTO

IO\l

Alomolel (a) To yeyovog OTL oL AloTEC lval TAELVOUNUEVEG
Kal (B) 0TL n ouvaptnon evomoilnong eivat povotovn

[-] To MANB0oG Twv avtikelpévwy Tou Ba avaktnBolv
Umopetl va elval peyaio

Avéxrnon Thngogogicg 2009-2010

142

AvakTtnon NMAnpogopiag 2009-2010

71

Ebpeomn twv x-nopuyaiwy
[Tapaderypo: AlyopiBuog tov Fagin (FA)

S1=<A09, €038, E0.7, BO.5, F0.5 GO.5 HO05>
S2=<B10, EO08, F0.7, AO0.7, C0.5 HOS5, GO05>
S3=<A0.8, €08, EO.7, BO.5 FO0.5 GO.S5, HO05>

To E epdaviletal og OAeC

(novotovia => 8ev punopei kamoto e€16tepo tou E va sivan kaAbtepo tou E

To E Sev elval olyoupa 0 VIKNTAG.

Yroyndlol vikntég = {A, B, C, E, F}. Kavou e tuxaieg mpoomeAdoel yia va BpoUe Ta oKop
TIOU pa¢ Agtmouv

getScore(S2,A), getScore(S1,B), getScore(S3,B), getScore(S2,C), ...
Mpaypuarti, top-1={A}

Avéxrnon Thngogogieg 2009-2010 143

Ebpeomn twv x-nopuyaiwy
[Tapaderypo: AlyopiBuog tov Fagin (FA)

S1=<A09, CO0.8, EO0.7, BO.5 FO0.5, GO0.5 HO05>
S2=<B1.0, EO08, F0.7, A0.7, C0.5 HO0.5, GO0.5>
S3=<A0.8, C0.8, EO0.7, BO5 FO0.5, GO.5 HO05>

To E, B (katLto A) epdavilovtol o OAeG

(novotovia => 8ev puropei karmoto de€Létepo Tou B va ivat kaAvtepo Tou B

Avéxrnon Thngogogicg 2009-2010 144

AvakTtnon NMAnpogopiag 2009-2010

72

‘ Ebpeon twv n-nopvpatwy

O AlyopBpog TA (Threshold Algorithm) [Fagin et al.

16€a:
YTOAOYLOE TO HEYLOTO OKOP TIOU UTOPEL VOl €XEL £VOL OIVTLKELLEVO TTOU
Sev £XOUUE OUVOVTIOEL AKOUAL.

1/ KAve oglplakr avaKtnon avtlkelpevwy amno kabe Aiota (apxilovtag amnd tnhv
kopudn) Kal He xpnon tuyaiac mpoonéAaanc Bpeg OAa Ta okop KAOe
OVTLKELUEVOU

2/ Ta€lvopunos ta avtlkeipeva (BAOEL TOU EVOTTOLNUEVOU OKOP) Kol KpATNOE Ta
KOAUTEPQA K

3/ ZTapATNOoE TNV CELPLAKH OVAKTNON OTOV TOL OKOP TWV TTOPOTTAVW K
OVTIKELHEVWV SEV UMOPEL va Elvol IKPOTEPX TOU HEYLOTOU TILOAVOU OKOP TWV
anopatHPNTWV AvIkelpévwy (threshold).

Avéxrnon Thngogogieg 2009-2010

145

Ebpeon towv n-nopuaiwy

[Mapaderypa: AlyoptBuog TA:

S1=<A09, CO0.8, EO0.7, BO.5 FO0.5, GO0.5 HO05>
S2=<B1.0, EO08, F0.7, A0.7, C0.5 HO0.5, GO0.5>
S3=<A0.8, C0.8, EO0.7, BO5 FO0.5, GO.5 HO05>

‘Eotw OTL BéAw TO Top-1
Score(A)=0.9+0.7+0.8= 2.4

Score(B)=0.5+1.0+0.5=2
UpperBound= 0.9+1.0+0.8=2.7
adou 2.7 > 2.4 cuveyilw

Score(C)=0.8+0.5+0.8= 2.1
Score(E)=0.7+0.8+0.7=2.2
UpperBound= 0.8+0.8+0.8=2.4

adou 2.4 dev eival peyalutepo tou 2.4 (okop Tou A) oTOUOTAW.

Avéxrnon Thngogogicg 2009-2010

146

AvakTtnon NMAnpogopiag 2009-2010

73

>2uyrpton: Fagin vs. TA

O FA note 6ev teppartilel vwpitepa tou TA
O TA xpelaletal povo évav pkpo (k) evrauieutn (buffer)
O TA pmopel OWG va KAVEL TTEPLOCOTEPEG TUXALEG TIPOOTIEAATELG

O TA eivat BEATLOTOG yLa OAEG TIC LOVOTOVEG GUVOPTAHOELG OKOP
JUYKeEKpLUEVQ, elval ”“instant optimal”: elval kaAUTtepog tavta (oxL
LOVO OTNV XELPOTEPN TtEpIMTWON 1 0TV Uéon Tepintwon)

e Emektdoslg
— AAyopBuog NRA (Non Random Access)
e ‘EkSoon tou TA yia TNV mepinmtwon mou n tuxaia npdéoBaon eival advvarn. Eniong “instant
optimal”.
— Do sequential access until there are k objects whose lower bound no less than the upper
bound of all other objects

e AAyoplBuog CA (Combined Algorithm)
— 'EkSoon tou TA Tou Bewpel TG TUXaieg TTPOOTIEAACELG AKPLBOTEPES TWV CELPLOKWV.

Avéxrnon Thngogogieg 2009-2010 147

AvakTtnon NMAnpogopiag 2009-2010

74

