EIIA 602:Foundations of Web
Technologies

System Architectures

Lecture Outline

% Distributed system models
“* The end-to-end argument for system design

** Basic system models and technologies for the Web

Why Models?

< Models are intended to provide an abstract, simplified and
consistent description of a relevant aspect of distributed
system design.

» Descriptive

Provide a common vocabulary for use when describing systems

» Guidance

|dentify key areas in which services are required

» Prescriptive

Define standard protocols and APIs to facilitate creation of
interoperable systems and portable applications

System Models

Three different levels:

¢ Physical Model

Capture the hardware composition of a system in terms of the computer
devices and their interconnecting networks

** Architectural Model

provide a high-level view of the distribution of functionality between
components and the relationships between them

** Fundamental Model

vertical views representing some key aspects of distributed systems in an
abstract way (e.g., failure or interaction models)

Physical Models

Basic definition (reminder) A distributed system is defined as one in
which hardware or software components located at networked
computers communicate and coordinate their actions only by passing
messages.

Representation of the underlying hardware components that
abstracts away from specific details of technologies

Three generation:

|. Early distributed systems

2. Internet-scale distributed systems
3. Contemporary distributed systems

Physical Models

Three generation:

Early distributed systems

Late 1970s- early 1980s, Ethernet

|0-100 nodes + local area networking + Limited Internet
Services: shared local printers and file servers

Internet-scale distributed systems
1990s (Internet, Google 1996)
Network of networks

445 @
B ianet]' ﬁ
’*

EI }ackbone
a & Y

/

satellite link

deskiop computer:a
server:

network link:

L|

Contemporary distributed systems

Static (one physical location)
mobile computing (discovery, spontaneous
interoperation)

Discrete (not embedded in other physical entities)
sensors, smart home

Autonomous (independent of other computers)
cloud computing

Distributed systems:
Scale

Heterogeneity

Openness

Quality of service

Early
Small

Limited (typically
relatively homogenous
configurations)

Not a priority

In its infancy

Internet-scale

Large

Significant in terms of
platforms, languages
and middleware

Significant priority
with range of standards
introduced

Significant priority
with range of services
introduced

Contemporary
Ultra-large

Added dimensions
introduced including
radically different styles of
architecture

Mayjor research challenge
with existing standards not
yet able to embrace
complex systems

Major research challenge
with existing services not
yet able to embrace
complex systems

rchitectural Models

Architectural Models

" What are the entities that are communicating
" How they communicate (communication paradigms)
" What roles and responsibilities?

" How are they mapped on the physical distributed
infrastructure (placement)

what are the entities?

|. Processes

From a system perspective: processes coupled with
appropriate interprocess communication paradigms

Nodes
Threads

Interface to Internet-level transport protocols UDP and TCP — sockets
UDP: message passing
TCP: two-way stream (producer/consumer paradigm)

12

what are the entities?

2. Objects

From a programming perspective: objects

A computation consists of a number of interacting objects
Objects are accessed via interfaces (IDL)

Components
+dependencies between objects (assumptions made about other
components/interfaces — contract), non-functional properties such as

security + deployment strategies)

RPC (remote procedure call), RMI (extension to local method invocation that allows an object
living in one process to invoke the methods of an object living in another process)

Higher-level programming abstractions: CORBA (interoperability)

Component-based: Enterprise JavaBeans, Fractal

13

Architectural Models: what are the entities?

3.Web services

Web services are distributed web applications that provide
discrete functionality and expose it in a well-defined manner
over standard Internet protocols to other web applications

(W3C)
A software application identified by a URI, whose interfaces and bindings are
capable of being defined, described and discovered as XML artifacts. A web
service supports direct interactions with other software agent s using XML-based
message exchanges via Internet protocols

Architectural Models: what are the entities?

" Processes (nodes, threads)
* Objects (components)

=" VWeb services

Entities

» Embody a flow of control

E.g. process, thread

» Characterized by state, which includes:
Private data
State of execution

Bindings to other components (code and resource)

16

" Interprocess communication

Relatively low-level support offered (e.g., message-passing
primitives, direct access to the APl offered by the Internet
(socket programming) and support for multicast)

how they communicate?

= Remote invocation

18

" request-reply protocols (underlying primitive): a
pairwise exchange of messages from server to client (I
message: encoding of the operation to be executed by the
server + arguments, 2" message: encoded result (example:

HTTP)

* remote procedure call (RPC): servers offer a set of
operations through a service interface and clients call these
operations directly as if local

* remote method invocation (RMI): an object can invoke
a method in a remote object + object identity and pass
objects as parameters

how they communicate?

®» |ndirect communication

19

" group communication: one to many, recipients elect to receive
messages send to a group by joining the group

" publish/subscribe: or distributed event-based systems (a matching
service)

" message queues: point-to-point service, producers send messages to
a queue and consumers receive messages (or get notified)

" tuple spaces: processes place arbitrary items of structured data (aka
tuples) in a persistent tuple space; other process can read or remove tuples
from the tuple space by specifying patterns of interest

" distributed shared memory (DSM): an abstraction for sharing
data between processes that do not share physcical memort

summary so far

Communicating entities
(what is communicating)

System-oriented Problem-
entities oriented entities
Nodes Objects
Processes Components

Web services

Communication paradigms
(how they communicate)

Interprocess Remote Indirect
communication invocation communication
Message Request- Group
passing reply communication
Sockets RPC Publish-subscribe
Multicast RMI Message queues

Tuple spaces

DSM

20

Client-server

21

roles?

invocation

Key:
ProcessO Computer:

roles?

Client-server

Web Browser
File Server

Web Server
invocation Invocation
*

Web Browser

result

‘IIHI!II’ Key:
ProcessO Computer:

22

Peer-to-peer
Address scalability,

Exploit resources (both
data and hardware) at
the edge of the network
(users)

23

Sharable
objects

Architectural Models: placement

Where to place the entities (e.g., objects or services) in terms
of machines or processes within machines

Issues: performance, security, reliability/availability
Current load, communication patterns, quality of
communication, etc

Mapping of services
to multiple servers

Partition (example: web
servers)

or

Replicate (example: Sun
NIS, computers on a LAN
access authentication data

Cluster (search engines)

25

placement

Service
F——— ——
4//"
4

placement

Caching

1.

(o
=

26

Web browsers maintain a cache of recently visited web pages
and other web resources in their local file system and a special
HTTP request to check with the server

Web proxy servers provide a shared cache (other roles:
filtering, firewalls)

Web
server

Proxy
server
v

Web
server

placement

Mobile code

(running code locally vs remotely): applets

a) client request results in the downloading of applet code

Applet code erver
eb

b) client interacts with the applet

W
e Applet server

+ interactive response time

+ require downloading additional functionality (push, applet that
receives updates)

- security

27

Architectural Patterns

= Structures that have shown to work well

Architectural Patterns: Layering

A complex system is partitioned into a number of layers

with a given layer making use of services offered by the
layers below

Each layer offers a software abstraction, with higher layers

unaware of implementation details of any other layers
below them

30

Layering

Applications, services

Middleware

Operating system

Computer and network hardware

Platform

Architectural Patterns: Tiering

Complementary to layering
Layering: vertical organization into layers of abstractions

Tiering: organize functionality in a given layer and place it
into appropriate servers (and physical nodes)

Example:
presentation
logic, application
logic, data logic

Generalizes to n-
tier

See Ajax later today

32

a)

b)

Tiering

Personal computers
or mobile devices

Pe—
_~ User view, 9

Server

Appilcatlon

controls and
Q data mampulatlon/ \af e managemen
_'—'—"'J/ -H-__—_
~ User view, " Application
i ation,/ . g
Tier 1 Tier 2
Personal computers Application server
or mobile devices
AT Sqmums Database server
.'"/ : // . _TH‘
[viewand ———— APP"C?‘“‘D\
l\\cgntn:zls h 0ic .
= Database |
manager

controls
\‘\,____F/‘

Tier 1

[view an >—‘——(\E|_°£if’ ///

Tier 2 Tier 3

Thin clients

Thin client refers to a software layer that supports a user
interface that is local to the user while executing applications
program, or accessing services on a remote computer

Compute server
Network computer or PC

m network

Recent trend move complexity away from the end-user device

towards services in the Internet (cloud computing)
+ simple local devices (e.g., smart phones)
- Interactive graphical activities

Application
Process

33

Architectural Patterns: Proxy

Example |

To support location transparency in RPC or RMI

A proxy is created in the local address space to represent the
remote object; offers exactly the same interface; programmer
makes calls to this proxy

Example 2:
Mobile computing

Brokers

Service
Broker

Service
Requester

Service
Provider

Registry in Java RMI
Naming services in CORBA,Web services

35

Architectural Patterns: Reflection

In a reflective system, standard service interfaces are available at
the base level, but a meta-level interface provides access to
the components and their parameters that are involved in the
realization of the services

Techniques at the metalevel:

Intercept incoming messages (or invocations) to dynamically
discover the interface offered by a given object (introspection)
and to discover and adapt the underlying architecture of the
system (intercession)

Lecture Outline

% Distributed system models
* Physical Model

¢ Architectural Model

* Basic elements (entities, communication paradigms, roles,
placement)

* Patterns (layering, multiple-tiers, thin clients, proxies, brokers,
reflection

¢ Protocols, Middleware

**Fundamental Models

37

Protocols

» Implementation of a protocol that defines a set of capabilities
Protocol defines interaction with service
All services require protocols

Not all protocols are used to provide services (e.g. IP)

» Examples: FTP and Web servers

HTTP Protocol
TLS Protocol
TCP Protocol
IP Protocol

FTP
Protocol

TCP Protocol
IP Protocol

Telnet
Protocol

38

Architectural Models: Middleware

Middleware is a layer of software whose purpose is to mask
heterogeneity and provide a convenient programming model to
application programmers

Programming abstractions
+ infrastructure services

40

Middleware

Major categories:
Distributed objects (Chapters 5, 8)

Distributed components (Chapter 8)

Publish-subscribe systems (Chapter 6)

Message queues (Chapter 6)

Web services (Chapter 9)

Peer-to-peer (Chapter 10)

Subcategory

Standard

Platform

Platform

Lightweight components
Lightweight components
Application servers
Application servers

Application servers

Web services

Grid services
Routing overlays
Routing overlays
Application-specific
Application-specific
Application-specific
Application-specific

Example systems
RM-ODP

CORBA

Java RMI

Fractal

OpenCOM

SUN EIB

CORBA Component Model
JBoss

CORBA Event Service
Scribe

JMS

Websphere MQ
IMS

Apache Axis

The Globus Toolkit
Pastry

Tapestry

Squirrel
OceanStore

Ivy

Gnutella

&

L (4

/7
0’0

41

Heterogeneity
% See middleware

Openness
<+ See APIs

Security
< Encryption, types of attacks

Scalability

< In adding new nodes/users and service access

Failure Handling

< Deal with multiple types of failures

Concurrency
< Safe concurrent access

Transparency

Design requirements

» Performance
Responsiveness, throughput, load balancing
» Quality of service (QoS)
time-critical applications (real-time apps)
guarantee certain level of quality delivered by the deadline

allocation of computation and communication resources

» Caching and replication

web caching: server provides expiration time

» Dependability
fault tolerance: redundancy, recovery

security

42

Sidestep: Course contract revised

43

Course:

AlOAEEN:
Agvtepa, 18.00-21.00, XQA02 104
EvayyeAia ITIitovpa, Emoxkentpia AvamAnpotpia Kadnyntpla
I'pageto: FST 01 B117
‘Qpeg I'papetov: Tpitn 13.30-15.00
Email: pitoura-AT-cs.ucy.ac.cy or —AT-cs.uoi.gr

Epyaotnpio:
[Tapaoxevr): 19:30-21, OEE 01
Xprotogpopoc ITavayiwtov, Eidiko Exmaidevtiko IIpoowimiko
I'papeio: FST 02 B176
Email: panchris-AT-cs.ucy.ac.cy

IotooeAioa MaOnuartog:
http://www.cs.uoi.gr/~pitoura/courses/epl602

44

Course:

ITeprypapn MaOnuartog

Ocuata Apyitextovikng kat Xyediaouov Ilayxoouiov Iotov IIAnpopopiwv, Avackonnon
ITpwtoxoAdwv Atadiktvov (TCP, IP, DNS), Xyebiaouog IIpwtokoAwv Ilaykooutiov Iotov
(HTTP), EvamoOnxevon IIAnpogopikwv Iotov (Web Caching), Xapaktnpiouog xai
MovrteAomoinon Iotov (Web Characterization), Aiktva Metadoong IIAnpo@opiov
(Content Distribution Networks), Ouotiua Aiktva (Peer-to-Peer Networks).

Xtoyor MaOnuartog

Baowog otdoxoc TOU HAONUATOC €lval 1) KATAVONOTN TWV HOVIEAWV, APYITEKTOVIKGOV
QAYOpPIOU®WV KAl TIPWTOKOAMWOV OYETIK®V UE TO Web ¢ &va KATAVEUNUEVO CLOTNUA
LUEYAANC TTOAVTTAOKOTNTAC. QITOKTNOT) 1KAVOTNTAG ETIAVOTC S1apOpwV TPOPANUATOV UE
JIPOYPAUUATIOUO.

SVYKEKPIUEVAL
% OeueAlwon PACIKOV ApX®V KATAVEUNUEVOVL VITOAOYIOUOU KAl VITOAOYIOUOV 0TO web.

% MeAetn YAwoowmv, TAAICIKV KAl EVOIAUECOL AOYIOUIKOU Y1d TIPOYPAUUATIONO OTO Web
% Avantun pa epapuoyng oto web

45

Course:

Eviewtikn 'YAn

To mepieyouevo tov pabnuatog Ba kaAvpel evoeIKTIKA TA TAPAKAT® Oepata
o€ OYEoT e TO web:

MovTtéAa Kol ApYITEKTOVIKEG

Baowa ITpwtokoAa

Emxowwvia, [Ipotuma, Aladikaoieg

Avamapaotaon Aedouevwv

Ynnpeoieg AlaSikTOoU

Kowwvika Aiktua

Ynepkeipeva (overlay) Aiktua kat Siktud OHOTILGOV KOUPwV
Mnyaveg Avadntnong

PN T AW

Tpomolr Artdaokaiiag

H 818aokaAia tov padnuatog otnpidetan oe StaAe€eig (3 mpeg ava efdouada)
Kat oto epyaotnpo (1 + Y2 wpa ava efdouada). Or Swapaveleg amo TIC
Saie€erg Ba eivan Srabeoueg otnv 10toceAida pe okomo va Pondrcovv tov
(POLTI TN 0TI UEAETN TNG OYETIKNC VANG.

46

Course:
BiAoypagia
Aev vapyet eva Baoiko BipAio yia to pabnua.

[Ma Tic PaoikeS aApYEC KATAVEUNUEVOL UTOAOYIOUOU KAl VLITOAOYIOUOU oto web, Oa
xpnopomowmnOet to PiAio
= George Coulouris, Jean Dollimore, Tim Kindberg and Gordon Blair, Distributed
Systems: Concepts and Design, Addison Wesley, 5th Edition, May 2011
IMa Bepata tpoypauuaTiopol epapuoywv web, 8a ypnoipuomomn et vAiko amo ta BipAia:
= Leon Shklar and Rich Rosen, Web Application Architecture: Principles, Protocols and
Practices, 2nd Edition, Willey 2009
= Paul Deitel, Internet & World Wide Web: How to Program, 4th Edition, Pearson
2009
INa Bepata drayeipiong dedouevwv
= Serge Abiteboul, Ioana Manolescu, Philippe Rigaux, Marie-Christine Rousset and
Pierre Senellart, Web Data Management, Cambridge University Press 2011.

Oa ypnopomomnBovv emiong oxetika apbHpa amo tn Siedvr) BipAloypagpia
TeAog, o1 onueiwoelg Tov padnuatog (Sragpaveieg) Ba eivan Srabeoiueg otnv 10T00EAISA TOV
pnadnuatoc.

47

Course:

AtioAoynon

2TOY0G €lval T €vePYN OULUUETOXN TOU (POITNTN OTO HAONuUA Kal 1) OLCIA0TIK)
KATAVONOoN NG LANG Tov padnuatoc. Iia o 0t0x0 avto 1 aloAoynon Ba yivel wg
egng.

EBGouadiaiec Aoknoeig 30%
Ouadikn Epyaocia E€aunvov 35%
I'pagttn) Evoiaueon E€etaon 20%
I'pagn) Teakn E€etaon 25%

Ta moocootd aBpoilovv oe 110 (meprhaufavetar eva Oetiko bonus).

48

Course:

Efdouadiaieg Aoknoeig 30%

2TOY0G Elval 1) KATAVON O TNG VAN mmov didaocketal o€ kabe Siaieln.

Ov aoknosic Oa avakowwvovrat v Tpitn omv 10T0CEAIOA TOV
padnuarog, Ba xaAdmrtovv TNV VAN Mg OSwdAefng g Asvtepag kar Oa
mapadidovtal oto padnua g emouevng efdouadag.

Apyomopnueveg aoknoeig 6 Oa yivovtatl OeKTeC.

Kagtoleg amo avTteg TI¢ epyaciec HITOPEL va lval OHAOTKEC.

49

Course:

Evéwaueon EEétaon 20%

H evSiaueon ypamntn e€etaomn vmoAoyiletal ot Oa Sie€ayBel teAn @efpovapiov
(efSopada 20-24 Pefpovapiov).

H axp1prig nuepounvia Ba avakowvwBOel oe petayeveotepo otad1o.

Teakn E€etaon 25%

H tehikn e&etaon Ba kaAdmtel tnv VAN mov 8ev KAAD@TNKE OTnVv €vOlAUEOT)
ecetaon

50

Course:

Onadwn Epyaocia EEaunvov 35%

A@opd TV avamtudn U1ag e@ApPUOYNS LE XPTOT KATOIWV A0 TOV TEXVOAOYIWV
IOV KAADPTNKAV 0TO Habnua.

Evéeixtika Osuata Oa avaxoivwBovv myv mpwtn efdouada tov Pefpovapiov otnv
1otooeAiba Tov uabnuartoc.

H epyaoia Oa eival oe opadeg €mg 3 ATOUMV.
O oyxedlraouog g epapuoyng 0a mapovolaotel oe S1aAe€n mpv to IIdoya kat n

TEAIKT] EPAPUOYT] OTNV TeEAevTAlA G1AAEEN TOL eaurvou.

SMUEIWVETAL OTL OTIC Opad1keg epyaoieg kaOe portntrg Oa fabuoioyeitar atopika,
OnAadT), O¢ elval AapalTNTo OAQ TA UEAT VA TTAPOVYV TOV 1010 Baduo.

51

Course:

1. KdaBe @ormg Sikaovtal va mapakolovbel Tig SIAAEEEIC KAl TA €PYATTIPIA XWPIC
evoyanoelg kat adikatoAoynteg Owkomeg. Ilapakaiovvratr Aowtdv OAol va
StapuAdfovv 10 OSikaiwpa avtd, oefouevol Tov ¥Povo evapiewg kal ANEewg Twv
nafnuatwv, v kabapldmta Twv au@fedTpwy KAl TV EPYACTNPIOKOV XOP®V KAl
YEVIK®C TNV akadnuaikr) ehevOepia.

2. Ov @ounteg kaAlovvial va oeBaotovv TOUg KAVOVEG ITIVEVLUATIKNG 1010KTNoiAg
AVAPOPIKA LE TNV AVILYPAPT] KAl XPT)OT) AOYIOUIKOV Kl TV @oToavTypa@n BifAlwy.

3. H amovola amo e&etaon kot n xkabuvotépnon mapadoong epyaciov yivovtal
AITOOEKTEG LOVO O€ EKTAKTEG MTEPLIOTACELS KAl KATOTILV JIPOTYOUUEVT|G GUVEVVOT|OEWC LIE
tov kaOnynt). O kaBnyntg dev vmoypeottal va Swoel eetdoelg oe AToUa JTOV
astovoiacav adtkatoAoynta asmo pia eEgtaon. H kabvotepnuévn mapadoon epyaciav
ovvemtayetal Paduoloyikr) sowr), AOXET®WC NG MOWTNTAG TNG TAPASESOUEVC
epyaoiag.

4. Evotdoelg ota amoteAéopata eEetdoewv kat otnv Pabuoloyia epyaoctnplakwmv
aoknoemv yivovial 8ekteg faocel Twv kavoviouwv Tov I[Havemotnuiov.

5. H avtiypag@n n n apoomxafeia avaypa@ng HETASH POorTNTOV O EEETATELG 1)
epyaoieg, amayopeveTat avotnpa. Tuyovoeg avtiypagpeg Oa cvvemayoviat tnv
QUTOTIOUTTT] TV AVAUEUYUEV®V POITNTOV A0 TNV TAfN, Tov undeviouod tov Babuov
TOVG OTIG &V AOY®W €EETAOEIC T EPYAOieg KAl TNV KaTAyyeAid Toug 0To ZuUfovAlo Tov
Tunuatog yia v epapuoyr TepaItEP® MEIBAPYIKOV KAVOV®V.

52

53

End of Sidestep

Fundamental Models

» Fundamental properties in processes and communication,
shared among different architectures discussed previously

» Interaction

» Failures

» Security

54

Interaction model:

» sequential vs. distributed algorithms (1) timing (rate it
proceeds and timing of transmission cannot be predicted),
(2) distributed state (each process its own private state)

Two significant factors:

I, performance of communication channels

latency: transmission, access, os
bandwidth

jitter: variation among messages

2. clocks and timing events
clock drift (deviation from a perfect reference clock)

Synchronization (GPS, accuaracy | microsec)

55

Interaction Model:

> distributed systems
lower and upper bounds for execution of a step
message transmission in bounded time
clock drift rate is bounded

Time-outs: failures can be detected when bounds are exceeded
accomplished by allocating sufficient resources

> distributed systems (e.g, the Internet)
no bounds on process speed, message delay, clock drift rate
failures are harder to detect
performance can't be guaranteed
consequence of resource sharing

Simple solutions (browsers allow users to do other things while
waiting)
56

Interaction Model:

Relative ordering might be more important than exact time

logical clocks--ordering events without physical clocks

Users XY, Z and A
send receive receive .
y . . . X: Meeting
1 .
\“1 4 / Y, Z: Re: Meeting
y 5) receive R Physical
receive time
send
Z s >
receive receive
User A:
m . . H
. NN | 1. FromZ: Re: Meetlng
receive receive receive 2. From X: Meetlng
4 2 s 3. From Y: Re: Meeting

57

Failure Model

» Failure of processes or communication channels

Processp Process g

‘ Communication channel

Outgoing message buffer Incoming message buffer

58

Failure Model

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
In its outgoing message buffer.

Receive-omission Process A message is putin a process’s incoming message
buffer, but that process does not receive it.

Arbitrary Process or Process/channel exhibits arbitrary behaviour: it may

(Byzantine) channel send/transmit arbitrary messages at arbitrary times,

commit omissions; a process may stop or take an
Incorrect step.

59

Failure Model: Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the

stated bound.

60

Failure Model

» masking failures
hiding--use another server to respond

converting it into more acceptable--drop the packet if it is
corrupted

» reliable one-to-one communication
validity: eventually delivered
integrity: content not corrupted or duplicated

61

Security Model

» Protecting objects:
authorization (access rights to principals)

authentication (identity of parties/principals)

Access rights

Invocation

Client
result Server

Principal (user) Network Principal (server)

62

Security Model

Enemy or adversary

Attack: Threat to processes & communication channels

‘|lll..
) The enemy &

. Spguunt® *Tm
Processp m—> 6 —P» | Processq
Communication channel

63

Security Model

» Threat to processes (no reliable knowledge of the source of a
message) & communication channels (an enemy can copy, alter
of inject messages)

» Denial of service

» Cryptography: science of keeping messages secret
encryption: process of scrambling a message to hide its content
secret keys--large numbers that are difficult to guess
authentication--encrypt the identity, check the decrypted identity

secured channels--authentication, privacy/integrity, time stamp to prevent
replaying and reordering

64

The end-to-end argument

65

Question

» How to partition the functionality/roles between the
various components in a client-server system

66

Introduction

» Choosing the proper boundaries between

functions is a primary activity of the computer
system designer.

» In systems involving communication:

Modular boundary around communication subsystem

Firm interface between communication subsystem
and the rest of the system.

Introduction

» Where do we implement the system functionality:
In the communication subsystem
In the clients of the communication subsystem
As a joint venture

Redundantly

End-to-end argument

» “The function in question can be completely and correctly
be implemented only with the knowledge and help of the
application standing at the endpoints of the
communication system”.

» Therefore, providing that questioned function as a feature
of the communication subsystem itself is not possible

» Sometimes, an incomplete version of the function be
provided by the communication subsystem may be
useful as a performance enhancement.

69

Careful File Transfer

» Move file from computer A to computer B without damage.
» Steps taken:

At host A, the file transfer program calls the file system to read
the file from disk. The f/s passes the file to the file Xfer program
in fixed-sized blocks chosen to be disk format independent.

At host A, the ftprog asks the data communication system to
transmit the file using some communication protocol that
involves splitting the data into packets. The packet size is typically
different from the file block size and the disk track size.

The data communication network moves packets from A to B.

At host B, the data communication program removes packets
from the protocol and hands the contained data to a second part
of the data transfer application operating on B.

At host B the file Xfer program asks the file system to write the
received data on the disk of host B.

Careful File Transfer

S S
S S
S S
@) @)
0 0
S ©
O O

Threats to transaction

Hardware faults in the disk storage result to reading incorrect
data.

File system software or file transfer program or data
communication system make a mistake in buffering and
copying the data of the file either at A or B.

Hardware processor or local memory have transient error
while doing buffering and copying at A or B.

Communication system drops or changes bits in a packet or
deliver a packet more than once.

Either of the hosts may crash part way through the
transaction after performing an unknown amount of the

transaction.

72

Dealing with threats

4

Reinforce each of the steps along the way using duplicate
copies, time-out and retry, carefully located redundancy for
error detection, crash recovery, etc.

Systematic countering of threat (2) requires writing correct

programs...
Not all programs are written by the file-transfer programmer.

Brute-force using tri-modular redundancy (do everything 3
times!) for the whole process...

73

End-to-end Check and Retry

» Suppose that a checksum is stored with each file,
reducing the possibility of error to an acceptably
negligible value.

» Then, transfer file from A to B.

» FT Application at B reads the file back to its memory,
computes the checksum and sends the value back to A
for comparison.

» If comparison fails, retry...

74

What if?

» The communication subsystem provides internally a
guarantee for reliable data transmission, through:

Selective redundancy in the form of packet checksums
Sequence number checking
Internal retry mechanisms

» We can lower the probability of dropped bits to a very
small number; and eliminate threat (4).

» Henceforth, we achieve a reduction of the frequency of
retries by the file transfer application.

» What is the effect on the correctness of the file-transfer
outcome!?

Still in need to counter the other threats at the end-level

75

Conclusion

» To achieve careful file transfer, the application program
that performs the transfer must supply a file-transfer-
specific, end-to-end reliability guarantee.

» For the communication subsystem to go out of its way
to be extraordinarily reliable does not reduce the
burden on the application program to ensure reliability.

76

Performance Aspects

» So, should lower levels play no part in obtaining reliability?

» Consider a somewhat unreliable network, dropping a message
in each hundred messages sent.

» What is the effect of this, as we transmit files of increasing
size!

The probability that all packets of a file arrive correctly decreases
exponentially with the file length (prove this).

So, the expected time to transmit the file grows exponentially with the
file length.

» Performance of the file transfer application hurts!

77

Performance Trade offs

» The amount of effort to be put into reliability measures within

the data communication system is an based
on performance, rather than a requirement for correctness.

(-) If communication subsystem is too unreliable, the file transfer
application performance suffers.

(+) If communication subsystem is beefed up with internal
reliability measures, those measures have a performance cost:

Lost bandwidth to redundant data
Added delay from waiting for internal consistency checks to complete

And, after all, the end-to-end consistency check is still required, no
matter how reliable the communication system becomes.

78

Performance Trade offs

» Using performance to justify placing functions in a low-level
subsystem must be done carefully.

» Sometimes, the same or better performance can be achieved
at the high level.
» Performing the function at the low level may:
be more efficient if the function can be performed with
minimum perturbation of the machinery already included in
the low-level.

Cost more because:

Most applications using the low-level subsystem do not need the
function.

The low-level subsystem does not have adequate information, like
the higher levels, to do the job efficiently.

79

Other Examples of the e2e Argument (skip)

» Acknowledgment of message delivery:

The communication network can easily return an
ack to the sender, whenever a message is delivered
to a recipient.

This is not very helpful for applications, since:

The application wants to know if the target host acted
on the message (receipt does not directly translate to
action). So, the application needs end-to-end ack.

80

Other Examples of the e2e Argument (skip)

» Secure transmission of data: if the data communication
system performs encryption-decryption:
It will need to manage the keys.

Data will be vulnerable while passing from the communication
system to the application.

Authenticity of the message must still be checked by the
application. If the application performs the encryption, it can
also do the authentication checks and keeps its keys.

Is the encryption of data by the communication subsystem
necessary!

8l

Other Examples of the e2e Argument (skip)

» Secure data transmission

Is the network trusted to manage the required encryption keys
the data will be vulnerable

Still, the app must do authentication!

v Vv vV v

Yet, some network encryption may be useful
» Why?

» Duplicate Message Suppression
» The app may accidentally originate duplicates!

82

Identifying the ends

» The end-to-end argument is not an absolute rule but
rather a guideline:

» Suppose we use a communication subsystem to send
voice packets:

To support two people carrying a real-time conversation
(delays are disruptive, do not hide failures!)

To transport a speech message (to be listened to later).

» What are the choices we have!?

83

Future of the end-to-end argument
(Tussle in Cyberspace)

» The end-to-end argument provides:
Innovation
reliability
In the end, we have a “transparent’” network
» This is threatened nowadays by:
Loss of trust (e.g., firewalls)
ISP control desires
3rd parties wish to observe data flow
Caching, mirroring, etc
» Improve performance of today’s apps in favor of new
ones?

84

Future of the end-to-end argument (2)

» The end-to-end argument is still valid:

But needs redefinition in today’s world...
» Evolution of existing apps is inevitable
» Keep the net open and transparent for new apps

» Cope with the loss of transparency

85

Web architecture

86

Web 101

Client/Server Model Client = Web browser/Server = Web server

1. Markup language for formatting hypertext documents (HTML)

2. A uniform notation schema for addressing accessible resources over the
Internet (URL)

3. A protocol for transporting messages over the network (HTTP)

HTTP protocol: how requests and responses are transmitted and processed
build on top of Core Internet Protocols (TCP/IP) (Layering)
v'stateless

Browser <-> DNS Server(s); Browser <-> Server

= Entities: Processes

» Request-Response Communication Paradigm

» Proxy (between clients and servers)

= Caching (at the browser and the proxy — server decides whether to cache +
expiration)

= Replicated Servers (partition: each web server each own data

= Broker (DNS)

87

HTML and beyond

HTML a simple markup language to enable cross-referencing
in documents through hyperlinks

Cascading Style Sheets (CSS) a mechanism for controlling
the style for HTML rendering

XML is a meta-language for defining specialized mark-up
languages

DTD, XML Schema

APIs for accessing XML parse trees, XSL, XQuery
XHTML: reformulation of HTML as an XML application
XHTML Mobile Profile

88

From Web pages to Web applications

Fila Edit Opfions Navgate Hotist Annotate

Help
E©]
Document Title: [I NCSA Mosaic Home Pagel]
Document URL: [hitp:ZJwew.ncea iuc.edu/SD6/Soliware/Mosaic/NCSAMosaicHame. html]
=]

\'\ W

Welcome to NCSA Masaic, an Intarnet information browser and World Wide Web client. HCSA
Mosaic was developed at the National Center for Supercomputing Applications at the
University of Illinois in --> Urbana-Champaign. NCSA Mosaic software i1s copyrighted by
The Board of Trustees of the University of Illinois (UI). and ownership remains with the
ur.

Jan 97

The Software Development Group at NCSA has worked on NCSA Mosaic for nearly four years
and we've learned a lot in the process. We are honored that we wers able to help bring
this technology to the masses and appreciated all the support and feedback we have
received in return. However, the time has come for us to concentrate our limited
Tesources in other areas of interest and development on Mosaic is complets.

L)
1
§
=3
== 8

All fnformation about the Mesaic project 1s averlable From the bomepages. i
NCSA Mosalc Platforms:

® NCSA Mosaic for the X Window System
® NCSA Mosaic for the Apple Macintosh
® NCSA Mosaic for Microsoft Windows

World Wide Web Resources The following resources are availshle to help introduce jnu to
cyberspace and keep track of its growth:

® A glossary of World Wide Weh terms and acronyms

& An INDEX to Mosaic relsted documents

® NCSA Mosaic Access Page for persons with disabilities
® Mosaic and WeW related Tutorials

® Internet Resources Meta-Index at HCSA

[THUM!

The browser gradually became a “platform”

89

From Web pages to Web applications

Dynamic web
From building a web site -> design a web application

Delivers interactive services through web servers distributed over
the Internet or an intranet

A web application can present dynamically tailored content based
on request parameters, traced user behaviors and security
consideration

Example: online shopping cart

90

Web browsers

1. Generate and submit requests
2. Accept responses from web servers
3. Render the result

Cookies: a mechanism for maintaining state in browsers across
multiple HTTP requests

JavaScript: to support event-handlers — custom code that executes
when a browser event occurs

AJAX: a set of programming techniques that enable browsers to
communicate asynchronously with web servers

Common uses: code injection (a background request is sent to the
server to fetch content — that causes discrete updates to the content
displayed in the browser or the data stored on the server)

91

Web servers

92

1. Virtual hosting: if the web server is providing service for multiple
domains, determine the target domain

2. Address mapping: whether the request is for static or dynamic
content

3. Authentication

Delivery of dynamic content

CGI: the CGI mechanism assumes that when a request to execute a CGI
script arrives at the serve, a new “process” is spawned to execute a
particular application program

Servlet API and JSP: Servlet areJava programs that have access to
information in HTTP requests. JSP processors generate Java classes
that extend the base class that implements the Servlet interface

Web services

Web services are distributed web applications that provide discrete
functionality and expose it in a well-defined manner over standard
Internet protocols to other web applications

Client -> web application

SOAP is an XML-based application layer protocol for constructing
and processing web services requests and responses + Web Service
Definition Language (WSDL), Universal Description, Discovery and
Integration (UDDI) for registering and discovering web services

REST an architectural pattern as an alternative to SOAP

Items of interest on the web identified by their URL as resources, not
static pages but calls to web applications

When accessed such resources return their representations that can be
though of as the browser state

93

From Web from Web2.0

94

Incorporating applications that support user generated
content, on-line communities and collaborative
mechanisms for updating on-line content

Site visitors contribute information ranging from reviews
and ratings to personal journals (blogs) to news.

Sophisticates web application technology incorporating
user authentication, access control and -content
management services

Question?

