
http://webdam.inria.fr/

Web Data Management

Data model

Serge Abiteboul Ioana Manolescu
INRIA Saclay & ENS Cachan INRIA Saclay & Paris-Sud University

Philippe Rigaux
CNAM Paris & INRIA Saclay

Marie-Christine Rousset Pierre Senellart
Grenoble University Télécom ParisTech

Copyright @2011 by Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset,
Pierre Senellart;

to be published by Cambridge University Press 2011. For personal use only, not for distribution.

http://webdam.inria.fr/Jorge/

http://webdam.inria.fr/
http://webdam.inria.fr/Jorge/

For personal use only, not for distribution. 2

Contents

1 Semistructured data 3

2 XML 5
2.1 XML documents . 5
2.2 Serialized and tree-based forms . 8
2.3 XML syntax . 9
2.4 Typing and namespaces . 12
2.5 To type or not to type . 13

3 Web Data Management with XML 14
3.1 Data exchange . 14
3.2 Data integration . 15

4 The XML World 16
4.1 XML dialects . 16
4.2 XML standards . 19

5 Further reading 25

6 Exercises 26
6.1 XML documents . 26
6.2 XML standards . 27
The Web is a media of primary interest for companies who change their organization to

place it at the core of their operation. It is an easy but boring task to list areas where the Web
can be usefully leveraged to improve the functionalities of existing systems. One can cite in
particular B2B and B2C (business to business or business to customer) applications, G2B and
G2C (government to business or government to customer) applications or digital libraries.
Such applications typically require some form of typing to represent data because they consist
of programs that deal with HTML text with difficulties. Exchange and exploitation of business
information call as well for a more powerful Web data management approach.

This motivated the introduction of a semistructured data model, namely XML, that is
well suited both for humans and machines. XML describes content and promotes machine-to-
machine communication and data exchange. The design of XML relies on two major goals.
First it is designed as a generic data format, apt to be specialized for a wide range of data
usages. In the XML world for instance, XHTML is seen as a specialized XML dialect for data
presentation by Web browsers. Second XML “documents” are meant to be easily and safely
transmitted on the Internet, by including in particular a self-description of their encoding
and content.

XML is the language of choice for a generic, scalable, and expressive management of Web
data. In this perspective, the visual information between humans enabled by HTML is just
a very specific instance of a more general data exchange mechanism. HTML also permits
a limited integrated presentation of various Web sources (see any Web portal for instance).
Leveraging these capabilities to software-based information processing and distributed man-
agement of data just turns out to be a natural extension of the initial Web vision.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 3

Alan

name

7786

tel

agg@abc.com

email name

Alan

first

Black

last

7786

tel

agg@abc.com

email

Figure 1: Tree representation, with labels on edges

The chapter first sketches the main traits of semistructured data models. Then we delve
into XML and the world of Web standards around XML.

1 Semistructured data

A semistructured data model is based on an organization of data in labeled trees (possibly
graphs) and on query languages for accessing and updating data. The labels capture the
structural information. Since these models are considered in the context of data exchange,
they typically propose some form of data serialization (i.e., a standard representation of data
in files). Indeed, the most successful such model, namely XML, is often confused with its
serialization syntax.

Semistructured data models are meant to represent information from very structured to
very unstructured kinds, and, in particular, irregular data. In a structured data model such
as the relational model, one distinguishes between the type of the data (schema in relational
terminology) and the data itself (instance in relational terminology). In semistructured data
models, this distinction is blurred. One sometimes speaks of schema-less data although it
is more appropriate to speak of self-describing data. Semistructured data may possibly be
typed. For instance, tree automata have been considered for typing XML (see Chapter ??).
However, semistructured data applications typically use very flexible and tolerant typing;
sometimes no typing at all.

We next present informally a standard semistructured data model. We start with an idea
familiar to Lisp programmers of association lists, which are nothing more than label-value
pairs and are used to represent record-like or tuple-like structures:

{name: "Alan", tel: 2157786, email: "agb@abc.com"}

This is simply a set of pairs such as (name, "Alan") consisting of a label and a value. The
values may themselves be other structures as in

{name: {first: "Alan", last: "Black"},
tel: 2157786,
email: "agb@abc.com"}

We may represent this data graphically as a tree. See, for instance, Figures 1 and 2. In Figure 1,
the label structure is captured by tree edges, whereas data values reside at leaves. In Figure 2,
the second, all information resides in the vertices.

Such representations suggest departing from the usual assumption made about tuples or
association lists that the labels are unique, and we allow duplicate labels as in

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 4

{name: "Alan", tel: 2157786, tel: 2498762 }

name

Alan

tel

7786

email

agg@abc.com

name

first

Alan

last

Black

tel

7786

email

agg@abc.com

Figure 2: Tree representation, with labels as nodes

The syntax makes it easy to describe sets of tuples as in

{ person: {name: "Alan", phone: 3127786, email: "alan@abc.com"},
person: {name: "Sara", phone: 2136877, email: "sara@xyz.edu"},
person: {name: "Fred", phone: 7786312, email: "fd@ac.uk"} }

Furthermore, one of the main strengths of semistructured data is its ability to accommodate
variations in structure (e.g., all the Person tuples do not need to have the same type).
The variations typically consist of missing data, duplicated fields, or minor changes in
representation, as in the following example:

{person: {name: "Alan", phone: 3127786, email: "agg@abc.com"},
person: &314

{name: {first: "Sara", last: "Green" },
phone: 2136877,
email: "sara@math.xyz.edu",
spouse: &443 },

person: &443
{name: "Fred", Phone: 7786312, Height: 183,
spouse: &314 }}

Observe how identifiers (here &443 and &314) and references are used to represent graph
data. It should be obvious by now that a wide range of data structures, including those of the
relational and object database models, can be described with this format.

As already mentioned, in semistructured data, we make the conscious decision of possibly
not caring about the type the data might have and serialize it by annotating each data item
explicitly with its description (such as name, phone, etc.). Such data is called self-describing.
The term “serialization” means converting the data into a byte stream that can be easily
transmitted and reconstructed at the receiver. Of course, self-describing data wastes space,
since we need to repeat these descriptions with each data item, but we gain interoperability,
which is crucial in the Web context.

There have been different proposals for semistructured data models. They differ in choices
such as: labels on nodes vs. on edges, trees vs. graphs, ordered trees vs. unordered trees. Most
importantly, they differ in the languages they offer. Two quite popular models (at the time of
writing) are XML, a de facto standard for exchanging data of any kind, and JSON (“Javascript
Object Notation”), an object serialization format mostly used in programming environments.
We next focus on XML, an introduction to JSON being given in Chapter ??.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 5

entry

name

fn

Jean

ln

Doe

work

INRIA address

city

Cachan

zip

94235

email

j@inria.fr

purpose

like to teach

Figure 3: An XML document

2 XML

XML, the Extensible Markup Language, is a semistructured data model that has been pro-
posed as the standard for data exchange on the Web. It is a simplified version of SGML (ISO
8879). XML meets the requirements of a flexible, generic, and platform-independent language,
as presented earlier. Any XML document can be serialized with a normalized encoding, for
storage or transmission on the Internet.

Remark 2.1 It is well-established to use the term “XML document” to denote a hierarchically
structured content represented with XML conventions. Although we adopt this standard
terminology, please keep in mind that by “document” we mean both the content and its
structure, but not their specific representation which may take many forms. Also note
that “document” is reminiscent of the SGML application area, which mostly focuses on
representating technical documentation. An XML document is not restricted to textual,
human-readable data, and can actually represent any kind of information, including images,
of references to other data sources.

XML is a standard for representing data but it is also a family of standards (some in
progress) for the management of information at a world scale: XLink, XPointer, XML Schema,
DOM, SAX, XPath, XSL, XQuery, SOAP, WSDL, and so forth.

2.1 XML documents

An XML document is a labeled, unranked, ordered tree:

Labeled means that some annotation, the label, is attached to each node.

Unranked means that there is no a priori bound on the number of children of a node.

Ordered means that there is an order between the children of each node.

The document of Figure 3 can be serialized as follows:

<entry><name><fn>Jean</fn><ln>Doe</ln></name>INRIA<adress><city>
Cachan</city><zip>94235</zip></adress><email>j@inria.fr</email>
</job><purpose>like to teach</purpose></entry>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 6

or with some beautification as

<entry>
<name>

<fn>Jean</fn>
<ln>Doe</ln> </name>

<work>
INRIA
<adress>

<city>Cachan</city>
<zip>94235</zip> </adress>

<email>j@inria.fr</email> </work>
<purpose>like to teach</purpose>

</entry>

In this serialization, the data corresponding to the subtree with root labeled (e.g., work), is
represented by a subword delimited by an opening tag <work> and a closing tag </work>.
One should never forget that this is just a serialization. The conceptual (and mathematical)
view of an XML document is that it is a labeled, unranked, ordered tree.

XML specifies a “syntax” and no a priori semantics. So, it specifies the content of a
document but not its behavior or how it should be processed. The labels have no predefined
meaning unlike in HTLM, where, for example, the label href indicates a reference and img
an image. Clearly, the labels will be assigned meaning by applications.

In HTML, one uses a predefined (finite) set of labels that are meant primarily for document
presentation. For instance, consider the following HTML document:

<h1> Bibliography </h1>
<p> < i> Foundations of Databases </ i>

Abiteboul, Hull, Vianu

 Addison Wesley, 1995 </p>

<p> < i> Data on the Web </ i>
Abiteboul, Buneman, Suciu

 Morgan Kaufmann, 1999 </p>

where <h1> indicates a title, <p> a paragraph, <i> italics and
 a line break (
 is
both an opening and a closing tag, gathered in a concise syntax equivalent to
</br>).
Observe that this is in fact an XML document; more precisely this text is in a particular XML
dialect, called XHTML. (HTML is more tolerant and would, for instance, allow omitting the
</p> closing tags.)

The presentation of that HTML document by a classical browser can be found in Figure 4.
The layout of the document depends closely on the interpretation of these labels by the
browser. One would like to use different layouts depending on the usage (e.g., for a mobile
phone or for blind people). A solution for this is to separate the content of the document and
its layout so that one can generate different layouts based on the actual software that is used
to present the document. Indeed, early on, Tim Berners-Lee (the creator of HTML) advocated
the need for a language that would go beyond HTML and distinguish between content and
presentation.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 7

The same bibliographical information is found, for instance, in the following XML docu-
ment:

<bibliography>
<book>

<title> Foundations of Databases </title>
<author> Abiteboul </author> <author> Hull </author>
<author> Vianu </author>
<publisher> Addison Wesley </publisher>
<year> 1995 </year> </book>

<book>...</book>
</bibliography>

Observe that it does not include any indication of presentation. There is a need for a
stylesheet (providing transformation rules) to obtain a decent presentation such as that of the
HTML document. On the other hand, with different stylesheets, one can obtain documents for
several media (e.g., also for PDF). Also, the tags produce some semantic information that can
be used by applications, (e.g., Addison Wesley is the publisher of the book). Such tag information
turns out to be useful for instance to support more precise search than that provided by Web
browser or to integrate information from various sources.

Figure 4: HTML presentation

The separation between content and presentation already exists in a precursor of XML,
namely SGML. In SGML, the labels are used to describe the structure of the content and
not the presentation. SGML was already quite popular at the time XML was proposed, in
particular for technical documentation (e.g., Airbus documentation). However, SGML is
unnecessarily complicated, in particular with features found in complex document models
(such as footnote). XML is much simpler. Like SGML, it is a metalanguage in that it is always
possible to introduce new tags.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 8

2.2 Serialized and tree-based forms

An XML document must always be interpreted as a tree. However the tree may be represented
in several forms, all equivalent (i.e., there exists a mapping from one form to another) but
quite different with respect to their use. All the representations belong to one of the following
category:

• serialized forms, which are textual, linear representations of the tree that conform to a
(sometimes complicated) syntax;

• tree-based forms, which implement, in a specific context (e.g., object-oriented models),
the abstract tree representation.

Both categories cover many possible variants. The syntax of the serialized form makes
it possible to organize “physically” an XML document in many ways, whereas tree-based
forms depend on the specific paradigm and/or technique used for the manipulation of the
document. A basic pre-requisite of XML data manipulation is to know the main features of
the serialized and tree-based representation, and to understand the mapping that transforms
one form to another.

Figure 5 shows the steps typically involved in the processing of an XML document
(say, for instance, editing the document). Initially, the document is most often obtained
in serialized form, either because it is stored in a file or a database, or because it comes
from another application. The parser transforms the serialized representation to a tree-based
representation, which is conveniently used to process the document content. Once the
application task is finished, another, complementary module, the serializer, transforms the
tree-based representation of the possibly modified document into one of its possible serialized
forms.

serialized

form

serialized

form

Application
parser serializer

tree form

Figure 5: Typical processing of XML data

Stricly speaking, the syntax of XML relates to its serialized representation. The syntax can
be normalized because a serialized document is meant for data exchange in an heterogeneous
environment, and must, therefore, be completely independent from a specific context. The
tree-based representation is more strongly associated with the application that processes the
document, and in particular to the programming language.

We provide a presentation of the XML syntax that covers the main aspects of the serialized
representation of an XML document and show their couterpart in terms of a tree-based
representation. The serialized syntax is defined by the World Wide Web Consortium (W3C)
and can be found in the XML 1.0 recommendation. Since the full syntax of XML is rather
complex and contains many technical detail that do not bring much to the understanding
of the model, the reader is referred to this recommendation for a complete coverage of the
standard (see the last section).

For the tree-based representation, we adopt the DOM (Document Object Model), also
standardized by the W3C, which defines a common framework for the manipulation of

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 9

documents in an object-oriented context. Actually we only consider the aspects of the
model that suffice to cover the tree representation of XML documents and illustrate the
transformation from the serialized form to the tree form, back and forth. The DOM model is
also convenient to explain the semantics of the XPath, XSLT and XQuery languages, presented
in the next chapters.

2.3 XML syntax

Four examples of XML documents (separated by blank lines) are:

<document/>

Document 1

<document>
Hello World!

</document>

Document 2

<document>
<salutation>

Hello World!
</salutation>

</document>

Document 3

<?xml version="1.0"
encoding="utf-8" ?>

<document>
<salutation color="blue">
Hello World!

</salutation>
</document>

Document 4

In the last one, the first line starting with <?xml is the prologue. It provides indications
such as the version of XML that is used, the particular coding, possibly indications of external
resources that are needed to construct the document.

Elements and text

The basic components of an XML document are element and text. The text (e.g., Hello World!),
is in UNICODE. Thus texts in virtually all alphabets, including, for example, Latin, Hebrew,
or Chinese, can be represented. An element is of the form

<name attr=’value’ ...> content </name>

where <name> is the opening tag and </name> the closing tag.
The content of an element is a list of text or (sub) elements (and gadgets such as comments).

A simple and very common pattern is a combination of an element and a textual content. In
the serialized form, the combination appears as

<elt_name>
Textual content

</elt_name>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 10

The equivalent tree-based representation consists of two nodes, one that corresponds
to the structure marked by the opening and closing tags, and the second, child of the first,
which corresponds to the textual content. In the DOM, these nodes are typed, and the tree is
represented as follows:

Element
elt_name

Text
Text 2

The Element nodes are the internal nodes of a DOM representation. They represent the
hierarchical structure of the document. An Element node has a name, which is the label of the
corresponding tag in the serialized form. The second type of node illustrated by this example
is a Text node. Text nodes do not have a name, but a value which is a non structured character
string.

The nesting of tags in the serialized representation is represented by a parent-child
relationship in the tree-based representation. The following is a slight modification of the
previous examples which shows a nested serialized representation (on the left) and its
equivalent tree-based representation (on the right) as a hierarchical organization with two
Element nodes and two Text nodes.

<elt1>
Content 1
<elt2>

Content 2
</elt2>

</elt1>

Element
elt1

Text
Content 1

Element
elt2

Text
Content 2

Attributes

The opening tag may include a list of (name,value) pairs called attributes as in:

<report language=’fr’ date=’08/07/07’>

Two pairs of attributes for the same element are not allowed to have the same attribute name.
Major differences between the content and the attributes of a given element are that (i)

the content is ordered whereas the attributes are not and (ii) the content may contain some
complex subtrees whereas the attribute value is atomic.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 11

Attributes appear either as pairs of name/value in opening tag in the serialized form,
or as special child nodes of the Element node in the tree-based (DOM) representation. The
following example shows an XML fragment in serialized form and its counterpart in tree-
based form. Note that Attr nodes have both a name and a value.

<elt att1=’12’ att2=’fr’>
Text1

</elt>

Element
elt1

Attr.
att1: ’12’

Attr.
att2: ’fr’

Text
Text1

Attribute can store content, just as Text nodes. In the previous example, the textual content
could just be represented as an attribute of the elt element, and conversely attributes could
be represented as child elements with a textual content. This gives rise to some freedom
to organize the content of an XML document and adds some complexity to the tree-based
representation.

Well-formed XML document

An XML document must correctly represent a tree. There exist in a document one and only
one element that contains all the others (called the root element). An element that is not the
root is totally included in its parent. More generally, the tags must close in the opposite order
they have been opened. One says of such a document that it is well-formed. For instance, <a>
 is well-formed and <a> is not.

The serialized form often (but not always) begins with the prologue; independently of
the existence or not of a prologue, the tree-based representation of an XML document has for
root a Document node. This node has a unique Element child, which is the root element of the
document. The following examples illustrates the situation.

<?xml version="1.0"
encoding="utf-8" ?>

<elt>
Document content.

</elt>

Document

Element
elt

Text
Document Content

There may be other syntactic objects after the prologue (for instance, processing instruc-
tions), which become children of the Document node in the tree representation.

The Document node is the root of the document, which must be distinguished from the root
element, its only element child. This somehow misleading vocabulary is part of the price to

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 12

pay in order to master the XML data model.
An important notion (related to the physical nature of a document and not to its logical

structure) is the notion of entity. Examples of entities are as follows:

<!ENTITY chap1 "Chapter 1: to be written">
<!ENTITY chap2 SYSTEM "chap2.xml">
<report> &chap1; &chap2 </report>

The content of an entity may be found in the document (as entity chap1), in the local system
(as for chap2) or on the Web (with a URI). The content of an entity can be XML. In this
case, the document is logically equivalent to the document obtained by replacing the entity
references (e.g., &chap1; &chap2) by their content. The content of the entity may also be
in some other format (e.g., Jpeg). In such case, the entity is not parsed and treated as an
attachment.

Remark 2.2 (Details)

1. An empty element <name></name> may alternatively be denoted <name/>.

2. An element or attribute name is a sequence of alphanumeric and other allowed symbols
that must start with an alphanumeric symbols (or an underscore).

3. The value of attribute is a string with certain limitations.

4. An element may also contain comments and processing instructions.

2.4 Typing and namespaces

XML documents need not typed. They may be. The first kind of typing mechanism originally
introduced for XML is DTDs, for Document Type Definitions. DTDs are still quite often used.
We will study in Chapter ?? XML schema, which is more powerful and is becoming more
standard, notably because it is used in Web services.

An XML document including a type definition is as follows:

<?xml version="1.0" standalone="yes" ?>
<!-- This is a comment - Example of a DTD -->
<!DOCTYPE email [

<!ELEMENT email (header, body)>
<!ELEMENT header (from, to, cc?)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT cc (#PCDATA)>
<!ELEMENT body (paragraph*) >
<!ELEMENT paragraph (#PCDATA)>

<email>
<header>

<from> af@abc.com </from>
<to> zd@ugh.com </to>

</header>
<body>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 13

</body>
</email>

The DOCTYPE clause declares the type for this document. Such a type declaration is
not compulsory. Ignoring the details of this weird syntax, this is stating, for instance, that a
header is composed of a from element, a to one, and possibly a cc one, that a body consists
of a list of paragraphs, and finally that a paragraph is a string.

In general, the list of children for a given element name is described using a regular
expression in BNF specified for that element.

A most important notion is also that of namespace. Consider a label such as job. It
denotes different notions for a hiring agency or for a (computer) application service provider.
Applications should not confuse the two notions. The notion of namespace is used to
distinguish them. More precisely, consider the following XML piece of data:

<doc xmlns:hire=’http://a.hire.com/schema’
xmlns:asp=’http://b.asp.com/schema’ >

...
<hire:job> ... </hire:job> ...
<asp:job> ... </asp:job> ...
</doc>

The hire namespace is linked to a schema, and the asp to another one. One can now mix
the two vocabularies inside the same document in spite of their overlap.

XML also provides some referencing mechanisms that we will ignore for now.
When a type declaration is present, the document must conform to the type. This may, for

instance, be verified by an application receiving a document before actually processing it. If a
well-formed document conforms to the type declaration (if present), we say that it is valid (for
this type).

2.5 To type or not to type

The structure of an XML document is included in the document in its label structure. As
already mentioned, one speaks of self-describing data. This is an essential difference with
standard databases:

In a database, one defines the type of data (e.g., a relational schema) before creating
instances of this type (e.g., a relational database). In semistructured data (and XML), data
may exist with or without a type.

The “may” (in may exist) is essential. Types are not forbidden; they are just not compulsory
and we will spend quite some effort on XML typing. But in many cases, XML data often
presents the following characteristics:

1. the data are irregular: there may be variations of structure to represent the same
information (e.g., a date or an address) or unit (prices in dollars or euros); this is
typically the case when the data come from many sources;

2. parts of the data may be missing, for example, because some sources are not answering,
or some unexpected extra data (e.g., annotations) may be found;

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 14

3. the structure of the data is not known a priori or some work such as parsing has to be
performed to discover it (e.g., because the data come from a newly discovered source);

4. part of the data may be simply untyped, (e.g., plain text).

Another differences with database typing is that the type of some data may be quite
complex. In some extreme cases, the size of the type specification may be comparable to, or
even greater than, the size of the data itself. It may also evolve very rapidly. These are many
reasons why the relational or object database models that propose too rigid typing were not
chosen as standards for data exchange on the Web, but a semistructured data model was
chosen instead.

3 Web Data Management with XML

XML is a very flexible language, designed to represent contents independently from a specific
system or a specific application. These features make it the candidate of choice for data
management on the Web.

Speaking briefly, XML enables data exchange and data integration, and it does so universally
for (almost) all the possible application realms, ranging from business information to images,
music, biological data, and the like. We begin with two simple scenarios showing typical
distributed applications based on XML that exploit exchange and integration.

3.1 Data exchange

The typical flow of information during XML-based data exchange is illustrated on Figure 6.
Application A manages some internal data, using some specialized data management soft-
ware, (e.g., a relational DBMS). Exchanging these data with another application B can be
motivated either for publication purposes, or for requiring from B some specialized data
processing. The former case is typical of web publishing frameworks, where A is a web server
and B a web client (browser, mobile phone, PDF viewer, etc.). The later case is a first step
towards distributed data processing, where a set of sites (or “peers”) collaborate to achieve
some complex data manipulation.

dialect
Specialized

HTML
Web site

Application A Application B

Data source

Web Browser

XML data

X
M

L
 e

xp
or

t

e.g.,data processing
Other tools,

PDF
Document PDF viewer

Figure 6: Flow of information in XML-based data exchange

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 15

XML is at the core of data exchange. Typically, A first carries out some conversion process
(often called “XML publishing”) which produces an appropriate XML representation from the
internal data source(s.) These XML data are then consumed by B which extracts the content,
processes it, and possibly returns an XML-encoded result. Several of the afore mentioned
features of XML contribute to this exchange mechanism:

1. ability to represent data in a serialized form that is safely transmitted on the Web;

2. typing of document, which allows A and B to agree on the structure of the exchanged
content;

3. standardized conversion to/from the serialized representation and the specific tree-
based representation respectively manipulated by A and B.

For concreteness, let us delve into the details of a real Web Publishing architecture,
as shown in Figure 7. We are concerned with an application called Shows for publishing
information about movie showings, in a Web site and in a Wap site. The application uses
a relational database. Data are obtained from a relational database as well as directly from
XML files. Some specialized programs, written with XSLT (the XML transformation language,
see below) are used to restructure the XML data, either coming from files, from the database
through a conversion process, or actually from any possible data source. This is the XML
publishing process mentioned above. It typically produces XHTML pages for a Web site. These
pages are made available to the world by a Web server.

Web Application Server

Web

SQL

Database

conversion
XSLT
engine

XML
DBMS

SQL
resultsXML

XML files XSLT programs

Figure 7: Software architecture for Web publishing applications

The data flow, with successive transformations (from relational database to XML; from
XML to a publication dialect), is typical of XML-based applications, where the software
may be decomposed in several modules, each dedicated to a particular part of the global
data processing. Each module consumes XML data as input and produces XML data as
output, thereby creating chains of data producers/consumers. Ultimately, there is no reason
to maintain a tight connection of modules on a single server. Instead, each may be hosted on a
particular computer somewhere on the Internet, dedicated to providing specialized services.

3.2 Data integration

A typical problem is the integration of information coming from heterogeneous sources. XML
provides some common ground where all kinds of data may be integrated. See Figure 8. For
each (non-XML) format, one provides a wrapper that is in charge of the mapping from the

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 16

relational

data

XML

data

XML

data

Wrapper

XML

Documents

legacy

data

Wrapper

View

definitions

Mediator

Queries

q q

Virtual XML

documents

Virtual XML

documents

Figure 8: Information integration

world of this format to the XML world. Now a query (say an XQuery) to the global XML
view is transformed by the mediator (using the view definitions) into queries over the local
sources. A source wrapper translates the XML query to the source it receives into a query
the source understands. That query is evaluated on the source, and some data are produced.
The wrapper translates this data into XML data. The mediator combines the result it receives
from all the wrappers to obtain the general result.

4 The XML World

The broad scope of XML is achieved through a spectrum of XML dialects, XML-based
standards, and XML-based software. Dialects define specialized structures, constraints, and
vocabularies to construct ad hoc XML contents that can be used and exchanged in a specific
application area. Languages and softwares on the other hand are generic. Together, dialects
and languages build an entire world that is at our disposal for developing Web applications.

4.1 XML dialects

Suppose we are working in some particular area, say the industry of plastic. To facilitate the
exchange of information, the industry specifies a common type for such exchanges, with the
tags that should be used, the structure of the information they contain, and the meaning of
the corresponding data. The advantage is that once this is achieved, (i) partners can easily
exchange information, (ii) information from different companies can more easily be integrated,
and (iii) information of interest can more easily be found. Basically, by doing that, the plastic
industry has solved, in part, the problem of the heterogeneity of information sources. It is

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 17

important to note that the design of such dialect includes the design of a syntax (an XML
type) and of a semantics (e.g., the meaning for the different element of the syntax).

We already mentioned the XHTML that serves the same purpose as HTML (describe
simple documents) but with an XML syntax. Perhaps the main difference is that all opening
tags should be closed. RSS is another popular dialect for describing content updates that is
heavily used for blog entries, news headlines, or podcasts. The following document is an
example of RSS content published on the WebDam site (http://webdam.inria.fr/):

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0">

<channel>
<title>Webdam Project</title>
<atom:link href="http://webdam.inria.fr/wordpress/?feed=rss2"

rel="self" type="application/rss+xml" />
<link>http://webdam.inria.fr/wordpress</link>
<description>Foundations of Web Data Management</description>
<pubDate>Wed, 26 May 2010 09:30:54 +0000</pubDate>

<item>
<title>News for the beginning of the year</title>
<description>The webdam team wish you an happy new year!</description>
<link>http://webdam.inria.fr/wordpress/?p=475</link>
<pubDate>Fri, 15 Jan 2010 08:48:45 +0000</pubDate>
<dc:creator>Serge</dc:creator>
<category>News</category>

</item>

</channel>
</rss>

SVG (Scalable Vector Graphics) is an XML dialect for describing two-dimensional vector
graphics, both static and animated. SVG is very powerful and can represent quite complex
figures such as all the figures found in the present book! The following is a simple example
that shows the combination of a surfacic object with some text. The left part is the SVG
encoding, the right one shows the graphic representation that can be obtained by a Web
browser or by a specialized tool (e.g., Gimp or Inkscape).

<?xml version="1.0" encoding="UTF-8" ?>
<svg xmlns="http://www.w3.org/2000/svg">

<polygon points="0,0 50,0 25,50"
style="stroke:#660000; fill:#cc3333;"/>

<text x="20" y="40">Some SVG text</text>
</svg>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://webdam.inria.fr/

For personal use only, not for distribution. 18

This example shows that data of any kind can be encoded as XML, and exchanged on
the Internet between applications that possibly run under different systems, on different
computer architectures, and so on. It is also worth noting that, although this SVG example
is trivial and easy to understand even without a rendering tool, in general the content of an
XML file may be arbitrarily complex and definitely not suitable for inspection by a human
being. Some of the SVG representations for complex figures in this book consist of hundreds
of lines of abstruse code that can only be manipulated via appropriate software.

As another illustration, (symbolic) music can be represented in XML. The following is a
slightly simplified example of a MusicXML document.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<score-partwise version="2.0">
<part-list>

<score-part id="P1">
<part-name>Music</part-name>

</score-part>
</part-list>
<part id="P1">

<attributes>
<divisions>1</divisions>

</attributes>
<note>

<pitch>
<step>C</step>
<octave>4</octave>

</pitch>
<duration>4</duration>

</note>
<note>

<pitch>
<step>G</step>
<octave>4</octave>

</pitch>
<duration>4</duration>

</note>
</part>

</score-partwise>

This encoding can be interpreted by specialized software and rendered as a musical score:

Some other popular XML dialects are MathML (the mathematical mark-up language),
an XML dialect for describing mathematical notation and capturing both its structure and
content. It aims at integrating mathematical formulae into World Wide Web documents (if
one considers only the presentation aspect, it is something like the mathematics in LATEX): see
Exercises. XML/EDI is an XML dialect for business exchanges. It can be used to describe, for

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 19

instance, invoices, healthcare claims, and project statuses. For the moment, the vast majority
of electronic commerce transactions in the world are still not using XML, but (pure) EDI, a
non-XML format.

There are just too many dialects to mention them all, ranging from basic formats that
represent the key/value configuration of a software (look at your Firefox personal directory!)
to large documents that encode complex business process. Above all, XML dialects can be
created at will, making it possible for each community to define its own exchange format.

4.2 XML standards

The universality of XML brings an important advantage: any application that chooses to
encode its data in XML can benefit from a wide spectrum of standards for defining and vali-
dating types of documents, transforming a document from one dialect to another, searching
the document for some pattern, manipulating the document via a standard programming
language, and so on. These standards are generic to XML, and are defined independently
from the specificities of a particular dialect. This also enables the implementation of softwares
and languages that are generic, as they apply to XML-formatted information whatever the
underlying application domain. For the standards, one should also notably mention:

SAX, the Simple API for XML, is an application programming interface (API) providing a
serial access to XML documents seen as a sequence of tokens (its serialization).

DOM, the Document Object Model, is an object-oriented model for representing (HTML
and) XML document, independently from the programming language. DOM sees a
document as a tree and provides some navigation in it (e.g., move to parent, first child,
left/right sibling of a node). A DOM API is available for all popular languages (Java,
C++, C#, Javascript, etc.)

XPath, the XML Path Language, is a language for addressing portions of an XML document.

XQuery is a flexible query language for extracting information from collections of XML
documents. It is to a certain extent the SQL for Web data.

XSLT, the Extensible Stylesheet Language Transformations, is a language for specifying the
transformation of XML documents into other XML documents. A main usage of XSLT
is to define stylesheet to transform some XML document into XHTML, so that it can be
displayed as a Web page.

Web services, provide interoperability between machines based on Web protocols. See
further.

To make the discussion a bit more precise, we consider some of these in slightly more
detail.

Programming interfaces: SAX and DOM

We start with the first two APIs, that provide two distinct ways to see an XML document. See
Figure 9.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 20

very efficient

Complex

applications,

XSLT,

editor

Simple

applications,

object

API

XML

SAX

parser

document

DOM

of events

Stream

parser

Figure 9: Processing an XML document with SAX and DOM

Let us begin with the SAX programming model. A SAX parser transforms an XML
document into a flow of events. Examples of events are the start/end of a document, the
start/end of an element, a text token, a comment, and so on. To illustrate, suppose that we
obtained some relational data in an XML format. SAX may be used, for instance, to load this
data in a relational database as follows:

1. when document start is received, connect to the database;

2. when a Movie open tag is received, create a new Movie record;

(a) when a text node is received, assign its content to X;

(b) when a Title close tag is received, assign X to Movie.Title;

(c) when a Year close tag is received, assign X to Movie.Year, etc.

3. when a Movie close tag is received, insert the Movie record in the database (and commit
the transaction);

4. when document end is received, close the database connection.

SAX is a good choice when the content of a document needs to be examined once (as in the
previous example), without having to follow some complex navigation rule that would, for
instance, require to turn back during the examination of the content. When these conditions
are satisfied, SAX is the most efficient choice as it simply scans the serialized representation.
For concreteness, the following piece of code shows a SAX handler written in Java (this
example is simplified for conciseness: please refer to the Web site for a complete version). It
features methods that handle SAX events: opening and closing tags; character data.

import org.xml.sax.*;
import org.xml.sax.helpers.LocatorImpl;

public c l a s s SaxHandler implements ContentHandler {

/** Constructor */
public SaxHandler() {

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 21

super();
}

/** Handler for the beginning and end of the document */
public void startDocument() throws SAXException {

out.println("Start the parsing of document");
}

public void endDocument() throws SAXException {
out.println("End the parsing of document");

}

/** Opening tag handler */
public void startElement(String nameSpaceURI, String localName,

String rawName, Attributes attributes) throws SAXException {
out.println("Opening tag: " + localName);

// Show the attributes, if any
i f (attributes.getLength() > 0) {

System.out.println(" Attributes: ");
for (i n t index = 0;

index < attributes.getLength(); index++) {
out.println(" - " + attributes.getLocalName(index)

+ " = " + attributes.getValue(index));
}

}
}

/** Closing tag handler */
public void endElement(String nameSpaceURI,

String localName, String rawName)
throws SAXException {
out.print("Closing tag : " + localName);
out.println();

}

/** Character data handling */
public void characters(char[] ch, i n t start,

i n t end) throws SAXException {
out.println("#PCDATA: " + new String(ch, start, end));

}
}

The other XML API is DOM. A DOM parser transforms an XML document into a tree
and, as already mentioned, offers an object API for that tree. A partial view of the class
hierarchy of DOM is given in Figure 10. We give below a Preorder program that takes as
argument the name of some XML file and analyzes the document with a DOM parser. The
analysis traverses the XML tree in preorder and outputs a message each time an element is
met. Comments in the code should clarify the details.

// Import Java classes

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 22

Node

Attribute TreeNode

Leaf

CharacterData

Text

CData

Comment

Container

Document Element DocType

Figure 10: DOM class hierarchy

import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

/**
* A DOM class that outputs all the elements in preorder

*/

c l a s s DomExample {
/**
* The main method.

*/
public s t a t i c void main(String args[]) {

// Obtain the document
File fdom = new File(args[0]);

// Parser instantiation
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();

// Document analysis
Document dom = builder.parse(fdom);

// Start the recursive traversal from the root element
Node elementRoot = dom.getDocumentElement();
Traversal(elementRoot);

}

/**
* The recursive method.

*/
private s t a t i c void Traversal(Node node) {
String str = new String();
// Node numbering if it is a text
i f (node.getNodeType() == Node.ELEMENT_NODE) {

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 23

str = "Found element " + node.getNodeName();
System.out.println(str + "\n");

// Recursive call if node has children
i f (node.hasChildNodes()) {
// Get the list of children
NodeList child = node.getChildNodes();
// List traversal
for (i n t i = 0; i < child.getLength(); i++)
Traversal(child.item(i));

}
}

}
}

Several implementations of DOM exist. The example we use here is based on an imple-
mentation proposed by the Apache Foundation and a popular DOM parser called Xerces.

Query languages: XPath, XQuery

Consider a large collection of XML documents, say the archives of the DBLP bibliography. To
extract some pieces of information from this collection, a user will typically specify graphically
a query. That query may be translated in XPath or XQuery queries in much the same way
that a standard graphical query to a relational database is translated to SQL.

In an XML context, queries combine different styles of selection:

1. queries by keywords as in search engines;

2. precise queries as in relational systems;

3. queries by navigation as in Web browsing.

Loosely speaking, XPath is a language that allows the specification of paths between the
nodes of an XML document (seen as a tree, as it always should). This specification takes
the form of patterns that describe more or less tightly a family of paths that comply to the
specification. These paths “match” the pattern. An example of XPath pattern query is as
follows:

document(’dblp.xml’)//book[publisher = ’Cambridge University Press’]

It selects the books in the document dblp.xml with Cambridge University Press for publisher.
XPath is at the core of other XML manipulation languages, such as XQuery and XSLT, because
it provides a mechanism to navigate in an XML tree.

Here is an example of query with XQuery.

for $p in document(’dblp.xml’)//publisher
l e t $b := document(’dblp.xml’)//book[publisher = $p]
where count($b) > 100
return <publisher> {$p//name, $p//address} </publisher>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 24

In this query, the variable $p scans the list of publishers. For each publisher, variable $b
contains the sequence of books published by this publisher. The where clause filters out the
publishers who published less than 100 books. Finally, the return constructs the result, for
each publisher, the name and address.

Web services

An application on a machine when turned into a Web service can be used by a remote
machine. This is the basis of distributed computing over the Internet. Different machines
over the network exchange XML data using a particular protocol, SOAP. They describe their
interfaces using yet another language, namely WSDL (pronounced wiz-d-l), the Web Services
Description Language.

The idea underlying Web services is very simple and will be best explained by an example.
Suppose I wrote a program that takes as input a URL and computes the page rank of that
page and its classification in some ontology (what it is talking about). Suppose a friend in
California wants to use my program. I have to package it, send her all the data (perhaps
some databases) the program is using (which may be forbidden by my company). Then we
have to solve loads of problems such as software compatibility. It is much simpler to turn
my program into a Web service (which takes a couple of minutes) and publish it on a local
Web server. My friend can then use it without knowing that I developed it in Java or C++, on
Mandrake Linux or Vista, with standard libraries or rather obscure homemade ones.

The core ideas are to exchange (serialized) XML and use a standard protocol for messages.
The basis is SOAP, the Simple Object Access Protocol, a protocol for exchanging XML-based
messages over the network (typically using HTTP or HTTPS). The most common messaging
for SOAP is a Remote Procedure Call (RPC) where a computer (the client) sends a request
message to another one (the server); and the server responds by a message to the client.
Imagine for instance that you make the following function call from your Client application:

pr = getPageRank ("http://webdam.inria.fr/");

This call must be shipped to the server. The SOAP protocol encodes the relevant informa-
tion in XML and transfers the following XML document to the server.

<?xml version="1.0" encoding="UTF-8">
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<SOAP-ENV:Body>
<ns1:getPageRank
xmlns:ns1="urn:PageRankService">

<param1 xsi:type="xsd:string">
http://webdam.inria.fr/

</param1>
</ns1:getPageRank>

</SOAP-ENV:Body>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 25

</SOAP-ENV:Envelope>

Although rather verbose, this SOAP message is simple enough to exhibit the main infor-
mation that constitutes the remote function call: the server Uniform Resource Name (urn), the
function name and the parameter value. The server then transmits its answer with a SOAP
message. This exchange is transparent to the Client: what is exploited here is the capacity of
XML to safely encode and exchange data between computers.

Let us finally complete this very brief overview of Web Services by mentionning WSDL,
the Web Services Description Language. WSDL is an XML-based language for describing Web
services, which specifies the type of their input and output. It can be used, in particular, to
generate automatically the correct “stubs” of client applications that takes care of creating the
SOAP message that respects the signature (type and number of parameters) of the functions
provided by the service.

5 Further reading

Before the Web, publication of electronic data was limited to a few scientific and technical
areas. With the Web and HTML, it rapidly became universal. HTML is a format meant
for presenting documents to humans. However, a lot of the data published on the Web is
produced by machines. Moreover, it is more and more the case that Web data are consumed
by machines as well. Because HTML is not appropriate for machine processing, semistructured
data models, and most importantly of a new standard for the Web, namely XML [W3C08],
were developped in the 90’. The use of a semistructured data model as a standard for data
representation and data exchange on the Web brought important improvement to the publication
and reuse of electronic data by providing a simple syntax for data that is machine-readable
and, at the same time, human-readable (with the help of the so-called style-sheets).

Semistructured data models may be viewed, in some sense, as bringing together two
cultures that were for a long while seen as irreconcilable, document systems (with notably
SGML [Gol90]) and database systems (with notably relational systems [Ull88]). From a model
perspective, there are many similarities with the object database model [Cat94]. Indeed, like
XML, the object database model is based on trees, provides an object API, comes equipped
with query languages and offers some form of serialization. As already mentioned, an alter-
native to XML in some contexts is JSON (see http://www.json.org and the description
in Chapter ??), a semistructured model directly derived from the need to serialize the rep-
resentation of an object that must be exchanged by two programs (typically, a Web browser
and a Web server). A main difference is that the very rigorous typing of object databases was
abandoned in semistructured data models.

SGML (Standard Generalized Markup Language) is the (complex) 1986 ISO Standard for
data storage and exchange. SGML dialects can be defined using DTD. For instance, HTML is
such a dialect.

XML is developed and promoted by the World Wide Web Consortium (W3C). XML is a
1998 recommendation of the W3C. Its specification is a couple of dozens of pages long, vs.
the hundreds of pages of SGML. It is supported by academic labs such as MIT (US), INRIA
(Europe) or Keio University and backed by all the heavy weights of industry notably Oracle,
IBM and Microsoft. The role of W3C is in particular to lead the design of standards where
the XML syntax is only the tip of the iceberg. They propose a wide range of them for typing

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.json.org

For personal use only, not for distribution. 26

XML [W3C04], querying XML [XQu], transforming XML [XSL], interacting with XML [DOM],
developing distributed applications with XML, etc. See the site of the W3C [W3C] for more.

The articulation of the notion of semistructured data may be traced to two simultaneous
origins, the OEM model at Stanford [PGMW95, AQM+97] and the UnQL model at U. Penn
[PDS95]. See [ABS99] for a first book on the topic.

Specific data formats had been previously proposed and even became sometimes popular
in specific domains, e.g. ASN.1 [ISO87]. The essential difference between data exchange
formats and semistructured data models is the presence of high level query languages in the
latter. A query language for SGML is considered in [ACC+97]. Languages for semistructured
data models such as [AQM+97, PDS95] then paved the way for languages for XML [XQu].

6 Exercises

6.1 XML documents

Exercise 6.1 (Well formed XML documents) Have you ever written an HTML page? If not, it is
time to create your first one: create a .html home page with your public information: CVs, address,
background and hobbies, photos, etc.

This page must be a well-formed XHTML document. Use a public XHTML validator to
check its well-formedness, and correct any error. Hints: the W3C provides an online validator
at http://validator.w3c.org/. You can also add a validator to your browser that check any page loaded
from the Internet (for Firefox, the Web Developper plugin is a good choice).

Exercise 6.2 (XML and graphics) Now, embellish you page with some vector graphics. As a start-
ing point, take the SVG example given in the present chapter, save it in an svg.xml document and add
the following instruction somewhere in your XHTML code.

<object data="svg.xml" type="image/svg+xml" width="320" height="240" />

Open the page in your browser (of course, the browser should be equipped with an SVG rendering
module: Firefox natively supports SVG) and see the graphics displayed in your Web page. Search for
some more exciting SVG options and experiment them.

Exercise 6.3 MathML is an XML dialect for the representation of mathematical fomulas in XML.
Arithmetic formulas in MathML use a prefix notation, where operators come before their operands.
For instance, the prefix notation of

x2 + 4x + 4

is

(+ (^ x 2) (* 4 x) 4)

When encoded in MathML, this formula is represented by the following document:

<?xml version=’1.0’?>
<apply>

<plus/>

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

For personal use only, not for distribution. 27

<apply>
<power/>
<ci>x</ci>
<cn>2</cn>

</apply>
<apply>

<times/>
<cn>4</cn>
<ci>x</ci>

</apply>
<cn>4</cn>

</apply>

Note that each parenthesis gives rise to an apply element ; operators +, × and ^ are respectively
represented with plus, times and power elements ; finally, variables are represented by ci elements,
and constants cn elements.

1. Give the tree for of this MathML document.

2. Express the following formulas in MathML

• (xy + 3xy)× y

• xa+2 + y

3. Give the DTD that corresponds to the MathML fragment given above.

6.2 XML standards

Programming with XML APIs, SAX and DOM, is a good means to understand the features
of XML documents. We invite you to realize a few, simple programs, based on examples
supplied on our web site.

These examples are written in Java. You need a SAX/DOM parser: the Xerces open-source
parser is easy to obtain and our programs have been tested with it:

• get the Xerces java archive from http://xerces.apache.org/ and download it
sowewhere on your local disk;

• add your Xerces directory to $JAVA_HOME;

• take from our web site the following files: SaxExample.java, SaxHandler.java and DomEx-
ample.java.

Let us try the SAX program first. It consists of a class, the handler, that defines the method
triggered when syntactic tokens are met in the parsed XML document (see page 19 for details).
The handler class is supplied to the SAX parser which scans the XML document and detects
the tokens. Our handler class is in SaxHandler.java, and the parser is instantiated and run in
SaxExample.java. Look at both files, compile them an run SaxExample. It takes as input the
name of the XML document. For instance, using the movies.xml document from our site:

java SaxExample movies.xml

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://xerces.apache.org/

For personal use only, not for distribution. 28

The DOM example executes the same basic scan of the XML document in preorder, and
outputs the name of each element. Compile it, and run it on the same file:

java DomExample movies.xml

We also provide a DomPreorder.java example that shows a few other features of DOM
programming: modification of nodes, and serialisation of a DOM object.

For the following exercises, you should download the dblp.xml document from the DBLP
site: http://www.informatik.uni-trier.de/~ley/db/. The main file is about 700
Mbs, which helps to assess the respective performance of the SAX and DOM approaches.

Exercise 6.4 (Performance) Write a SAX program that count the number of top-level elements
(elements under the element root) in an XML document.

• apply your program to dblp.xml and count the number of references;

• extend your program to count only a subset of the top-level elements, say, journals or books.

Write the same program as above, but in DOM. Run it on dblp.xml and compare the performances.

Exercise 6.5 (Tree-based navigation) Imagine that you need to implement a Navigate program
that accesses one or several nodes in an XML documents, referred to by a path in the hierarchy. For
instance:

java Navigate movies movie title

should retrieve all the <title> nodes from the movies.xml document (nb: this is actually a quite
rudimentary XPath evaluator, see the next chapter).

Try to design and implement this program in SAX and DOM. Draw your conclusions.

[ABS99] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan-Kaufman, 1999.

[ACC+97] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte, and Jerome
Simeon. Querying documents in object databases. Intl. Journal on Digital Libraries,
1:5–19, 1997.

[AQM+97] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. The Lorel query
language for semistructured data. Intl. Journal on Digital Libraries, 1:68–88, 1997.

[Cat94] R. G. G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan Kauf-
mann, 1994.

[DOM] Document Object Model. w3.org/DOM.
[Gol90] C.F. Goldfarb. The SGML Handbook. Calendon Press, Oxford, 1990.
[ISO87] ISO. Specification of astraction syntax notation one (asn.1), 1987. Standard 8824,

Information Processing System.
[PDS95] P.Buneman, S. Davidson, and D. Suciu. Programming constructs for unstructured

data. In Proc. Intl. Workshop on Database Programming Languages (DBLP), 1995.
[PGMW95] Y. Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom. Object ex-

change across heterogeneous information sources. In Proc. Intl. Conf. on Data
Engineering (ICDE), 1995.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.informatik.uni-trier.de/~ley/db/

For personal use only, not for distribution. 29

[Ull88] J.D. Ullman. Principles of Database and Knowledge Base Systems, Volume I. Computer
Science Press, 1988.

[W3C] World wide web consortium. http://www.w3.org/.
[W3C04] W3C. XML Schema Part 0: Primer. http://www.w3.org/TR/

xmlschema-0/, October 2004.
[W3C08] W3C. Extensible markup language (XML) 1.0. http://www.w3.org/TR/

REC-xml/, November 2008.
[XQu] XML Query (XQuery). http://www.w3.org/XML/Query.
[XSL] The Extensible Stylesheet Language Family. http://www.w3.org/Style/XSL.

@ Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset, Pierre Senellart, 2011; to be published by Cambridge University Press 2011.

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/XML/Query

	Semistructured data
	XML
	XML documents
	Serialized and tree-based forms
	XML syntax
	Typing and namespaces
	To type or not to type

	Web Data Management with XML
	Data exchange
	Data integration

	The XML World
	XML dialects
	XML standards

	Further reading
	Exercises
	XML documents
	XML standards

