
ΕΠΛ 602:Foundations of Internet

Technologies

Cloud Computing

1

Above the Clouds Presentation

Based on "Above the Clouds: A Berkeley View of Cloud

2

Based on "Above the Clouds: A Berkeley View of Cloud

Computing" by Michael Armbrust, Armando Fox, Rean Griffith, Anthony

D. Joseph, Randy Katz, Andy Konwinski, Gunho Lee, David Patterson,

Ariel Rabkin, Ion Stoica, and Matei Zaharia. Technical Report EECS-

2009-28, EECS Department, University of California, Berkeley.

Above the Clouds

A Berkeley View of Cloud

Computing

3

UC Berkeley RAD Lab

Outline

� What is it?

� Why now?

� Cloud killer apps

� Economics for users

� Economics for providers� Economics for providers

� Challenges and opportunities

� Implications

4

WEB is replacing the Desktop

EDBT 2011 Tutorial

What is the “cloud”?

� Many answers. Easier to explain with examples:
� Gmail is in the cloud

� Amazon (AWS) EC2 and S3 are the cloud

What is Cloud Computing?

� Amazon (AWS) EC2 and S3 are the cloud

� Google AppEngine is the cloud

� Windows Azure is the cloud

� SimpleDB is in the cloud

� The “network” (cloud) is the computer

What is Cloud Computing?

A Cloud is

� an infrastructure, transparent to the end-user,

� which is used by a company or organization to provide services

to its customers

7

to its customers

� via network

� where the infrastructure resources are used elastically and the

� customer is charged according to usage.

under the hood: large clusters of commodity hardware

terms: virtualization, elasticity, utility computing, pay-as-you-go

What about Wikipedia?

“Cloud computing is the delivery of computing as a
service rather than a product, whereby shared resources,
software, and information are provided to computers and

What is Cloud Computing?

software, and information are provided to computers and
other devices as a utility (like the electricity grid) over a
network (typically the Internet). “

What is Cloud Computing?

� Delivering applications and services over the Internet:
� Software as a service

� Extended to:
� Infrastructure as a service: Amazon EC2

� Platform as a service: Google AppEngine, Microsoft Azure� Platform as a service: Google AppEngine, Microsoft Azure

Poorly defined so we avoid all “X as a service”

� Utility Computing: pay-as-you-go computing
� Illusion of infinite resources (no need to plan ahead)

� No up-front cost (start small)

� Fine-grained billing (e.g. hourly)

Cloud Computing:
� the applications delivered as services over the Internet (SaaS) and
� the hardware and systems software in the datacenters that provide these

services (a Cloud)
Public Cloud: a Cloud made available in a pay-as-you-go manner to the public
Utility Computing: the service being sold
Private Cloud: the internal datacenters of a business or other organization that are
not made available to the public.

What is Cloud Computing?

not made available to the public.
Cloud Computing: SaaS and Utility Computing

roles of the people as users or
providers of these layers of Cloud
Computing

What is Cloud Computing?

Cloud Services
� Data Storage

Examples:
AWS Simple Storage System (S3)

� Infrastructure as a Sevice (IaaS)
Provide computing instances (e.g., servers running Linux) as a service.

Examples:

AWS Elastic Computing Cloud (EC2).

� Platform as a Service (PaaS)

11

� Platform as a Service (PaaS)
The delivery of a computing platform and solution stack as a service via
network.

Examples:

Google AppEngine

� Software as a Service (SaaS)
Software that is deployed over network as a service.

Examples:
Google Documents
Google Calendar
Google Reader

What is Cloud Computing?

Some Cloud Providers

� Amazon Web Services (AWS)
http://aws.amazon.com/
The most complete set of Cloud services.

� Google App Engine

12

� Google App Engine
http://code.google.com/appengine/

� IBM Cloud
http://www.ibm.com/ibm/cloud/

� Microsoft Windows Azure
http://www.microsoft.com/windowsazure/

Cloud Computing: Why Now?

Cloud Computing: Why Now?

� Experience with very large datacenters
� Unprecedented economies of scale

� Transfer of risk
Examples, PayPal, Google AdSense, Amazon CloudFront

� Technology factors
� Pervasive broadband Internet� Pervasive broadband Internet

� Maturity in Virtualization Technology

� Business factors
� Minimal capital expenditure

� Pay-as-you-go billing model

� Web 2.0: shift fir “high-touch, high-margin high-commitment”- “low-
touch, low-margin low-commitment” (pay-as-you-go computing with
no contract)

Examples, PayPal, Google AdSense, Amazon CloudFront

Cloud Killer Apps

Factor in the cost of moving data

� Mobile and web applications
� Availability (connectivity), large data sets, mash-ups (combine more data sources
or services)

� Extensions of desktop software

� Matlab, Mathematica

� Batch processing / MapReduce

� Oracle at Harvard, Hadoop at NY Times

� Business analytics (understanding customers, supply chains,
buying habits, etc), decision support

15

Spectrum of Clouds

An application needs
� a model of computation,
� a model of storage and,
� a model of communication.

The statistical multiplexing (multi tenancy) necessary to achieve elasticity and the
illusion of infinite capacity ==>resources are virtualized

16

illusion of infinite capacity ==>resources are virtualized

So that the implementation of how they are multiplexed and shared can be hidden
from the programmer.

Different utility computing offerings distinguished based on the level of
abstraction presented to the programmer and the level of management of the
resources.

Spectrum of Clouds

At one end of the spectrum: hardware virtual machines -- Amazon EC2

� An EC2 instance looks much like physical hardware
� Users can control nearly the entire software stack, from the kernel upwards.
� Low level of virtualization—raw CPU cycles, block-device storage, IP-level
connectivity

Thin API: a few dozen API calls to request and configure the virtualized hardware.
No a priori limit on the kinds of applications that can be hosted; developers code

17

No a priori limit on the kinds of applications that can be hosted; developers code
whatever they want.

Inherently difficult to offer automatic scalability and failover, because the
semantics associated with replication and other state management issues highly
application-dependent.

AWS does offer a number of higher-level managed services, including several
different managed storage services for use in conjunction with EC2, such as
SimpleDB.
Oracle databases hosted on AWS

Spectrum of Clouds

At the other end of the spectrum: application domain-specific platforms --
Google AppEngine and Force.com

Google AppEngine targeted exclusively at traditional web applications

AppEngine application
� Structured with clean separation between a stateless computation tier and a
stateful storage tier (proprietary MegaStore -- based on BigTable)
� Expected to be request-reply based (severely rationed in how much CPU time

18

� Expected to be request-reply based (severely rationed in how much CPU time
they can use in servicing a particular request)

Impressive automatic scaling and high-availability mechanisms

Not suitable for general-purpose computing.

Force.com (SalesForce business software development platform)
Designed to support only business applications that run against the salesforce.com
database

Spectrum of Clouds

An intermediate point on the spectrum of flexibility vs. programmer convenience:
Microsoft’s Azure

Azure applications are
� written using the .NET libraries, and
� compiled to the Common Language Runtime, a language-independent managed
environment.

19

The system supports general-purpose computing

Users get a choice of language, but cannot control the underlying operating system
or runtime.

The libraries provide a degree of automatic network confguration and
failover/scalability, but require the developer to declaratively specify some
application properties in order to do so.

Spectrum of Clouds

Which one is the best model?

An analogy with programming languages and frameworks.

� Low-level languages such as C and assembly language allow fine control and close

communication with the bare metal,

but if writing a Web application, the mechanics of managing sockets, dispatching

requests, and so on are cumbersome and tedious to code, even with good libraries.

20

requests, and so on are cumbersome and tedious to code, even with good libraries.

� High-level frameworks such as Ruby on Rails make these mechanics invisible to

the programmer, but are only useful if the application readily fits the request/reply

structure and the abstractions provided by Rails

Different tasks will result in demand for different classes of utility computing.

Just as high-level languages can be implemented in lower-level ones, highly-

managed cloud platforms can be hosted on top of less-managed ones (?proprietary)

21

Spectrum of Clouds

� Instruction Set VM (Amazon EC2, 3Tera)

� Bytecode VM (Microsoft Azure)

� Framework VM

� Google AppEngine, Force.com

EC2 Azure AppEngine Force.com

Lower-level,
Less management

Higher-level,
More management

22

Outline

� What is it?

� Why now?

� Cloud killer apps

� Economics for users

� Economics for providers� Economics for providers

� Challenges and opportunities

� Implications

23

� Many cloud applications have
cyclical demand curves

� Daily, weekly, monthly, …

� Workload spikes more
frequent and significant

Demand

R
es

ou
rc

es

Economics of Cloud Users

frequent and significant

� Death of Michael Jackson:

� 22% of tweets, 20% of
Wikipedia traffic, Google
thought they are under attack

� Obama inauguration day: 5x
increase in tweets

Time

Unused resources

Economics of Cloud Users

• Risk of over-provisioning: underutilization

Capacity

Static data center

Demand

Time

R
es

ou
rc

es

25

Economics of Cloud Users

• Heavy penalty for under-provisioning

R
es

ou
rc

es

Demand

Capacity

1 2 3

R
es

ou
rc

es

Capacity

Lost revenue

Lost users

R
es

ou
rc

es
Demand

Capacity

Time (days)
1 2 3

Time (days)
1 2 3

R
es

ou
rc

es

Demand

Capacity

Time (days)
1 2 3

26

Economics of Cloud Users

• Pay by use instead of provisioning for peak

Capacity

R
es

ou
rc

es

R
es

ou
rc

es

Unused resources

Static data center (provisioning for peak load)
Data center in the cloud

Demand

Time

R
es

ou
rc

es

Demand

Capacity

Time

R
es

ou
rc

es

27

Economics of Cloud Users

Left: expected profit for
(revenue realized per user-hour minus cost of paying Cloud Computing per user-hour) X the number of user-
hours
Right-hand side performs the same calculation for a fixed-capacity datacenter
by factoring in the average utilization, including nonpeak workloads. Whichever side is greater represents the
opportunity for higher profit.
Apparently, if Utilization = 1:0 (the datacenter equipment is 100% utilized), the two sides of the equation look
the same. However, basic queueing theory tells us that as utilization approaches 1.0, system response time
approaches infinity. In practice, the usable capacity of a datacenter (without compromising service) is typically 0.6
to 0.8. Whereas a datacenter must necessarily overprovision to account for this “overhead,” the cloud vendor can

28

to 0.8. Whereas a datacenter must necessarily overprovision to account for this “overhead,” the cloud vendor can
simply factor it into Cost
cloud. (This overhead explains why we use the phrase “pay-as-you-go” rather than rent or lease for
utility computing. The latter phrases include this unusable overhead, while the former doesn’t. Hence, even if you
lease a 100 Mbits/second Internet link, you can likely use only 60 to 80 Mbits/second in practice.)
The equation makes clear that the common element in all of our examples is the ability to control the cost per
user-hour of operating the service. In Example 1, the cost per user-hour without elasticity was high because of
resources sitting idle—higher costs but same number of user-hours. The same thing happens when over-
estimation of demand results in provisioning for workload that doesn’t materialize. In Example 2, the cost per user-
hour increased as a result
of underestimating a spike and having to turn users away: Since some fraction of those users never return, the
fixed costs stay the same but are now amortized over fewer user-hours. This illustrates fundamental limitations of
the “buy”
model in the face of any nontrivial burstiness in the workload.

Economics of Cloud Users

control the cost per user-hour of operating the service.

� (over-provisioning/over-estimation of demands) the cost per user-hour
without elasticity high because of resources sitting idle—higher costs but
same number of user-hours.
� (under-provisioning) the cost per user-hour increases as a result of

29

� (under-provisioning) the cost per user-hour increases as a result of
underestimating a spike and having to turn users away: some fraction of
those users never return, the fixed costs stay the same but are now
amortized over fewer user-hours.

Economics of Cloud Users

Pay separately per resource
Power, cooling and physical plan costs
Operations cost

30

Economics of Cloud Users

31

Utility Computing Arrives
• Amazon Elastic Compute Cloud (EC2)

• “Compute unit” rental: $0.10-0.80 0.085-0.68/hour
– 1 CU ≈ 1.0-1.2 GHz 2007 AMD Opteron/Intel Xeon core

Platform Units Memory Disk

Small - $0.10 $.085/hour 32-bit 1 1.7GB 160GB

Large - $0.40 $0.35/hour 64-bit 4 7.5GB 850GB – 2 spindles

• No up-front cost, no contract, no minimum

• Billing rounded to nearest hour (also regional, spot pricing)

• New paradigm(!) for deploying services?, HPC?

X Large - $0.80 $0.68/hour 64-bit 8 15GB 1690GB – 4 spindles

High CPU Med - $0.20 $0.17 64-bit 5 1.7GB 350GB

High CPU Large - $0.80 $0.68 64-bit 20 7GB 1690GB

High Mem X Large - $0.50 64-bit 6.5 17.1GB 1690GB

High Mem XXL - $1.20 64-bit 13 34.2GB 1690GB

High Mem XXXL - $2.40 64-bit 26 68.4GB 1690GB
Northern VA cluster

Cloud properties

� Cloud offers:

� Scalability : scale out vs scale up (also scale back) means that
you (can) have infinite resources, can handle unlimited
number of users

� Reliability (hopefully!)

� Availability (24x7)� Availability (24x7)

� Elasticity : pay-as-you go depending on your demand you can
add or remove computer nodes and the end user will not be
affected/see the improvement quickly.

� Utility computing (similar to electrical grid)

� Multi-tenancy enables sharing of resources and costs across a
large pool of users. Lower cost, higher utilization … but other
issues: e.g. security.

Who could become a Cloud Computing Provider? (large data
centers, large scale software infrastructure, operational
expertise)

Economics of Cloud Providers

34

Economics of Cloud Providers
� 5-7x economies of scale [Hamilton 2008]

Resource
Cost in

Medium DC
Cost in

Very Large DC Ratio

Network $95 / Mbps / month $13 / Mbps / month 7.1x

� Extra benefits

� Amazon: utilize off-peak capacity

� Microsoft: sell .NET tools

� Google: reuse existing infrastructure

Storage $2.20 / GB / month $0.40 / GB / month 5.7x

Administration ≈140 servers/admin >1000 servers/admin 7.1x

35

Outline

� What is it?

� Why now?

� Cloud killer apps

� Economics for users

� Economics for providers� Economics for providers

� Challenges and opportunities

� Implications

36

Adoption Challenges

Challenge Opportunity

Availability Multiple providers & DCs

Data lock-in Standardization

Think about Google search, or gmail?

37

Think about Google search, or gmail?
Multiple providers (a single one, common software infrastructure, accounting
system or may even go out of business)

Threaten SaaS providers by making their service unavailable, use large “botnets”
that rent bots on the black market -> utility computing offer SaaS the opportunity
to defend by scale-up

APIs for clouds are still proprietary, not easy extract own data and programs from
one site to run on another

Adoption Challenges

Challenge Opportunity

Data Confidentiality and
Auditability

Encryption, VLANs,
Firewalls; Geographical
Data Storage

38

Auditability (third party)
Keep data and copyrighted material within national boundaries, or do not like for a
country to get access to their data via the court system, etc

Growth Challenges

Challenge Opportunity

Data transfer
bottlenecks

FedEx-ing disks, Data
Backup/Archival

Performance
unpredictability

Improved VM support, flash
memory, scheduling VMsunpredictability memory, scheduling VMs

39

CPU and main memory sharing predictable but not I/O
Scheduling of VMs for some classes of batch processing, especially for HPC (ensure
that all threads of a program are running simultaneously)

Growth Challenges

Challenge Opportunity

Scalable storage Invent scalable store (e.g.,
schemaless blobs, column-
oriented storage, etc)

Bugs in large distributed Invent Debugger that relies Bugs in large distributed
systems

Invent Debugger that relies
on Distributed VMs

Scaling quickly Invent Auto-Scaler that relies
on ML; Snapshots

40

Bugs cannot be reproduced
Scale quickly up and down in response to load in order to save money but without violating
service level agreements

Policy and Business Challenges

Challenge Opportunity

Reputation Fate Sharing Offer reputation-guarding
services like those for email

Software Licensing Pay-for-use licenses; Bulk
use salesuse sales

41

One customer’s bad behavior may affect the cloud as a whole
Transfer of legal liability

Eg an EC2 instance running Microsoft windows costs $0.15 per hour instead if the
traditional 0.10 per hour for the open source version

Short Term Implications

� Startups and prototyping

� One-off tasks

� Washington post, NY Times

� Cost associativity for scientific applications

� Research at scale� Research at scale

42

Long Term Implications

� Application software:

� Cloud & client parts, disconnection tolerance

� Cloud part needs to scale down rapidly as well as scale up

� Client piece work disconnected

� Pay-for-use licensing

� Infrastructure software:� Infrastructure software:

� Resource accounting, VM awareness

� Hardware systems:

� Containers, energy proportionality

43

Is it New?

Cloud vs. Grid
� Grid comes from academia.
� Cloud comes from enterprise.

Similarities:
� Distributed computing.
� Large scale clusters.

44

� Large scale clusters.
� Commodity hardware
� Heterogeneous cluster.

Differences:
� Cloud: Elasticity and pay-as-you-go (if not, it is not Cloud).
� Grid: can be more loosely coupled and geographically dispersed than a Cloud
� Grid: may use the user computer as a part of it (volunteer computing)
� Grid: may have been built for a particular purpose and then disappear

Cloud Infrastructure

45

Cloud Infrastructure

Some of the slides from
http://www.cs.bu.edu/faculty/gkollios/ada11/

http://www.dblab.ece.ntua.gr/~vergoulis/documents/cloud%20and%20mr_v2.pdf

Cloud Computing Infrastructure

� Computation model: MapReduce*

� Storage model: HDFS*

� Other computation models: HPC/Grid Computing

� Network structure

*Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet,

Google Distributed Computing Seminar, 2007 (licensed under Creation Commons Attribution 3.0 License)

Cloud Computing Computation

Models

� Finding the right level of abstraction
� von Neumann architecture vs cloud environment

� Hide system-level details from the developers
� No more race conditions, lock contention, etc.

� Separating the what from how
� Developer specifies the computation that needs to be � Developer specifies the computation that needs to be
performed

� Execution framework (“runtime”) handles actual execution

Cloud Computing Infrastructure

� Computation model: MapReduce*

� Storage model: HDFS*

� Other computation models: HPC/Grid Computing

� Network structure

*Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet,

Google Distributed Computing Seminar, 2007 (licensed under Creation Commons Attribution 3.0 License)

MapReduce

49

MapReduce

Jeffrey Dean, Sanjay Ghemawat: MapReduce: simplified data

processing on large clusters, OSDI 2004

“Big Ideas”

� Scale “out”, not “up”
� Limits of SMP and large shared-memory machines

� Idempotent operations
� Simplifies redo in the presence of failures

� Move processing to the data� Move processing to the data
� Cluster has limited bandwidth

� Process data sequentially, avoid random access
� Seeks are expensive, disk throughput is reasonable

� Seamless scalability for ordinary programmers
� From the mythical man-month (“adding manpower to a
late software project makes it later”) to the tradable
machine-hour

Map Reduce

A programming paradigm that comes with a framework to provide to
the programmers an easy way for parallel and distributed computing.

� Designed by Google (published in 2004)
� Designed to scale well on large clusters --> Perfect for Cloud Computing.
� Input & output data stored in a distributed file system.
� Fault tolerance, status & monitoring tools
� It is attractive because it provides a simple model.

51

� It is attractive because it provides a simple model.
� More than 10,000 distinct MapReduce programs have been implemented
in Google.

� Graph processing, text processing, machine learning, statistical
machine translation etc

� Open source implementation (Hadoop)

Why Google introduced MapReduce?

Information Retrieval (IR) problem: Indexing the Web

Because of the explosion of data Google decided:

� To use large clusters of commodity hardware (i.e., Cloud)

� To introduce a framework that makes easy programming on Cloud

(i.e., MapReduce)

52

Typical Large-Data Problem

� Iterate over a large number of records

� Extract something of interest from each

� Shuffle and sort intermediate results

� Aggregate intermediate results

� Generate final output� Generate final output

Key idea: provide a functional abstraction for

these two operations – MapReduce

(Dean and Ghemawat, OSDI 2004)

MapReduce

� Programmers specify two functions:
map (k, v) → <k’, v’>*

Takes an input pair and produces an intermediate (key, value) pair

reduce (k’, v’) → <k’, v’>*

� All values with the same key are sent to the same reducer

Each reducer accepts as input all values associated with the same Each reducer accepts as input all values associated with the same
intermediate key and merges them together to produce a
possibly smaller set

The intermediate values are supplied to reduce function via an
iterator

� The execution framework handles everything else…

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

MapReduce

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

56

MapReduce Implementation

The MapReduce library in the user program
� partitions the input files into M splits
� starts up copies of the program on a cluster of machines.

1 master + workers assigned work by the master (M map and R reduce tasks)

Amapper worker
o reads the contents of the corresponding input split,
o parses key/value pairs out of the input data and

57

o parses key/value pairs out of the input data and
o passes each pair to the user-defined Map function.

The intermediate key/value pairs produced by the Map function
o Buffered in memory.
o Periodically, the buffered pairs are written to local disk, partitioned into R regions by the
partitioning function.
o Locations of buffered pairs on the local disk passed back to the master, responsible for
forwarding them to the reduce workers.
o A reduce worker uses remote procedure calls to read the buffered data from the local disks
of the map workers.

MapReduce Implementation

When a reduce worker has read all intermediate data,
� sorts it by the intermediate keys (sorting needed because typically many different
keys map to the same reduce task) -- external sort may be needed
� iterates over the sorted intermediate data

� for each unique intermediate key encountered,
passes the key and the corresponding set of intermediate values to the
user’s Reduce function.

Output of the Reduce function is appended to a final output file for this reduce

58

Output of the Reduce function is appended to a final output file for this reduce
partition.

When all map and reduce tasks complete, the master wakes up the user program.

Output available in the R output files
User may
o pass these files as input to another MapReduce call, or
o use them from another distributed application.

split 0

worker

Master

User

Program

output

(1) submit

(2) schedule map (2) schedule reduce

MapReduce Overall Architecture

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

output

file 0

output

file 1

(3) read
(4) local write

(5) remote read (6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

Why Google introduced MapReduce?

60

61

62

63

64

65

66

67

68

69

70

71

MapReduce “Runtime”

� Handles scheduling
� Assigns workers to map and reduce tasks

� Handles “data distribution”
� Moves processes to data

� Handles synchronization
� Gathers, sorts, and shuffles intermediate data� Gathers, sorts, and shuffles intermediate data

� Handles errors and faults
� Detects worker failures and automatically restarts

� Handles speculative execution
� Detects “slow” workers and re-executes work

� Everything happens on top of a distributed FS
(later)

Sounds simple, but many challenges!

Some Details
Master data structure

� Idle, in-progress, completed

� Location of the intermediate file regions

� For each completed map task, the locations and sizes of the R intermediate file

regions

73

� Pushed incrementally to workers with in-progress reduce tasks

Some Details
Backup tasks

� “Stragglers”

� when a MapReduce operation is close to completion, the master schedules backup

executions for the remaining in-progress tasks

Local execution for debugging

Status information

74

Status information

The master runs an internal HTTP server and exports a set of status pages for human

consumption

A counter facility to count occurrences of various events

Ordering

In a given partition, the intermediate key/value pairs are processed in increasing key

order -- No enforced ordering across reducers

Barrier between map and reduce phases

But we can begin copying intermediate data earlier

75

Completed map tasks re-executed (local memory of the failed machine) – reducers not

(result in the global file system)

Failure semantics

A single output file (when reducer completes atomically renames the temporary to the

final)

If execution is deterministic, then the output the same as if no failure (idempotent

operations)

MapReduce

� Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
� All values with the same key are reduced together

� The execution framework handles everything else…
� Not quite…usually, programmers also specify:
partition (k’, number of partitions) → partition for k’partition (k’, number of partitions) → partition for k’
� Often a simple hash of the key, e.g., hash(k’) mod R
� Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
� Mini-reducers that run in memory after the map phase
� Used as an optimization to reduce network traffic

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

MapReduce can refer to…

� The programming model

� The execution framework (aka “runtime”)

� The specific implementation

MapReduce Implementations

� Google has a proprietary implementation in C++

� Bindings in Java, Python

� Hadoop is an open-source implementation in Java

� Development led by Yahoo, used in production

� Now an Apache project� Now an Apache project

� Rapidly expanding software ecosystem, but still lots of
room for improvement

� Lots of custom research implementations

� For GPUs, cell processors, etc.

Questions?

80

