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Synchronization
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Discuss how processes can synchronize

For example, agree on the ordering of events, or avoid 
accessing a shared resource simultaneously
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Clock Synchronization

Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Topics to be covered
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Model

Assume we have N processes pi (i = 1, 2, …, N)

Each process

executes on a single processor

has a state that changes as it executes

executes a series of actions (either a message send or receive
operation or an internal operation of the process (e.g., update of one of 
its variables) 

Event: the occurrence of a single action 

Events within a single process pi can be placed in a single total order →i

Each process is characterized by its history, a series of events that occur 
at each process. 

hi = <ei
0, ei

1, ei
2, …>

si
0: initial state
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Clock Synchronization
Physical Clocks

Cristian’s Algorithm
The Berkeley Algorithm
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When each machine has its own clock, an event that occurred 
after another event may nevertheless be assigned an earlier 
time.

Clock Synchronization

The Problem:

In a centralized system, time is unambiguous.

In a distributed system, achieving agreement on time is not trivial

Example (make)
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Physical Clocks

Computation of the mean solar day.

How time is actually measured: Astronomically
Transit of the sun: sun reaching its highest apparent point in the sky
Solar day: interval between two consecutive sun transits. Solar second 1/864000 of a solar 
day
However, the period of the earth’s rotation is not constant, earth is slowing down -> mean solar 
second
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Physical Clocks

How time is actually measured: Atomic Time: Counting transitions of 
the cesium 133 atom

Based on the number of transitions per second of the cesium 133 atom (1 sec = 
time it takes to make 9,192,631,770 transitions

At present, the real time is taken as the average of some 50 cesium-clocks around 
the world

International Atomic Time

Introduces a leap second from time to time to compensate that days are getting 
longer

Universal Coordinated Time (UTC)
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TAI seconds are of constant length, unlike solar seconds.  

Physical Clocks

UTC = TAI with leap seconds

Introduce leap seconds whenever the discrepancy grows to 800 msec

UTC is broadcasted through short wave radio (WWV receivers) and satellite.

Satellites can give an accuracy of about ±0.5 ms
Does this solve all our problems? 
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Physical Clocks

Is it possible to synchronize all clocks in a distributed system?

Each computer has a circuit for keeping track of time

clock – timer a quartz crystal, when kept under tension, quartz crystals 
oscillate at a well-defined frequency

A counter & holding register: the counter is decremented by one at each 
crystal oscillation, when it gets to zero, an interrupt (clock tick) the 
counter is reloaded from the register

Can be programmed to give an interrupt say 60 times a sec

(software) clock: each interrupt adds 1 to the time stored in memory

With a single computer and a single clock, does not matter if the clock is 
off by a small amount – all processes use the same clock

Clock skew: difference in time values between the software clocks
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Clock Synchronization Algorithms

Each machine has a timer that causes an interrupt H times per second

A (software) clock keeps track of the number of ticks (interrupts) since some 
agreed-upon time in the past.

When the timer goes off, the interrupt handler adds 1 to the software clock

Let C be the value of the clock. Specifically, if UTC time is t, let the value of 
the clock on machine p be Cp(t)

Perfect world, Cp(t) = t for all p and t, dC/dt = 1 (dC = Cp(t’) – Cp(t), dt = t’ – t)

Theoretically, a timer with H = 60, generate 216,000 (= 24*60*60) ticks per 
hour

Real world, relative error 10-5, 215,998 to 216,002 ticks per hour

Maximum drift rate p: 

1 – p ≤ dC/dt ≤ 1 + p
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Clock Synchronization Algorithms

The relation between clock time and UTC when clocks tick at different rates.

If two clocks, drift in the opposite direction, max 2p ∆t  apart

No clocks differ more than δ: resynchronize (in software) at least every 
δ/2p (must have 2 p dt < δ)

1  - p ≤ dC/dt ≤ 1 + p
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Physical Clocks

How to synchronize clocks

Internal synchronization: Synchronize them with each other

For a synchronization bound D > 0, |Ci(t) – Cj(t)| < D

External Synchronization: synchronize them with real world clocks, say 
a source S of UTC time.

For a synchronization bound D > 0, |S(t) – Ci(t)| < D

If a system is externally synchronized with bound D then it is 
internally synchronized with bound 2D

Distributed Systems, Spring 2004
14

Clock Synchronization Algorithms
Cristian’s Algorithm

There is a time server (WWV receiver)

Goal: have all other machines synchronized with it (external synchronization)

1. Periodically with period T < δ/2p, each machine asks the time server for 
the current time

2. The server responds asap with the current time, CUTC

3. The client set its clock to CUTC
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Clock Synchronization Algorithms

Problems

1. Time must never run backwards, why? (Monotonicity condition)

t’ > t ⇒ Cp(t’) > Cp(t)

Introduce changes gradually

How, 

Say a clock generates 100 interrupts per sec, an interrupt adds 10msec

Advance the clock: 11 msec

Slow down the clock: 9 msec
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Clock Synchronization Algorithms
Problems

2. It takes a nonzero amount of time for the time server’s reply gets 
back to the sender

Measure it, best estimate (T1 – T0)/2

If the interrupt handling time, I, is known, (T1 – T0 – I )/2

Make a series of 
measurements 

Any measurements in which 
T1 – T0 exceeds some 
threshold value are 
discarded

Average the estimations, or 
the faster messages are the 
most accurate
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Clock Synchronization Algorithms

If the system is synchronous, and we know max and min 
(round trip) delay,

Let u = max - min

Then, best estimate (max + min) / 2

Skew at most u/2
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Clock Synchronization Algorithms
The Berkeley Algorithm

(internal synchronization)

1. A time deamon periodically polls every machine to ask the time

2. Each machine replies 

3. Based on the answers, computes an average. Informs every machine to 
advance or slow down its clock

The time daemon asks 
all the other machines 
for their clock values

The machines 
answer

The time daemon tells 
everyone how to adjust 
their clock
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Clock Synchronization Algorithms

A Decentralized Algorithm

Divide time into fixed-length (R) resynchronization intervals

i-th interval: [T0 + iR, T0 + (i + 1)R), T0 some agreed-upon time instance in the 
past

Each machine:

1. At the beginning of each interval, broadcasts its current time (note, these 
broadcasts will not happen precisely simultaneously, why?)

2. Starts collecting all other broadcasts that arrive during an interval S

3. Runs an algorithm (e.g., average; discard m highest and m lower values and 
average the rest) to compute a new time from them
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Use of Synchronized Clocks

New algorithms that utilize synchronized clocks

Example: Enforcing at-most-once message delivery, even in the face of crashes

Traditional approach: each message bears a unique message number (the server store 
all message number it has seen. Problem, if the server crashes and reboots, also how 
long to keep message numbers)

Modified approach: each message carries a connection identifier (chosen by the server) 
+ a timestamp (its local time)

For each connection (i.e., sending process), the server records the most recent 
timestamp (that is, the largest timestamp) it has seen

Any incoming message for a connection with a timestamp that is lower than the stored 
timestamp is rejected as duplicate
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Use of Synchronized Clocks

To determine, when to remove a timestamp, each server maintains a variable G

G = CurrentTime – MaxLifeTime – MaxClockSkew

MaxLifeTime (how long a message can live)

MaxClockSkew (synchronization bound among clocks)

Write G to disk every ∆t

During recovery, 

Reload G, increment it by ∆t
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Logical Clocks
Lamport Timestamps

Vector Timestamps
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Lamport Timestamps
Lamport Timestamps

It suffices that two processes agree on the order in which events 
occur (no need to synchronize their clocks)

The happens-before relation

a happens-before b, a → b: means that each process agrees that first 
event a occurs, then afterwards event b occurs

Two cases, where happens-before can be directly observed:

1. If ∃ process pi: a →i b, then a → b (that is if a and b are events in the 
same process, and a occurs before b then a → b is true)

2. If a is the event of a message being sent by one process and b is the 
event of the message being received by another process, then a → b is 
true. (For any message m, send(m) → receive(m))

Transitive relation,  If a → b and b → c, then a → c.

Distributed Systems, Spring 2004
24

Lamport Timestamps

If e and e’ are events, and if e → e’, then we can find a series of events e1, 
e2, …, en occurring at one or more processes such that e1 = e and e’ = en and 
for i = 1, 2, …, n, either case 1 or case 2  applies between ei and ei+1 (that is, 
either they occur in succession in the same process, or there is a message m 
such that ei = send(m) and ei+1 = receive(m) 

The sequence of events e1, e2, …, en may not be unique.

time
Case 1: a  → b, c  → d, e  → f Case 2: b  → c, d  → f. What about a and e?

Two events, a and b, such that neither a → b nor b → a holds are said to be 
concurrent (happens-before is a partial order)

p2

a b

c d

p1

p3
e f

Example:
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Goal: For every event a, assign a time value L (Lamport timestamp) 
such that all processes agree on it

Property of L: If a → b, then L(a) < L(b)

L must always go forward (increasing)

Algorithms for assigning timestamps to events

Each process pi maintains its own logical clock Li. 

A Lamport logical clock is a monotonically increasing counter used to apply 
Lamport timestamps to events. (we denote them Li(e) or L(e)). 

1. Li is incremented before each event is issued: Li = Li + 1

2. 

(a) When a process sends a message m, it also sends a timestamp t = Li

(b) When a message (m, t) arrives at the receiver process pj, then pj sets 
Lj = max(Lj, t) and before timestamping the event receive(m) applies 
rule 1

Lamport Timestamps
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Lamport Timestamps

p2

a b

c d

p1

p3
e f

Example
1 2

3 4

1 5

It can be shown that:

For any two events a and b, a → b ⇒ L(a) < L(b)

The converse in not true. For instance in the example, L(b) > L(e) but b 
and e are concurrent
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Lamport Timestamps

0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

61 X

X 70

X 86

No need to 
increment by 1, but 
any positive number

X

X

X

69

77

85
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Lamport Timestamps

Totally ordered logical clocks

An additional requirement, no two events have numerically identical 
Lamport timestamps Attach the number (identifier) of the process in 
which the event occurs at the timestamp. 

For instance, the low-order end of time separated by a decimal point e.g., 
40.1 or 40.2

In general: Li(e).i

Thus for all distinct events, a and b, L(a) ≠ L(b)
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Totally-Ordered Multicast

Example: a database replicated across several sites

Issue: update operations must be performed in the same order 
at each copy, so that all copies are exactly the same
Example:

Account = 1000, p1 adds 100, p2 increments by 1%

Replica1 1111 Replica2 1110
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Totally-Ordered Multicast

Requirement of a totally-ordered multicast: a multicast operation by which all 
messages are delivered in the same order to each receiver

Assumption: reliable (no message lost) FIFO (messages from the same sender are 
received in the order they are sent) delivery of messages

When a message is multicast, it is conceptually also send to its sender

Each message is timestamped with the current (logical) time of its sender

Process pi sends timestamped messages msgi, to all others. (puts message in a local 
queue queuei)

Process pj receives msgi

Puts it in a local queue queuej ordered according to its timestamp

Multicasts an acknowledgment (note, the timestamp of the received message is 
lower than the timestamp of the acknowledgement)

A process pj can deliver a queued message msgi to an application, only when:

(1) the message is at the head of the queuej

(2) For each process pk there is a message msgk in queuej with a larger timestamp  
(i.e., the message has been acknowledged by each other process)
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Vector  Clocks
Vector Clocks

Goal: overcome the fact that we cannot conclude the order of events 
from the values of their timestamps, that is, from L(a) < L(b), we 
cannot conclude that a → b

A vector clock for a system of N processes is an array of N integers.

Each process keeps each own vector clock Vi which it uses to 
timestamp local events. Processes add vector timestamps on the 
messages they send.
1. Initially, Vi[j] = 0, for i, j = 1, 2, …, n

2. Just before pi timestamps an event, it sets Vi[i] = Vi[i] + 1

3. pi includes the value t = Vi  in every message it sends (the whole vector)

4. When pi receives a message with timestamp t, it sets Vi[j] = max(Vi[j], 
t[j]) for j = 1, 2, n (that is, it takes, the component-wise maximum of 
two vector timestamps, known as a merge operation)

For a vector clock Vi, Vi[i] is the number of events that pi has timestamped
and Vi[j] for i ≠ j is the number of events that have occurred at pj that pi has 
potentially been affected by
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Vector  Clocks

p2

a b

c d

p1

p3
e f

Example

(1, 0, 0) (2, 0, 0)

(2, 1, 0 (2, 2, 0)

(0, 0, 1) (2,2,2)

How to compare vector timestamps:

V = V’ iff V[j] = V’[j] for j = 1, 2, …, n

V ≤ V’ iff V[j] ≤ V’[j] for j = 1, 2, …, n

V < V’ iff V[j] ≤ V’[j] and V ≠ V’

It can be shown that:

For any two events a and b, a → b ⇒ L(a) < L(b)

The converse also holds, L(a) < L(b) ⇒ a → b 

For instance in the example, b and e are concurrent which can be also 
concluded by the fact that neither V(e) ≤ V(b) nor V(b) ≤ V(e)
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Clock Synchronization

Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Topics to be covered
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Global State
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Global State

How to ascertain a global state in the absence of global time?

Global state = Local state of each process + 

messages currently in transit

If all processes had perfectly synchronized clocks, then 
agree on a time that each process would record each state, 
but …
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Global State
Model

Assume we have N processes pi (i = 1, 2, …, N)

Characterize each process by its history, a series of events that occur at 
each process. 

hi = <ei
0, ei

1, ei
2, …>

Finite prefix of the history

hi
k = < ei

0, ei
1, …, ei

k>

event: an internal action of the process (e.g., update of one of its 
variables) or sending/receipt of a message

state of a process pi, si
k, the state of process immediately after the kth

event occurred

si
0: initial state
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Global State

Global history 

H = h0 ∪ h1 ∪ .. . ∪ hN-1

Global State (or distributed snapshot)

Which states are meaningful, which combination of process states could have 
occurred at the same time?

Corresponds to initial prefixes of the individual process histories

A cut of the system’s execution is a subset of its global state that is a union 
of prefixes of process histories

C = h0
c1 ∪ h1

c2 ∪.. ∪ hN-1
cn

p1

p2
time

e1
0 e1

3e1
1 e1

2

e2
0 e2

1 e2
2

cuts
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Global State

e2
1 e2

2

P1

P2
time

e1
0 e1

3e1
1 e1

2

e2
0

Are all cuts acceptable?

Say e1
1 is the sending of a message and e2

1 is the receipt

The actual execution never was in a global state corresponding to the 
process states at that frontier, examine the relation about events

A cut C is consistent if, for each event it contains, it also contains all the 
events that happened-before that event, 

For all events e ∈ C, if f → e, then  f ∈ C
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Global State

More examples
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Global State

A consistent global state is one that corresponds to a consistent cut

The execution of a distributed system as a transition between global states 
of the system

S0 → S1 → S2 → …

In each transition, precisely one event occurs at some single process of the 
system

A run is a total ordering of all events in a global history that is consistent 
with each local history’s ordering

A consistent run or linearization is an ordering of the events in a global 
history that is consistent with the happened-before relation on H

Not all runs pass through consistent global states, but all linearizations do

A state S’ is reachable from state S if there is a linearization that passes 
through S and S’
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Global State
Global State Predicates, stability, safety and liveness

Testing for properties amounts for evaluating a global state predicate

A global state predicate is a function that maps from the set of global 
states of processes in the system to {True, False}

Stable properties: once True at a state, remain True for all future states 
reachable from that state

Two interesting properties:

Suppose a is an undesirable property (e.g., deadlock)

Safety with respect to α is the assertion that α evaluates to False for all 
states S reachable from S0. 

Conversely, let β be a desirable property (e.g., reaching termination)

Liveness with respect to β is the property that, for any linearization L 
starting in state S0, β evaluates to True for some state  SL reachable 
from S0
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Global State

The Chandy and Lamport Snapshot Algorithm

Goal: record a set of process and channel states

If a message has been sent by a process P but not received by a process Q, 
we consider it part of the channel between them

Assumptions: 

• Neither channels nor processes fail

• Reliable communication, any message sent is received exactly once

• Unidirectional channels, FIFO-ordered message delivery

• There is a path between any two processes

• The processes may continue their execution and send and receive messages 
while the snapshot algorithm takes place
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Global State
The Chandy and Lamport Snapshot Algorithm

Any process, say P, initiates the algorithm:

P records its own state

P sends a marker along each of its outgoing channels

Process Q:

When Q receives a marker through incoming channel C

If it has not saved its local state, 

Records it, starts recording all incoming messages

Sends a marker along each of its outgoing channels

Else, 

Stops recording the state of channel C (state of C from R to Q: 
Q records any message on C that arrived after Q recorded its state and 
before the sender (R) recorded its own state)

Finishes when it has received and processed a marker along each of its 
incoming channels
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Global State

Q receives marker for first time

Example

Channel C’
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Global State

Q records its local 
state and sends 
markers along each of 
its outgoing edges

Q records all incoming 
messages

Q finishes recording 
the state of incoming 
channel

Channel C

Example (continued)
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Global State

Note

Records a consistent state but one that may 
never have occurred at the same time
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Global State

Termination of the snapshot algorithm

Proof
We assume that a process that has received a marker 
records its state within a finite time and send 
markers over each outgoing channel within a finite 
time.

If there is a path of communication channels and 
processes from pi to pj, then pj will record its state a 
finite time after pi recorded its state

Since the graph is strongly connected, it follows that 
all processes will record their states and the states of 
their incoming channels a finite time after some 
process initially records its state
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Global State

The algorithm selects a cut from the history of execution

We shall prove that this cut is consistent

Proof
Let ei and ej be events occurring at pi and pj respectively such that ei → ej

We need to show that if ej is in the cut then ei is also in the cut

For the purposes of contradiction, assume that ei is not in the cut, that is, 
pi recorded its state before ei occurred

Let m1, m2, …, mk the sequence of messages that lead to ei → ej

By FIFO ordering, the marker from pi would have reached pj before these 
messages, thus pj would have recorded its state before event ej

This contradicts our assumption that ej is in the cut.
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Global State

We shall prove a reachability relation between the observed global state and the 
initial and final states when the algorithm runs

Let

Sinit: the global state immediately before the first process recorded its state

Sfinal: the global state when the snapshot algorithm terminates (immediately after 
the last state recording action)

Ssnap the recorded global state

Sys = e0, e1, … a linearization of the system as it executed (actual execution)

We shall show that there is a permutation of Sys, Sys’ = e’0, e’1, e’2, … such that all 
three states, Sinit, Ssnap and Sfinal occur in Sys’
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Global State
Proof.

Categorize all events in Sys as pre-snap and post-snap events

A pre-snap event at process pi is one that occurred at pi before pi recorded its 
state. All other post-snap.

(Note a post-snap event may occur before a pre-snap event in Sys, if the two 
events belong to different processes)

Suppose ej is a post-snap event at one process and ej+1 is a pre-snap event at a 
different process:

It cannot be that ej → ej+1 (why?)

Thus, we can swap the two events without violating the happened-before relation

We continue swapping until all pre-snap events e’0, e’1, e’2, …. e’R-1 are ordered prior 
to all post-snap events e’R, e’R+1, e’R+2, …

Ssnap = e’0, e’1, e’2, …. e’R-1

Sinit Sfinal

actual execution (Sys)

Ssnap
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Global State
Example: 

Take a snapshot for detecting termination of a computation

How? Use the snapshot algorithm

When Q receives the marker for 
the first time, considers the 
process that sent that marker as 
its predecessor

When Q completes sends its 
predecessor a DONE message

When the initiator of the 
distributed snapshot receives a 
DONE from all its successors, 
the snapshot has been completely 
taken

Problem: incoming messages 
We need a snapshot in which all 
channels are empty

Sends a DONE or a 
CONTINUE

When it sends a DONE?

All of Q’s successors have 
returned a DONE message

Q has not received any 
message between the point it 
recorded its state, and the 
point it had received the 
marker along each of its
incoming channels

If the initiator receives all 
DONE, concludes that the 
termination has completed

Else, initiates a new round
Distributed Systems, Spring 2004
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Clock Synchronization

Logical Clocks

Global State

Election Algorithms

Mutual Exclusion

Distributed Transactions

Topics to be covered
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Election Algorithms

The Bully Algorithm
A Ring Algorithm
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Election Algorithms

Election algorithm: an algorithm for choosing a 
unique process to play a particular role, i.e., 
coordinator

All processes must agree on the choice
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The Bully Election Algorithm

1. P sends an ELECTION message to all processes with higher 
numbers

2. If no one responds, P wins the election and becomes the 
coordinator

3. If one of the higher-ups answers, it takes over.

Assumes:

Reliable message delivery, but processes may crash

That the system is synchronous (assumes timeouts to detect a 
process failure)

Each process knows which processes have higher identifiers and 
can communicate with them
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The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

The Bully Election Algorithm

Example
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The Bully Election Algorithm

• Process 6 tells 5 to stop
• Process 6 wins and tells everyone

Example (continued)

When 7 comes back, it holds an election
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The Ring Election Algorithm

1. Any site P may initiate the procedure.

2. Each site: 

Sends an ELECTION message to its successor, adds 
its number in the list 

If the successor is down, the sender skips over the 
successor and goes to the next member along the ring

3. When the message arrives at the initiating site P (how is 
this detected?) P circulates a COORDINATOR message 
with the higher number in the list as the coordinator

Assumption: each site knows its successor in the ring
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The Ring Election Algorithm

Example

Two simultaneous elections
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Mutual Exclusion

A Centralized Algorithm
A Distributed Algorithm
A Token-Ring Algorithm
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Mutual Exclusion

To read or update shared data structures, enter a 
critical region (CR) to achieve mutual exclusion

In centralized systems: semaphores, monitors, etc
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Mutual Exclusion

Essential requirements for mutual exclusion:

Safety: At most one process may execute in the CR at a time

Liveness: Requests to enter and exit the CR eventually succeed

Liveness implies freedom of deadlocks and starvation (indefinite 
postponement of entry for a process that has requested it)

Absence of starvation is a fairness condition.

Another fairness conditions: order in which process enter the CR

The order that process enter the CR follows their requests to enter the 
CR:

If one request to enter the CR happened-before another, then 
entry to the CR is granted in that order
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A Centralized Mutual Exclusion Algorithm

Select one process as the coordinator

To enter a CR, sent a <request> message to the coordinator

If no other process in the CR, the coordinator sends a <grant>
message

Else, denies permission (e.g., does not reply and thus blocks the 
requesting process, or send a deny message)

Upon exiting a CR, send a <release> message to the coordinator. 
The coordinator grants access to another process (e.g., takes the 
first item of the queue and sends a grant message)
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A Centralized Mutual Exclusion Algorithm

Process 1 asks the 
coordinator for 
permission to enter 
a critical region.  
Permission is 
granted

Process 2 then asks 
permission to enter the 
same critical region.  The 
coordinator does not reply.

When process 1 
exits the critical 
region, it tells the 
coordinator, when 
then replies to 2

Example
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A Centralized Mutual Exclusion Algorithm

Correct (safety): Guarantees mutual exclusion?

Fair: No starvation? Order?

Easy to implement

But: the coordinator is a single point of failure & a performance 
bottleneck/no way to distinguish a dead coordinator from 
“permission denied”
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A Decentralized Mutual Exclusion Algorithm

Ricart and Agrawala’s algorithm

Requires that there be a total order of all events in the system

(this can be achieved by using for example the Lamport’s
algorithm for providing timestamps)

Assumes reliable sending of messages (i.e., every message is 
acknowledge)
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A Decentralized Mutual Exclusion Algorithm
When a process wants to enter the CR,

builds a <request> message M = (CR-id, process-number, timestamp)

sends the message to all other processes (including itself)

Upon receipt of a <request> message M

i. If the receiver is not in the CR and does not want to enter the CR, 
replies <OK>

ii. If the receiver is in the CR, it does nor reply, queues M

iii. Else (the receiver is not in the CR, but wants to enter the CR),

Compares the timestamp with the timestamp of its own request, 

if lower, replies <OK>, else does not reply, queues M

Waits till it receives OK from all processes

Upon exit from a CR, 

sends OK to all processes in its queue 
deletes them from the queue
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a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter the 

critical region.

A Distributed Mutual Exclusion Algorithm

Example
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A Decentralized Mutual Exclusion Algorithm

Correct: guarantees mutual exclusion

No deadlock or starvation

However, worst than the centralized solution:

Number of messages: 2(n-1)

N points of failures! If a process fails, all others are blocked

Solution?

Each process must maintain a list with all other processes

Load balancing?

Slight improvement: Enter the CR, when granted permission from the 
majority (to work, a process after granting permission to a process, cannot 
grant permission to another one)
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a) An unordered group of processes on a network.  
b) A logical ring constructed in software.

A Token-Ring Mutual Exclusion Algorithm

Construct a logical ring in which each process is assigned a position in the 
ring. 

Each process knows who is next.
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A Token-Ring Mutual Exclusion Algorithm

When the ring is initialized, process 0 is given a token.

The token circulates the ring

When a process k acquires the token:

If it wants to enter the CR, 

it enters the CR, does all the work, leaves the region, 

passes the ring to k+1

Else, 

it just passes the ring to k+1
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A Token-Ring Mutual Exclusion Algorithm

Correctness (safety)?

Starvation?

Problems:

Lost token

Process crashes: require acknowledging the receipt of a token
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Lost token, process 
crash0 to n – 11 to ∞Token ring

Crash of any process2 ( n – 1 )2 ( n – 1 )Distributed

Coordinator crash23Centralized

Problems
Client delay before 
entry (in message 

times)

Messages per 
entry/exitAlgorithm

Comparison

Messages per entry/exit determine the bandwidth consumed 

System throughput (the rate at which the collection of 
processes as a whole can access the critical region). 

It is based on the synchronization delay between one process 
exiting the critical region and the next process entering it (not 
shown in the Table above)
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Distributed Transactions

The Transaction Model
Classification of Transactions 

Implementation
Concurrency Control
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The Transaction Model

Updating a master tape is fault tolerant.
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Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

The Transaction Model

The ACID properties
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a) Transaction to reserve three flights commits
b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

The Transaction Model
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Classification of Transactions
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a) The file index and disk blocks for a three-block file
b) The situation after a transaction has modified block 0 

and appended block 3
c) After committing

Implementation
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a) A transaction
b) – d) The log before each statement is executed

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)   

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a) 

Implementation
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Concurrency Control

General organization of managers for handling transactions.
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General organization of managers for 
handling distributed transactions.

Concurrency Control
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a) – c) Three transactions T1, T2, and T3
d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0;  x = 0;  x = x + 1;  x = 0;  x = x + 2;  x = x + 3;Schedule 3

Legalx = 0;   x = 0;  x = x + 1;  x = x + 2;  x = 0;  x = x + 3;Schedule 2

Legalx = 0;  x = x + 1;  x = 0;  x = x + 2;  x = 0;  x = x + 3Schedule 1

(d)

Concurrency Control
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Two-phase locking.

Concurrency Control
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Strict two-phase locking.

Concurrency Control
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Concurrency control using timestamps.

Concurrency Control


