
1

CUP:ControlledUpdatePropagationin Peer-to-PeerNetworks

MemaRoussopoulos Mary Baker
Department of Computer Science

Stanford University�
mema,mgbaker� @cs.stanford.edu

Abstract—
Recentlythe problemof indexing and locating content in

peer-to-peer networks has received much attention. Previ-
ouswork suggestsit is useful to cacheindex entriesat inter-
mediatenodesthat lie on the paths takenby search queries,
but until now there has been little focus on how to main-
tain theseintermediate caches.This paper proposesCUP, a
protocol for performing Controlled Update Propagationto
maintain cachesof index entries in peer-to-peer networks.
CUP asynchronouslybuilds and maintains cacheswhile an-
swering search queries. CUP is independentof the under-
lying search mechanismand therefore can be used in the
contextof any peer-to-peernetwork.

CUP controlsand confinespropagationto updateswhose
costis lik ely to berecoveredby subsequentqueries.CUP al-
lows peer nodesto usetheir own incentive-basedpoliciesto
determine when to receive and when to propagateupdates.
We compare CUP againstcachingwith expiration at inter-
mediatenodesand show that CUP significantly reducesav-
eragequery latency (by asmuch asan order of magnitude)
acrossa wide variety of workloads. Mor e importantly , any
propagationoverheadincurr ed by CUP is compensatedfor
by a factor of 2 to 200 times in terms of savings in cache
misses.

I . INTRODUCTION

Peer-to-peer systemsare self-organizing distributed
systemswhereparticipatingnodesboth provide and re-
ceive servicesfrom eachother in a cooperative effort to
prevent any one nodeor set of nodesfrom being over-
loaded.Peer-to-peersystemshave recentlygainedmuch
attention,primarily becauseof the greatnumberof fea-
turesthey offer applicationsthatarebuilt on top of them.
Thesefeaturesinclude: scalability, availability, fault tol-
erance,decentralizedadministration,andanonymity.

Along with thesefeatureshascomean arrayof tech-
nical challenges.For example,a fundamentalproblemin
peer-to-peersystemsis thatof locatingcontent.Giventhe
nameor a setof keyword attributes(metadata)of an ob-
ject of interest,how do you locatethe objectwithin the
peer-to-peernetwork? Most peer-to-peernetworksreturn
asetof index entriesin responseto asearchquery. These
index entrieshold the locationsof replica nodesin the

network that serve contentwhosemetadatasatisfiesthe
searchquery.

Recent work suggeststhat metadata-basedsearch
queriesfor index entriescanbea performancebottleneck
in peer-to-peersystems[1]. As aresult,designersof peer-
to-peersystemssuggestcachingindex entriesat interme-
diatenodesthatlie onthepathtakenby asearchquery[2],
[3], [4], [5]. We refer to this asPath Caching with Expi-
ration (PCX) becausecachedindex entriestypically have
expirationtimesafterwhich they areconsideredstaleand
requireanew search.

PCX is desirablebecauseit balancesquery load for
popularentriesacrossmultiple nodes,it reduceslatency,
and it alleviateshot spots. However, little attentionhas
beengivento how to maintaintheseintermediatecaches.
Thecachemaintenanceproblemis interestingbecausethe
peer-to-peermodel assumesthat the index will change
constantlyaspeernodesjoin andleave thenetwork, con-
tentis addedto anddeletedfrom thenetwork, andreplicas
of existing contentareaddedto alleviatebandwidthcon-
gestionatnodesholdingthecontent.Eachof theseevents
causesa changein the currentglobal set of valid index
entries.Keepingcachedindex entriesup-to-datetherefore
requirestrackingwhichentriesneedto beupdated,aswell
astrackingwheninterestin updatingparticularentriesat
eachcachehasdieddown soasto avoid unnecessaryup-
datepropagation.

In this paperwe proposea protocol for performing
ControlledUpdatePropagation(CUP)to maintaincaches
in a peer-to-peernetwork. CUP asynchronouslybuilds
cachesof index entrieswhile answeringsearchqueries.
It then propagatesupdatesof index entriesto maintain
thesecaches. CUP is not tied to any particularsearch
mechanismandthereforecanbeappliedin bothnetworks
that perform structuredsearchas well as networks that
performunstructuredsearch.In structuredsearch,search
queriesfollow awell-definedpathfrom thequeryingnode
to an authoritynodethat holdsthe index entriespertain-
ing to the query[4], [6], [5], [7]; in unstructuredsearch,
searchquerieshaphazardlytravel throughthenetwork via
flooding or randomwalks in searchof index entries[2],

2

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

Q

�

N
1
 Q

�

N
2

A

�

1

�

U
N
2

A
2

U
N
1

N
1

N
2

Fig. 1. CUP Query& UpdateChannels. ��� and �	� areauthority
nodes. A query arriving at node
 � for an item for which � � is
the authority is pushedonto querychannel�
��� to
 � . If
 � hasa
cachedunexpired entry for the item, it returnsit to
 � through ����� .
Otherwise,it forwardsthequerytowards ��� . Any updatefor theitem
originating from authority node � � flows downstreamto
 � which
may forward it onto
 � through ����� . The analogousprocessholds
for queriesat
�� for itemsfor which ��� is oneof theauthoritynodes.

[8].
In the interestof space,in this paperwe will describe

how CUPworksfor structuredpeer-to-peernetworks.De-
tails of the CUP algorithmsfor structuredand unstruc-
turednetworkscanbefoundin [9]. Thebasicideais that
everynodein thepeer-to-peernetwork maintainstwo log-
ical channelsper neighbor: a querychannelandan up-
datechannel.Thequerychannelis usedto forwardsearch
queriesfor objectsof interestto theneighborthatis clos-
estto some“authority” nodeholdingtheentriesfor those
objects.Theupdatechannelis usedto forwardqueryre-
sponsesasynchronouslyto aneighborandto updateindex
entriesthatarecachedat theneighbor.

Queriesfor an item travel “up” the querychannelsof
nodesalong the path toward the authority nodefor that
item. Updatestravel “down” the updatechannelsalong
the reversepath taken by a query. Figure 1 shows this
process. The processof queryingfor items and updat-
ing cachedindex entriespertainingto thoseitemsforms
a CUP tree,similar to an application-level multicasttree
whereverticesarepeernodesinterestedin receiving up-
datesfor cachedindex entries.

The query channelenables“query coalescing”. If a
nodereceivestwo or morequeriesfor an item for which
it doesnot have a fresh response,the nodepushesonly
oneinstanceof thequeryfor that item up its querychan-
nel. Thisapproachcanhave significantsavingsin traffic,
becauseburstsof requestsfor an item arecoalescedinto
a singlerequest.Second,coalescingmultiple queriesfor
thesameitem solvesthe“openconnection”problemsuf-

fered by somepeer-to-peersystems.The asynchronous
natureof thequerychannelrelievesnodesfrom having to
maintainmany separateopenconnectionswhile waiting
for queryresponses;insteadall responsesreturnthrough
theupdatechannel.Throughsimplebookkeeping(setting
aninterestbit) thenoderegisterstheinterestof its neigh-
borssoit knows which of its neighborsto pushthequery
responseto whenit arrives.

The cascadedpropagationof updatesfrom authority
nodesdown thereversepathsof searchquerieshasmany
advantages.First, updatesextendthe lifetime of cached
entriesallowing intermediatenodesto continueserving
queriesfrom their cacheswithout re-issuingnew queries.
It hasbeenshown that up to fifty percentof contenthits
at cachesare instanceswhere the content is valid but
staleandthereforecannotbeusedwithout first beingre-
validated[10]. Theseoccurrencesare called freshness
misses. Second,a nodethat proactively pushesupdates
to interestedneighborsreducesits loadof queriesgener-
atedby thoseneighbors.The costof pushingthe update
down is recoveredby the first query for the sameitem
following the update.Third, the further down an update
getspushed,the shorterthe distancesubsequentqueries
needto travel to reacha freshcachedanswer. As a result,
query responselatency is reduced. Finally, updatescan
help prevent errors. For example,an updateto deletean
index entry preventsa nodefrom erroneouslyanswering
queriesusingtheinvalid entrybeforeit expires.

In CUP, nodesdecideindividually whento receive up-
dates. A nodeonly receives updatesfor an item if the
nodehas registeredinterestin that item. Furthermore,
eachnodeusesits own incentive-basedpolicy to deter-
mine whento cut off its incomingsupplyof updatesfor
anitem. Thiswaythepropagationof updatesis controlled
anddoesnot flood thenetwork.

Similarly, nodesdecideindividually whento propagate
updatesto interestedneighbors. This is necessarybe-
causea nodemay not always be able or willing to for-
ward updatesto interestedneighbors. In fact, a node’s
ability or willingnessto propagateupdatesmayvary with
its workload.CUPaddressesthisby introducinganadap-
tive mechanismeachnodeusesto regulatetherateof up-
datesit propagatesdownstream.A salientfeatureof CUP
is thateven if a node’s capacityto pushupdatesbecomes
zero,nodesdependenton the nodefor updatesfall back
to thecaseof PCXandincur nooverhead.

We compareCUP againstPCX with coalescingun-
der typical workloadsthat have beenobserved in mea-
surementsof real peer-to-peernetworks. We show that
CUPsignificantlyreducestheaveragequerylatency by as
muchasan orderof magnitude.CUP overheadis more

3

thancompensatedfor by its savingsin cachemisses.The
costof� saved missescanbe two to 200 timesthe costof
updatespushed.

The rest of the paper is organizedas follows: Sec-
tion II describesin detail thedesignof theCUPprotocol.
SectionIII describesthe cost model we useto evaluate
CUP andpresentsexperimentalevidenceof the benefits
of CUP. SectionIV discussesrelatedwork andSectionV
concludesthepaper.

I I . CUP PROTOCOL DESIGN

Weintroducesometerminologywe usethroughoutthe
paperand briefly describehow structuredpeer-to-peer
networks perform their indexing and lookup operations.
We then describethe componentsof the CUP protocol
over structurednetworks. We omit the CUP description
for unstructurednetworksin thispaper.

A. Background Terminology

Node: This is a nodein thepeer-to-peernetwork. Each
nodeperiodicallyexchanges“keep-alive” messageswith
its neighborsto confirm their existenceand to trigger
recovery mechanismsshould one of the neighborsfail.
Every nodealso maintainsthe two logical channelsper
neighborasdescribedin Figure1.

Global Index: Themostimportantoperationin a peer-
to-peernetwork is that of locating content. The basic
ideain structuredpeer-to-peernetworks is thata hashing
schememapskeys (namesof contentfiles or keywords)
ontoavirtual coordinatespaceusingauniformhashfunc-
tion thatevenly distributesthekeys to thespace.Theco-
ordinatespaceservesasa global index that storesindex
entrieswhichare(key, value) pairs.Thevaluein anindex
entry is a pointer(typically anIP address)to thelocation
of areplicanodethatstoresthecontentfile associatedwith
theentry’s key. Therecanbeseveral index entriesfor the
samekey, onefor eachreplicaof thecontent.

Authority Node: EachnodeN in a structuredpeer-to-
peersystemis dynamicallyallocateda subspaceof the
coordinatespace(i.e.,a partitionof theglobal index) and
all index entriesmappedinto its subspaceareownedby
N. We refer to N as the authoritynodeof theseentries.
Replicas of contentwhosekey correspondsto anauthor-
ity nodeN sendbirth messagesto N to announcethey
arewilling to serve thecontent.Dependingon theappli-
cationsupported,replicasmight periodicallysendrefresh
messagesto indicatethey arestill servinga pieceof con-
tent. They might alsosenddeletionmessagesthatexplic-
itly indicatethey areno longerservingthecontent.These
deletionmessagesnotify theauthoritynodeto deletethe
correspondingindex entryfrom its local index directory.

Local index directory: Thisis thesubsetof globalindex
entriesownedby anode.

Search Query: A searchquery postedat a nodeN is
a requestto locatea replica for key K. The responseto
sucha searchqueryis a setof index entriesthatpoint to
replicasthatserve thecontentassociatedwith K.

Search/Routing Mechanism: In structurednetworks,
whena nodeissuesa queryfor key K, the querywill be
routedalonga well-definedpathwith a boundednumber
of hopsfrom thequeryingnodeto theauthoritynodefor
K. The routingmechanismis designedso thateachnode
on thepathhashesK usingthesamehashfunctionto de-
terministicallychoosewhichof its neighborswill serveas
thenext hop.TheCUPprotocolis awareof but neitheraf-
fectsnor is affectedby theunderlyingroutingmechanism.

Query Path for Key K: This is thepatha searchquery
for key K takes.Eachhoponthequerypathis in thedirec-
tion of theauthoritynodethatownsK. If anintermediate
nodeon this pathhasunexpired entriescached,the path
endsat the intermediatenode;otherwisethepathendsat
theauthoritynode.Thereverseof thispathis theReverse
Query Path for key K.

Cached index entries: This is the setof index entries
cachedby a nodeN in the processof passingup queries
andpropagatingdown updatesfor keys for whichN is not
theauthority. Thesetof cachedindex entriesandthelocal
index directoryaredisjoint sets.

Lifetime of index entries: We assumethat eachindex
entry cachedat a nodehasassociatedwith it a lifetime
during which it is consideredfreshandafter which it is
consideredexpired.

B. CUP Node Bookkeeping

At eachnode, index entriesare groupedtogetherby
key. For eachkey K, thenodestoresa flag that indicates
whetherthenodeis waiting to receive anupdatefor K in
responseto a query, andan interestbit vector. Eachbit
in thevectorcorrespondsto a neighborandis setor clear
dependingon whetherthatneighboris or is not interested
in receiving updatesfor K.

Eachnodetracksthe popularity or requestfrequency
of eachnon-local key K for which it receives queries.
Thepopularitymeasurefor a key K canbethenumberof
queriesfor K a nodereceivesbetweenarrivalsof consec-
utiveupdatesfor K or a rateof queriesof a largermoving
window. On anupdatearrival for K, a nodeusesits pop-
ularity measureto re-evaluatewhetherit is beneficialto
continuecachingandreceiving updatesfor K. We elabo-
rateon thiscut-off decisionin SectionIII-C.

Nodebookkeepingin CUP involvesno network over-
headanda few tensof megabytesfor hundredsof thou-
sandsof entries.With increasingCPUspeedsandmem-

4

ory sizes,this bookkeepingis negligible when we con-
siderthe� reductionin querylatency achieved.

C. Update Types

We classifyupdatesinto threecategories: deletes,re-
freshes,and appends. Deletes,refreshes,and appends
originatefrom the replicasof a pieceof contentandare
directedtowardtheauthoritynodethatownstheindex en-
triesfor thatcontent.

Deletesaredirectives to remove a cachedindex entry.
Deletescanbetriggeredby two events: 1) areplicasends
a messageindicating it no longerservesa pieceof con-
tentto theauthoritynodethatownstheindex entrypoint-
ing to that replica.2) theauthoritynodenoticesa replica
hasstoppedsending“keep-alive” messagesandassumes
the replicahasfailed. In eithercase,the authoritynode
deletesthecorrespondingindex entryfrom its local index
directory and propagatesthe deleteto interestedneigh-
bors.

Refreshesaredirective messagesthat extend the life-
timesof cachedindex entries. Refreshesthat arrive at a
cachedonotpreventerrorsasdeletesdo,but helpprevent
freshnessmisses.

Finally, appendsaredirectivesto addindex entriesfor
new replicasof content.Theseupdateshelpalleviate the
demandfor contentfrom theexisting setof replicassince
they addto thenumberof replicasfrom whichclientscan
downloadcontent.

D. CUP Trees

Figure2 showsasnapshotof CUPin progress.Theleft
handsideof eachnodeshows the setof keys for which
the nodeis the authority. The right handsideshows the
setof keys for which thenodehascachedindex entriesas
a resultof handlingqueries.For example,nodeA owns
K3 andhascachedentriesfor K1 andK5.

For eachkey, the authoritynodethat owns the key is
the root of a CUP tree. The branchesof a CUP treeare
formedby thepathstraveledby queriesfrom othernodes
in the network suchas � F, D, C, A � for K3 rootedat A.
Updatesoriginateat the root (authoritynode)of a CUP
treeandtravel downstreamto interestednodes.

E. Handling Queries

Upon receiptof a query for a key K, thereare three
basiccasesto consider. In eachof thecases,thenodeup-
datesits popularitymeasurefor K andsetstheappropriate
bit in the interestbit vectorfor K if the queryoriginates
from a neighbor. Otherwise,if the queryis from a local
client, the nodemaintainsthe connectionuntil it canre-
turn a freshanswerto theclient. To simplify theprotocol
descriptionweusethephrase“pushthequery” to indicate

K1, K5
K3
 K4
 K2, K5

K6
 K1, K3, K5

K1, K3, K4
K5
 K7
 K1, K2, K3

K1, K2
 K3, K4, K5

C

�

K8, K9
 K3, K4

A

F

D

B

E

G

�

Fig. 2. CUPTrees

that a nodepushesa queryupstreamtoward the author-
ity node.Weusethephrase“pushtheupdate”to indicate
thata nodepushesanupdatedownstreamin thedirection
of thereversequerypath.

Case1: Fresh Entries for key K are cached. The
nodeusesits cachedentriesfor K to pushtheresponseto
thequeryingneighboror local client.

Case2: Key K is not in cache. The nodeaddsK to
its cacheandmarksit with a Pending-Response flag. The
flag’s purposeis to coalesceburstsof queriesfor K into
onequery. A subsequentqueryfor K will besuppressed
sincethenodeis alreadywaiting theresponsefor thefirst
queryof theburst. Querycoalescingresultsin significant
network savings, for both PCX andCUP. In someof the
workloads,coalescedqueriescanform upto 90percentof
thetotalnumberof queriesthatmiss.

With everyquerypush,a timeris setsothatif thequery
responseis lost, thenodepushesup anotherquery.

Case3: All cachedentries for key K have expired.
The node must obtain the fresh index entriesfor K. If
thePending-Response flag is set,thenodedoesnot need
to pushthe query; otherwise,the nodesetsthe flag and
pushesthequery.

F. Handling Updates

A key featureof CUP is that a nodedoesnot forward
an updatefor K to its neighborsunlessthoseneighbors
have registeredinterestin K. Therefore,with somelight
bookkeeping,we preventunwantedupdatesfrom wasting
network bandwidth.

Upon receiptof an updatefor key K thereare three
casesto consider.

Case1: Pending-Responseflag is set. This means
thattheupdateis a queryresponsecarryinga setof index
entriesin responseto a query, the nodestoresthe index
entriesin its cache,clearsthePending-Response flag,and

5

pushestheupdateto neighborswhoseinterestbits areset
andto local

�
client connectionsopenat thenode.

Case2: Pending-Responseflag is clear. If all the
interestbits for K areclear, the nodedecideswhetherit
wantsto continuereceiving updatesfor K. Thenodebases
its decisiononK’spopularitymeasure.Eachnodeusesits
own policy for decidingwhetherthepopularityof akey is
high enoughto warrantreceiving furtherupdatesfor it. If
thenodedecidesK’s popularityis low, it pushesa Clear-
Bit control messageto thesenderof theupdateto notify
it that is no longerinterestedin K’s updates.Otherwise,
if thepopularityis highor someof theneighbor’s interest
bits areset, the nodeappliesthe updateto its cacheand
pushestheupdateto thoseneighbors.

Note that a greedyor selfishnodecan choosenot to
pushupdatesfor a key K to interestedneighbors. This
forcesdownstreamnodesto fall backto PCXfor K. How-
ever, by choosingto cut off downstreampropagation,a
noderuns the risk of receiving subsequentqueriesfrom
its neighborscostingit twice asmuch,sinceit mustboth
receive andrespondto the queries. Therefore,although
eachnodehasthechoiceof stoppingtheupdatepropaga-
tion atany time,it is in its bestinterestto pushupdatesfor
which thereareinterestedneighbors.

Case3: Incoming update has expired. This could
occurwhenthenetwork pathhaslong delaysandtheup-
datedoesnot arrive in time. Thenodedoesnot applythe
updateanddoesnot pushit downstream.If thePending-
Response flag is setthenthenodere-issuesanotherquery
for K andpushesit upstream.

G. Handling Clear-Bit Messages

A Clear-Bit controlmessageis pushedby anodeto in-
dicateto its neighborthat it is no longerinterestedin re-
ceiving updatesfor aparticularkey from thatneighbor.

Whena nodereceivesa Clear-Bit messagefor key K,
it clearsthe interestbit for the neighborfrom which the
messagewassent.If thenode’s popularitymeasurefor K
is low andall of its interestbits areclear, the nodealso
pushesa Clear-Bit messagefor K. This propagationof
Clear-Bit messagestowardtheauthoritynodefor K con-
tinuesuntil anodeis reachedwherethepopularityof K is
highor whereat leastoneinterestbit is set.

Clear-Bit messagescanbepiggybackedontoqueriesor
updatesintendedfor theneighbor, or if therearenopend-
ing queriesor updates,they canbepushedseparately.

H. Adaptive Control of Update Push

Ideallyeverynodewouldpropagateall updatesto inter-
estedneighborsto save itself from having to handlefuture
downstreammisses.However, from time to time, nodes
arelikely to be limited in their capacityto pushupdates

downstream.Therefore,we introduceanadaptive control
mechanismthatanodeusesto regulatetherateof pushed
updates.

We assumeeachnodeN hasa capacityU for push-
ing updatesthatvarieswith N’s workload,network band-
width, and/ornetwork connectivity. N dividesU among
its outgoingupdatechannelssuchthateachchannelgets
asharethatis proportionalto thelengthof its queue.This
allocationmaintainsqueuesof roughly equalsize. The
queuesare guaranteedto be boundedby the expiration
timesof theentriesin thequeues.Soevenif anodehasits
updatechannelscompletelyshutdown for a long period,
all entrieswill expireandberemovedfrom thequeues.

Undera limited capacityandwhile updatesarewaiting
in the queues,eachnodecan re-orderthe updatesin its
outgoingupdatechannelsby pushingaheadupdatesthat
are likely to have greaterbenefit. For example,a node
canre-orderrefreshesandappendssothatentriesthatare
closerto expiring aregiven higherpriority. Suchentries
aremore likely to causefreshnessmisseswhich in turn
triggeranew searchquery.

Thestrategy for re-orderingdependsontheapplication.
For example,in an applicationwherequery latency and
accuracy areof themostimportance,onecanpushupdates
in thefollowing order:deletes,refreshes,andappends.In
anapplicationsubjectto flashcrowds [11] thatqueryfor
a particularitem, appendsmight begiven higherpriority
overtheotherupdates.Thiswouldhelpdistributetheload
fasteracrossa larger set of replicas. For all strategies,
duringthere-orderingany expiredupdatesareeliminated.

I. Node Arrivals and Departures

The peer-to-peer model assumesthat participating
nodeswill continuouslyjoin andleave thenetwork. CUP
mustbe ableto handlebothnodearrivals anddepartures
seamlessly.

Arri vals. Whenanew nodeN entersastructuredpeer-
to-peernetwork, it becomesresponsiblefor a portion of
anothernodeM’s shareof theglobal index andbecomes
theauthoritynodefor thoseindex entriesmappedinto that
portion. N, M, and all surroundingaffectednodes(old
neighborsof M) updatethe bookkeepingstructuresthey
maintainfor indexing androutingpurposes.This is anec-
essarypart of maintainingthe connectivity of any struc-
turedpeer-to-peernetwork when the setof nodesin the
network changes.management.

For CUP, theissuesathandareupdatingtheinterestbit
vectorsof theaffectednodesanddecidingwhatto dowith
theindex entriesstoredat M. This mayrequirebit vector
translation.For example,if a nodethatpreviously hadM
asits neighbornow hasN asits neighbor, thenodemust
make thebit ID thatpointedto M now point to N.

6

To dealwith its storedindex entries,M could simply
not hand� over any of its entriesto N. This would cause
entriesat someof M’s previous neighborsto expire and
subsequentqueriesfrom thosenodeswill restartupdate
propagationsfrom N. Alternatively, M couldgive a copy
of its storedindex entriesto N. BothN andM would then
go througheachentryandpatchits bit vector. Both so-
lutionsareviable. Thefirst solutionrequiresno bit trans-
lation but temporarilylosestheCUP updatebenefitsand
behaveslike PCX for theuntransferredentries. Thesec-
ondsolutiongetsthebenefitsof transferringtheentries,at
theexpenseof transferringtheindex entriesandperform-
ing thebit vectorpatching.Themetadataandbit vectors
for thousandsof index entriescanbe compressedinto a
few kilobytesandcanbepiggybackedontomessagesthat
arealreadybeingexhangedto reconfigurethe topology.
Oncethetransferoccurs,thebit vectorpatchingis anin-
memory, localoperationthatwith today’s CPUandmem-
ory capacitiestakesonly a few secondsfor a few million
entries.

Departures. Node departurescan be either graceful
(planned)or ungraceful(dueto suddenfailureof anode).
In eithercasethe index mechanismin placedictatesthat
a neighboringnodeM take over the departingnodeN’s
portionof theglobal index. To supportCUP, the interest
bit vectorsof all affectednodesmustbepatchedto reflect
N’sdeparture.

If N leavesgracefully, N canchoosenot to handover to
M its index entries.Any entriesatsurroundingnodesthat
were dependenton N to be updatedwill simply expire
andsubsequentquerieswill restartupdatepropagations.
Again, alternatively N may give M its setof entries. M
mustthenmergeits own setof index entrieswith N’s,by
eliminatingduplicateentriesandpatchingthe interestbit
vectorsasnecessary. If N’s departureis dueto a failure,
therecanbeno hand-over of entriesandall entriesin the
affectedneighboringnodeswill expire asin PCX.

II I . EVALUATION

Thegoalof CUPis to extendandmultiply thebenefits
of PCX.In doingso,therearetwo key performanceques-
tions to address.First, by how much doesCUP reduce
theaveragequerylatency? Second,how muchoverhead
doesCUPincur in providing this reduction?

We first presentthecostmodelbasedon economicin-
centive usedby eachnodeto determinewhento cut off
the propagationof updatesfor a particularkey. We give
a simple analysisof how the cost per query is reduced
(or eliminated)throughCUP. Wethendescribeourexper-
imentalresultscomparingthe performanceof CUP with
thatof PCX.

A. Cost Model

ConsideranauthoritynodeA thatownskey K andcon-
siderthetreegeneratedby issuingaqueryfor K from ev-
ery nodein thepeer-to-peernetwork. The resultingtree,
rootedat A, is the Virtual Query Spanning Tree for K,
V(A,K), andcontainsall possiblequerypathsfor K. The
Real Query Tree for K, R(A,K) is a connectedsubtreeof
V(A,K) alsorootedat A andcontainsall pathsgenerated
by real queries. The exact structureof R(A,K) depends
on theactualworkloadof queriesfor K. Theentirework-
loadof queriesfor all keys resultsin a collectionof criss-
crossingRealQueryTreeswith overlappingbranches.

Considera nodeN within V(A,K) that is at distanceD
from A. We definethe costper query for K at N as the
numberof hopsin thepeer-to-peernetwork thatmustbe
traversedto returnananswerto N. Whena queryfor K is
postedatN for thefirst time,it travelstowardA. If noneof
thenodesbetweenN andA have a freshresponsecached,
thecostof thequeryatN is ��� : D hopsupandD hopsfor
the responseto travel down. If a nodeon thequerypath
hasa freshanswercached,thecostis lessthan ��� . Sub-
sequentqueriesfor K atN thatoccurwithin thelifetime of
theentriesnow cachedat N have a costof zero. As a re-
sult,cachingat intermediatenodescansignificantlylower
averagequerylatency.

We cangaugethe performanceof CUP by calculating
thepercentageof updatesCUPpropagatesthatare“justi-
fied”, i.e., thosewhosecostis recoveredby a subsequent
query. Updatesfor popularkeys arelikely to be justified
moreoftenthanupdatesfor lesspopularkeys.

A refreshupdateis justifiedif aqueryarrivessometime
betweenthe previous expiration of the cachedentry and
the new expiration time suppliedby the refreshupdate.
An appendupdateis justified if at leastonequeryarrives
betweenthe time the appendis performedand the time
of its expiration. Finally, a deletionupdateis considered
justifiedif at leastonequeryarrivesbetweenthetime the
deletionis performedandtheexpirationtime of theentry
to bedeleted.

For eachupdate,let � be thecritical time interval de-
scribedabove during which a querymustarrive in order
for theupdateto be justified. Considera nodeN at dis-
tanceD from A in R(A,K). An updatepropagateddown
to N is justified if at leastonequeryQ is postedwithin
� time units at any of the nodesof the virtual subtree
V(N,K).

Giventhedistribution of queryarrivalsat eachnodein
the treeV(N,K), we canfind the probability that the up-
dateat N is justified by calculatingtheprobability that a
querywill arrive at somenodein V(N,K). If the queries
for K arrive at eachnode "! in V(N,K) accordingto a

7

Poissonprocesswith parameter#$! , then it follows that
queries% for K arriveatV(N,K) accordingto aPoissonpro-
cesswith parameter& equalto thesumof all #$')(. There-
fore,theprobabilitythataqueryfor K will arrivewithin �
time units is *,+.-�/$0�1 andequalstheprobabilitythatthe
updatepushedto N is justified.Thecloserto theauthority
N is, thehigherthe & andthusthehighertheprobability
for anupdatepushedto N to bejustified.For &324* query
arrival persecondand �5276 seconds,theprobabilitythat
anupdatearriving atN is justifiedis 99 percent.

Thebenefitof a justifiedCUPupdategoesbeyondjust
recovery of its cost. For eachhop a justified update8 is
pusheddown to therootN of subtreeV(N,K), exactlyone
hop is saved sincewithout thepropagation,thefirst sub-
sequentquery landingat a node "! in V(N,K) within �
time units will causetwo hops,from N to its parentand
back. This halves the numberof hopstraveledbetween
N andits parentwhich in turn reducesquerylatency. In
fact all subsequentqueriespostedsomewherein V(N,K)
within � time unitswill benefitfrom N receiving 8 . The
cumulative benefitanupdate8 bringsto subtreeV(N,K)
increaseswhen N is closerto the authority nodessince
there is a higher probability that querieswill be posted
within V(N,K). We define“investmentreturn” asthecu-
mulative savings in hopsachieved by pushinga justified
updateto nodeN. Theexperimentsshow thatthereturnis
largeevenwhenCUP’sreductionin latency is modestand
is substantiallylargewhenthelatency reductionis high.

High IR in somenodes,especiallythosecloseto the
authority nodesmay provide enoughbenefitmargin for
moreaggressive CUPstrategies.For example,amoreag-
gressive strategy would be to pushsomeupdateseven if
they arenot justified. As long asthenumberof justified
updatesis at leastfifty percentthetotalnumberof updates
pushed,theoverall updateoverheadis completelyrecov-
ered.Therefore,if network loadis not theprimeconcern,
an“all-out” pushstrategy achievesminimumlatency.

B. Experiment Setup and Metrics

CUP canbe viewed asextendingthe cachingbenefits
of PCX. Therefore,we evaluateCUP by comparingit
with PCX. We performour simulationexperimentsusing
awiderangeof parametersbasedonmeasurementsof real
peer-to-peerworkloads[12], [13], [8], [14].

Forourexperiments,wesimulateacontent-addressable
network (CAN) [4] using the StanfordNarsessimulator
[15]. Again,westressthatCUPis independentof thespe-
cific searchmechanismusedby thepeer-to-peernetwork
andcanbe usedasa cachemaintenanceprotocol in any
peer-to-peernetwork.

As in previousstudies(e.g.,[4], [5], [16], [1], [17], [6]),
we measureCUPperformancein termsof thenumberof

hopstraversedin theoverlaynetwork. Miss cost is theto-
tal numberof hopsincurredby all misses,i.e. freshness
andfirst-time misses.CUP overheadis the total number
of hopstraveledby all updatessentdownstreamplus the
total numberof hops traveled by all clear-bit messages
upstream.(We assumeclear-bit messagesarenot piggy-
backed onto updates. This somewhat inflatesthe over-
headmeasure.)Total cost is thesumof themiss cost and
all overheadhopsincurred. Note that in PCX, the total
cost is equalto the miss cost. Average query latency is
theaveragenumberof hopsa querymusttravel to reach
a freshanswerplus thenumberof hopstheanswermust
travel downstreamto reachthenodewherethequerywas
posted. (For coalescedquerieswe count the numberof
hopseachcoalescedquerywaitsuntil theanswerarrives.)
Thus, the averagelatency is over all queries,including
hits,coalescedandnon-coalescedmisses.

We computeinvestmentreturn(IR) astheoverall ratio
of savedmisscostto overheadincurredby CUP:

9;: 2=<?> (@(�ACBD(FEHGJILKM+ <?> (N(�ACBD(OEPIJQLGRTS -VUXW�-FY;Z[ACBD(FE\IJQLG
Thus,aslong asIR is greaterthan1, CUPfully recovers
its cost.

The simulation takes as input the number of nodes
in the overlay peer-to-peernetwork, the numberof keys
ownedper node,the distribution of queriesfor keys, the
distribution of query inter-arrival times, the numberof
replicasper key, the lifetime of replicasin the system,
andthefractionof thereplicalifetime remainingatwhich
refreshesare pushedout from the authority node. We
presentexperimentsfor n = ��] nodeswherek rangesfrom
7 to 14. After a warm-upperiodfor allowing thepeer-to-
peernetwork to connect,themeasuredsimulationtime is
3000seconds.Wepresentresultsfor experimentswith in-
dex entry lifetimesof five minutesto reflectthedynamic
natureof peer-to-peernetworkswhereit is prudentto as-
sumenodesmight only serve contentfor a few minutesat
a time [13]. Refreshesof index entriesoccuroneminute
beforeexpiration. Sinceboth PoissonandParetoquery
inter-arrival distributions have beenobserved in peer-to-
peerenvironments[8], [12], we presentexperimentsfor
both distributions. Nodesare randomlyselectedto post
queries. We alsopresentexperimentswherequeriesare
postedatparticular“hot spots”in thenetwork.

We presentseven setsof experiments.First, we com-
paretheeffectonCUPperformanceof differentincentive-
basedcut-off policies and comparethe performanceof
thesepolicies to thoseof PCX. Second,using the best
cut-off policy of thefirst experiment,we studyhow CUP
performsaswe scalethenetwork. Third, westudytheef-
fect on CUP performanceof varying the topologyof the

8

network by increasingthe averagenodedegree,thusde-
creasing� the diameterof the network. Fourth, we study
the effect on CUP performanceof limiting the outgoing
updatecapacitiesof nodes. Fifth, we study how CUP
performswhenqueriesarrive in bursts,asobserved with
Paretointer-arrivals. Sixth, we studyhow CUPperforms
whentherearehotspotsof queryingnodesin thenetwork.
Thesesix experimentsshow theper-key benefitsof CUP
accordingto the query ratesobserved by eachkey. In
the lastexperiment,we show theoverall benefitsof CUP
whenkeys arequeriedfor accordingto a Zipf-like distri-
bution.

C. Varying the Cut-Off Policies

As discussedin SectionIII-A, the propagationof up-
datesis beneficialonly if the updatesarejustified; when
a node’s incentive to receive updatesfor a particularkey
fades,continuingto propagateupdatesto thatnodesimply
wastesnetwork bandwidth. Therefore,eachnodeneeds
an independentand decentralizedway of controlling its
intake of updates.

Webasea node’s incentive to receive updatesfor akey
onthepopularity of thekey atthenode.Themorepopular
a key is, themoreincentive thereis to receive updatesfor
thatkey, becausethemorelikely updatesfor thatkey will
be justified. For a key K, thepopularityis thenumberof
queriesanodehasreceivedfor K sincethelastupdatefor
K arrivedat thenode. (Note that thepopularitymetric is
node-dependentandcouldbedefinedin anotherwaysuch
aswith amoving averageof queryarrivalsfor K.)

We examinetwo typesof thresholdsagainstwhich to
testa key’s popularitywhenmakingthecut-off decision:
probability-basedandlog-based.

A probability-basedthresholdusesthe distanceof a
node N from the authority node A to approximatethe
probabilitythatanupdatepushedto N is justified.Perour
costmodelof sectionIII-A, the further N is from A, the
lesslikely anupdateat N will be justified. We examine
two suchthresholds,a linear oneanda logarithmicone.
With a linearthreshold,if anupdatefor key K arrivesat a
nodeat distance� andthenodehasreceivedat least ^_�
queriesfor K sincethe last update,thenK is considered
popularandthenodecontinuesto receive updatesfor K.
Otherwise,thenodecutsoff its intake of updatesfor K by
pushingup a clear-bit message.Thelogarithmicpopular-
ity thresholdis similar. A key K is popularif thenodehas
received ^"`badce�gf queriessincethe lastupdate.Theloga-
rithmic thresholdis morelenientthanthe linear in that it
increasesataslower rateaswe moveaway from theroot.

A log-basedthresholdis one that is basedon the re-
centhistory of the last n updatearrivals at the node. If
within n updates,the nodehasnot received any queries,

thenthekey is notpopularandthenodepushesupaclear-
bit message.A specificexampleof a log-basedpolicy is
the “second-chancepolicy”, hM2i� . Whenan updatear-
rives,if no querieshave arrivedsincethe lastupdate,the
policy givesthekey a “secondchance”andwaits for the
next update. If at the next update,still no queriesfor K
have beenreceived, thenodepushesa clear-bit message.
The philosophybehindthis policy is that pushingthese
two updatesdown from thenode’s parentcoststhesame
asonequerymissoccuringatthenode,sinceaquerymiss
incursonehopup to theparentandonehopdown. This
meansthatjustonequeryarriving at thenodebetweenthe
two updatesis enoughto recover thepropagationcost.

TableI comparesthe total costof PCX with CUP us-
ing the linear andlogarithmicpolicesfor various ^ val-
ues,with CUP usingsecondchance,andwith a version
of CUP that doesnot useany cut-off policy but instead
pushesupdatesuntil theoptimalpushlevel is reached.To
determinetheoptimalpushlevel wemakeCUPpropagate
updatesto all queryingnodesthatareatmostj hopsfrom
theauthoritynode.By varyingthepushlevel j , we deter-
minethelevel whichachievesminimumtotalcost.This is
shown by therow labelledoptimalpushlevel andusedas
a baselineagainstwhich to comparePCX andCUPwith
thecut-off policiesdescribed.

In TableI we show cut-off policy resultsfor a network
of �;kml nodesandPoisson# ratesof 1, 10, 100 and1000
queriesper second.In eachtableentry, the first number
is the total costandthe numberin the parenthesesis the
total costnormalizedby thetotal costfor PCX. First,we
seethatregardlessof thecut-off policy used,CUPoutper-
formsPCX.Second,for thelowerqueryrates,theperfor-
manceof thelinearandthelogarithmicpoliciesis greatly
affectedby the choiceof parameter̂ , whereasfor the
higherqueryrates,thechoiceof ^ is lessdramatic.These
resultsshow thatchoosinga priori an ^ valuefor the lin-
earandlogarithmicpoliciesthatwill performwell across
all workloadsis difficult.

For the higher query rates, the log-basedsecond-
chancepolicy performscomparablyto the probability-
basedpolicies,andfor thelower queryratesoutperforms
the probability-basedpolicies. In fact, acrossall rates,
thesecond-chancepolicty achievesa total costvery near
theoptimalpushlevel total cost. This is because,unlike
the probability-basedpolicies, the second-chancepolicy
adaptsto thetiming of thequerieswithin theworkloadin
a mannerthat is independentof thedistanceof thenode.
In all remainingexperiments,weusesecond-chanceasthe
cut-off policy.

9

TABLE I
TOTAL COST PER KEY PER QUERY RATE FOR VARYING CUT-OFF POLICIES.

Policy 1 q/s Total Cost 10 q/s Total Cost 100 q/s Total Cost 1000 q/s Total Cost
PCX 61568(1.00) 154502(1.00) 476420(1.00) 2296869(1.00)
Linear, n,o lqprkml 41281(0.67) 34311(0.22) 47132(0.10) 196650(0.09)
Linear, n,o lqp lqk 31110(0.51) 24697(0.16) 48330(0.10) 196797(0.09)
Logarithmic, n,o lqp sPt 30683(0.50) 24695(0.16) 48330(0.10) 196797(0.09)
Logarithmic, n,o lqprkml 30683(0.50) 24695(0.16) 48330(0.10) 196797(0.09)
Second-chance 16958(0.28) 23702(0.15) 48330(0.10) 196797(0.09)
Optimalpushlevel 15746(0.26) 23696(0.15) 45325(0.095) 153309(0.07)

TABLE II
PER-KEY COMPARISON OF CUP WITH PCX FOR VARYING NETWORK SIZES, POISSON ARRIVALS OF 1 QUERY/SECOND.

Network Size 128 256 512 1024 2048 4096 8192 16384
CUP/ PCX MissCost 0.10 0.10 0.15 0.17 0.19 0.22 0.20 0.21
PCX AvgLat (u) 1.51(2.8) 2.67(4.0) 4.49(5.9) 6.74(8.3) 11.01(12.1) 17.47(17.5) 29.29(27.8) 45.56(40.3)
CUPAvgLat (u) 0.21(1.1) 0.46(1.6) 1.25(3.2) 2.17(4.4) 4.18(7.1) 7.70(11.3) 11.48(15.1) 19.17(23.7)
IR 4.15 4.88 6.29 7.83 11.43 16.14 24.85 35.98

TABLE III
PER-KEY COMPARISON OF CUP WITH PCX FOR VARYING NETWORK SIZES, POISSON ARRIVALS OF 10 QUERIES/SECOND.

Network Size 128 256 512 1024 2048 4096 8192 16384
CUP/ PCX MissCost 0.08 0.09 0.09 0.08 0.09 0.09 0.10 0.11
PCX AvgLat (u) 0.37(1.58) 0.87(2.89) 2.28(5.72) 4.21(8.78) 7.48(13.35) 14.42(21.37) 25.87(32.73) 43.85(48.33)
CUPAvgLat (u) 0.03(0.44) 0.09(0.96) 0.26(2.14) 0.47(3.17) 1.14(5.74) 2.53(9.93) 5.26(16.23) 9.97(25.09)
IR 6.79 8.30 11.76 13.00 14.89 21.52 30.88 50.52

TABLE IV
PER-KEY COMPARISON OF CUP WITH PCX FOR VARYING NETWORK SIZES, POISSON ARRIVALS OF 100 QUERIES/SECOND.

Network Size 128 256 512 1024 2048 4096 8192 16384
CUP/ PCXMissCost 0.08 0.08 0.09 0.08 0.10 0.08 0.09 0.10
PCX AvgLat (u) 0.16(1.07) 0.33(1.87) 0.91(3.65) 1.77(5.99) 3.91(10.79) 8.60(18.65) 17.94(30.63) 35.96(49.28)
CUPAvgLat (u) 0.01(0.28) 0.03(0.53) 0.08(1.14) 0.14(1.73) 0.36(3.51) 0.76(5.92) 2.06(11.98) 5.50(21.89)
IR 28.41 29.05 39.80 39.96 44.08 52.62 60.48 83.34

D. Scaling the Network

In this sectionwe studyCUPperformanceaswe scale
thesizeof thenetwork.

TableII comparesCUPandPCX for network sizesbe-
tween128and16384nodesfor aPoisson# rateof 1 query
per second. The first row shows the CUP miss cost as
a fraction of the PCX miss cost. The secondand third
rowsshow theaveragequerylatency in hopsfor PCXand
CUPrespectively. Thenumberin parenthesesis thestan-
darddeviation. As canbeobserved,CUPreducesaverage
querylatency respectively by 9.77,and17.81,and26.39
hopsfor the4096,8192,and16384nodenetworks. This
showsasubstantialreductionin averagequerylatency that
improves with increasingnetwork size. Comparingthe
standarddeviations of CUP and PCX we seethat PCX
alsohasmorevariability aroundits averagequerylatency
thanCUPdoes.

The fourth row in TableII shows the IR per overhead

pushperformedby CUP. We observe a growth in therate
of returnwith returnsof 16.14,24.85,and35.98for the
lastthreenetwork sizes.Thesenumbersareencouraging,
especiallyconsideringthe overheadinvestmentis com-
pletelyrecovered.

TablesIII, IV andV show thecorrespondingtablefor
ratesof 10,100,and1000queriespersecond.

Togetaquickideaof how CUPperformsacrossall four
queryrates,figure3 shows theIR of CUPversusnetwork
sizefor Poissonwith # = 1, 10,100,and1000queriesper
second.From the figurewe seethat for a particularnet-
work size,if we increasethequeryratethe IR increases,
andfor aparticularqueryrate,if we increasethenetwork
size, the IR also increases.This demonstratesthat CUP
scalesto higherqueryratesandhighernetwork sizes.

E. Varying the Network Topology

In general,differentpeer-to-peernetworks exhibit dif-
ferent topologiesand thus different network diameters.

10

TABLE V
PE
v

R-KEY COMPARISON OF CUP WITH PCX FOR VARYING NETWORK SIZES, POISSON ARRIVALS OF 1000 QUERY/SECOND.

Network Size) 128 256 512 1024 2048 4096 8192 16384
CUP/ PCX MissCost 0.08 0.08 0.08 0.08 0.12 0.08 0.09 0.09
PCX AvgLat (u) 0.12(0.88) 0.23(1.42) 0.54(2.54) 0.92(3.89) 1.90(6.77) 4.01(11.67) 8.55(19.93) 18.36(34.40)
CUPAvgLat (u) 0.01(0.26) 0.02(0.41) 0.05(0.75) 0.07(1.10) 0.16(2.05) 0.34(3.59) 0.79(6.55) 2.22(12.29)
IR 202.45 185.99 226.84 192.11 192.01 207.12 221.55 264.80

1

10

100

1000

100 1000 10000

In
ve

st
m

en
t R

et
ur

n

w

Number of Nodes

1 q/s/key
10 q/s/key

100 q/s/key
1000 q/s/key

Fig. 3. IR vs. netsize.(Log-scaleaxes.)

The particulartopologycreateddependson the protocol
thepeernodesuseto join thenetwork andto keepit con-
nected. TheCAN designis basedonad-dimensionalco-
ordinatespace,with ourexperimentsthusfarhaving been
for Zx2?� . Increasingthenumberof dimensionsresultsin
a topologywherenodeshave higherdegreeandthe net-
work hassmallerdiameter. Smallerdiameterimpliesthat
theaveragepathlengthof aqueryon a missis shorterfor
bothPCX andCUP. ShorterquerypathsmeansthatPCX
misslatenciesdecrease,which impliesthatthebenefitsof
CUP may be lesspronounced.On the otherhand,CUP
totalupdatecostalsodecreasessincetherewill beshorter
distancesfor updatesto travel. As a result,we find that
CUPcontinuesto provide significantsavings in termsof
bothoverall total cost,latency reduction,andIR perover-
headpush.

In thissetof experimentswestudytheeffectof increas-
ing the numberof CAN dimensionson a network with
1024nodes.The dimensionschosenfor this experiment
are2, 3, 5, and10. Thesedimensionsresult in network
diametersof 24, 12, 8, and 8 respectively. (For a net-
work of 1024nodes,increasingbeyond five dimensions
doesnot reducethe network diameterany further.) The
queriesarrive accordingto a Poissonprocesswith # rate
of 1, 10, 100,and1000queriespersecondfor a network
of 1024nodes. Figure4 shows the IR versusthe query
ratefor eachdimension.From thefigurewe seethat the
curvesfor dimensions5 and10 arevery similar because
they have equalnetwork diameters.We alsoseethat di-

1

10

100

1 10 100 1000

In
ve

st
m

en
t R

et
ur

n

Query Rate

10-d
5-d
3-d
2-d

Fig. 4. IR vs. queryrate,varyingdimensions.(Log-scaleaxes.)

mension2 achievesthehighestIR acrossall queryrates,
andthattheIR decreaseswith dimension.However, even
for thehigherdimensions(5 and10), theIR peroverhead
hopis at least2.1peroverheadhopfor 1 q/sandincreases
to 36.6peroverheadhopfor 1000q/s.

In TablesVI andVII, for thesedimensions,we show
the CUP miss cost as a fraction of PCX miss cost, the
CUPmisslatency, thePCX misslatency, andtheratio of
savedmissesto CUPupdatecost.

F. Varying Outgoing Update Capacity

Our experimentsthus far show that CUP outperforms
PCX underconditionswhereall nodeshave full outgoing
updatecapacity. A nodewith full outgoingcapacityis a
nodethat canand doespropagateall updatesfor which
thereare interestedneighbors. In reality, an individual
node’s outgoingcapacitywill varywith its workload,net-
work connectivity, andwillingnessto propagateupdates.
In thissectionwestudytheeffectonCUPperformanceof
reducingtheoutgoingupdatecapacityof nodes.

We presentan experimentrun on a network of 1024
nodes. In this experiment,after a five minute warm up
period,we randomlyselecttwenty percentof the nodes
andreducetheir outgoingcapacityto a fraction of their
full capacity. Thesenodesoperateat reducedcapacityfor
tenminutesafterwhich they returnto full capacity. After
anotherfiveminutesfor stabilization,we randomlyselect
anothersetof twentypercentof thenodesandreducetheir
capacityfor ten minutes. We proceedthis way for the

11

TABLE VI
COMPARISON OF CUP WITH PCX FOR VARYING DIMENSIONS

Average Rate (q/s) 1 1 1 1 10 10 10 10
Number of dimensions) 10 5 3 2 10 5 3 2
CUP/ PCX MissCost 0.33 0.33 0.26 0.17 0.09 0.09 0.09 0.08
PCX AvgLat (u) 2.09(2.27) 2.21(2.38) 3.14(3.49) 6.74(8.25) 0.94(1.80) 0.95(1.82) 1.51(3.15) 4.21(8.78)
CUPAvgLat (u) 1.04(1.53) 1.10(1.59) 1.37(2.22) 2.17(4.37) 0.11(0.68) 0.11(0.67) 0.17(1.14) 0.47(3.17)
IR 2.01 2.08 3.26 7.83 3.03 3.06 4.78 13.00

TABLE VII
COMPARISON OF CUP WITH PCX FOR VARYING DIMENSIONS

Average Rate (q/s) 100 100 100 100 1000 1000 1000 1000
Number of dimensions) 10 5 3 2 10 5 3 2
CUP/ PCX MissCost 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08
PCX AvgLat (u) 0.31(1.41) 0.30(1.37) 0.61(2.50) 1.77(5.99) 0.16(0.97) 0.14(0.90) 0.30(1.59) 0.92(3.89)
CUPAvgLat (u) 0.03(0.40) 0.03(0.42) 0.06(0.78) 0.14(1.73) 0.01(0.28) 0.01(0.25) 0.02(0.46) 0.07(1.10)
IR 7.16 6.75 13.82 39.96 36.68 31.46 66.81 192.11

entire3000secondsduring which queriesareposted,so
capacitylossoccursthreetimesduringthesimulation.

Figure5 shows theratioof CUPtotal costto PCXtotal
costversusreducedcapacityy for thisexperimentandfor
four differentPoissonqueryrates# . Thecapacityreduc-
tion y rangesfrom 0, implying that no updatesareprop-
agatedto 1 in which nodeshave full outgoingcapacity.
yz2|{}�D~ meansthatanodeis only capable/willingof push-
ing outone-fourththeupdatesit receives.

Notethatevenwhenonefifth of thenodesdonotprop-
agateany updates,thetotalcostincurredby CUPis about
half thatof PCX. As theoutgoingcapacityincreases,the
total cost decreasessmoothly until y52 * whereCUP
achievesits full potential. A key observation from these
experimentsis that CUP’s performancedegradesgrace-
fully asthecapacityy decreases.Thisisbecausereduction
in updatepropagationalsoresultsin reductionof its asso-
ciatedoverhead.Therefore,thecapacityreductionshould
beseenasa missedopportunityfor higherreturnsrather
thanasanoverall loss. Clearly though,CUPachievesits
full potentialwhenall nodeshave maximumpropagation
capacity.

G. Pareto Query Arrivals

Recentwork has observed that in somepeer-to-peer
networks, query inter-arrivals exhibit burstynesson sev-
eral time scales[12], making the Pareto distribution a
good candidatefor modeling these inter-arrival times.
Therefore,in thissectionwecompareCUPwith PCXun-
derParetointer-arrivals.

The Paretodistribution hastwo parametersassociated
with it: theshapeparameter̂3��� andthescaleparame-
ter �3�4� . Thecumulative distribution functionof inter-
arrival time durationsis ��c���f�2=*�+�c�����F� �F� f n { This dis-
tribution is heavy-tailed with unboundedvariancewhen

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

T
ot

al
 C

os
t R

at
io

�

Update Propagation Capacity

1 q/s/key
10 q/s/key

100 q/s/key
1000 q/s/key

Fig. 5. Total costratiovs. updatepropagationcapacity

^5��� . For ^5��* , theaveragenumberof queryarrivals
per time unit is equalto

� n / k �� . For ^���2�* , theexpec-
tationof aninter-arrival durationis unboundedandthere-
fore theaveragenumberof queryarrivalspertime unit is
0.

We ranexperimentsfor a rangeof ^ and � valuesand
presentrepresentative resultshere. TableVIII compares
CUP with PCX for ^ equalto 1.1 and1.25 respectively
for a network of 1024 nodes. We set the value of � in
eachrun so that theaveragerateof arrivals

� n / k �� equals
1, 10, 100, and1000queriesper secondto matchthe #
rateof thePoissonexperimentsin previoussections.

As ^ decreasestoward 1, query interarrivals become
morebursty. Queriesarrive in morefrequentandmorein-
tensebursts,followed by idle periodsof varying lengths.
If anidleperiodoccasionallyfallsin theheavy-tail portion
of theParetodistribution (i.e. very long idle period),then
secondchanceCUPpropagationcostcouldbeunrecover-
able,sincethenext querymayarrive longafterthecached
entryhasexpired. However, CUPdoeswell underbursty

12

conditionsbecausewhenit is ableto refresha cachebe-
fore a b

�
urst of queries,it savesa large penaltywhich by

far outweighsany unrecoveredoverheadthatoccursdur-
ing the occasional,very long idle period. Therefore,re-
freshingthe cachein time providesgreaterbenefitswith
increasingburstyness.The tableresultsconfirm this. In
goingfrom ^�2�*�{}�D~ to ^�2�*�{)* , we seethattheaverage
querylatency reductionCUPachievesgenerallyimproves
andtheIR increasesfor all queryrates.

H. Query Hot Spots

In this experimentwe show how CUP performswhen
therearehotspotsin thenetwork, thatiswhenasmallpor-
tion of thenetwork is postingqueriesfor particularkeys.
It is possiblethatsomeportionsof thenetwork will have
high interestwhereasotherswill show only low interest
for a particularkey. We examinehow CUP performsin
suchascenario.

Weshow resultsfor anexperimentfor a1024nodenet-
work in whichqueriesfor aparticularkey weregenerated
accordingto a Poissonprocesswith 1, 10,100,and1000
queriespersecond.Nodesto postthe querieswerecho-
senaccordingto a zipf distribution of thenodeIDs. This
hastheeffectof having asmallnumberof activequerying
nodesanda large numberof nodeswhich issuevery few
queriesfor thekey throughoutthesimulation.

TableIX comparesCUPwith PCX. Fromthetablewe
seethat the resultsof thehot spotexperimentaresimilar
to thosewherenodesarerandomlychosento postqueries.
Thisis becausetheCUPtreesimplygrowsbranchesin the
directionof nodesthathave interestin thekey. Eachnode
decidesindividually whento cut off its intake of updates
andthisdecisionis independentof thequeryratesor prop-
agationbehavior of othernodesthat lie in a differentpart
of thenetwork.

TableX comparesCUP with PCX in a network with
hot spotsandParetoarrivals, with ^|2�*�{)* andaverage
rateof arrivalsof 1, 10,100,and1000queriespersecond.
Again theresultsherearesimilar to thoseobservedwhen
nodesarerandomlyselectedto postqueries.

I. Zipf-like Key Distributions

A recentstudyhasshown thatqueriesfor multiplekeys
in a peer-to-peernetwork canfollow a Zipf-like distribu-
tion, with a small portion of the keys getting the most
queries[14]. That is, the numberof queriesreceived by
thei’th mostpopularkey is proportionalto k!�� for constant
^ .

In thissectionwecompareCUPwith PCXin anetwork
of 1024nodes,whereeachnodeownsonekey. Thequery
distribution amongthe1024keys follows a Zipf-like dis-
tribution with parameter̂�2 *�{}� . Table XI shows re-
sultsfor Poissonarrivalswherethe # ratesare100,1000,

TABLE XI
CROSS-KEY COMPARISON OF CUP WITH PCX, FOR POISSON

ARRIVALS AND ZIPF-L IKE KEY DISTRIBUTION.

Avg Rate (q/s) 100 1000 10000 100000
CUP/ PCX MissCost 0.45 0.23 0.10 0.08
PCX AvgLat (u) 10.6(9.9) 6.9(8.9) 3.4(7.5) 1.53(5.47)
CUPAvgLat (u) 7.4(8.5) 2.6(5.2) 0.4(2.7) 0.13(1.67)
IR 6.57 8.52 10.98 30.02

10000,and100000queriespersecond.(Wealsoransim-
ulationswith ^ = 0.80and2.40andwith Paretoarrivals
with equivalentaverageratesandtheresultsweresimilar.)

FromthetableweseethatCUPoutperformsPCXwith
IR ranging from 6.57 to 30.02. The latency reduction
rangesfrom 3.2 (for 100 q/s) to an order of magnitude
reduction(for 100000q/s, latency droppedfrom 1.53 to
0.13). TheZipf-like distribution causessomeof thekeys
to geta large percentageof thequeries,leaving othersto
beaskedfor quiterarely. For suchkeys,cachingdoesnot
helpsincetheentryexpiresby thetime thekey is queried
for again,and the query rate for thesekeys is not high
enoughto recover theupdatepropagation.However, the
IR for theveryhotkeys is highenoughto by faroffsetthe
unrecoverablecostof otherlesspopularkeys. As aresult,
CUPachievesanoverall IR of at least6.57for 100q/sand
asmuchas30.02for 100000q/s.

For comparison,TableXII shows representative results
for Paretoarrivals with ^ equalto 1.1 and 1.25 respec-
tively for a network of 1024nodes.We setthevalueof �
in eachrunsothattheaveragerateof arrivals

� n / k �� equals
1, 10,100,and1000queriespersecond.

IV. RELATED WORK

To our knowledge,CUP is the first protocolaimedat
maintainingcachesof index entries to improve search
queriesin peer-to-peernetworks.While designersof peer-
to-peersystems[2], [4], [5], [6], [7] advocatecachingin-
dex entriesto improve performance,therehasbeenlittle
follow-upwork studyingwhenandwhereto cacheentries
andhow to maintainthesecachedentries.

Cox et al. study providing DNS serviceover a peer-
to-peernetwork [18]. They cacheindex entrieswhich are
DNS mappingsalongsearchquerypaths. Similarly, the
TerraDirDistributedDirectorycachingschemehasnodes
alongthesearchquerypathcachepointersto othernodes
previously traversedby thequery[3]. In eachof theseex-
amples,cachedindex entrieshaveexpirationtimesandare
not refreshedor maintaineduntil amissor failureoccurs.

Pathcachingof contentin peer-to-peersystemshasre-
ceivedmoreattention.Freenet[19], CFS[20], PAST [16],
andLv et al [21] eachperformpathcaching,or caching

13

TABLE VIII
PER-KEY, PER-QUERY RATE COMPARISON OF CUP WITH PCX FOR PARETO ARRIVALS.

Average Rate (q/s) 1 1 10 10 100 100 1000 1000
Pareto rate (a) 1.25 1.1 1.25 1.1 1.25 1.1 1.25 1.1
CUP/ PCXMissCost 0.24 0.14 0.08 0.07 0.07 0.09 0.08 0.08
PCX AvgLat (u) 7.77(9.3) 6.99(9.4) 3.84(8.4) 4.01(8.8) 1.75(5.9) 1.61(5.6) 1.00(4.0) 1.10(4.2)
CUPAvgLat (u) 3.16(5.7) 1.71(4.4) 0.42(3.0) 0.37(2.8) 0.13(1.7) 0.15(1.7) 0.08(1.2) 0.09(1.2)
IR 6.41 7.49 13.09 16.03 43.25 53.57 223.97 293.30

TABLE IX
COMPARISON OF CUP WITH PCX FOR VARYING QUERY RATES AND HOT SPOT, POISSON ARRIVALS

Average Rate (q/s) 1 10 100 1000
CUP/ PCXMissCost 0.16 0.08 0.08 0.09
PCX AvgLat (u) 7.07(8.85) 3.58(7.76) 1.62(5.57) 0.96(3.95)
CUPAvgLat (u) 2.06(4.29) 0.39(2.40) 0.13(1.59) 0.08(1.22)
IR 8.87 11.47 32.35 193.89

TABLE X
COMPARISON OF CUP WITH PCX FOR VARYING QUERY RATES AND HOT SPOT, PARETO ARRIVALS

Average Rate (q/s) 1 10 100 1000
CUP/ PCXMissCost 0.16 0.08 0.08 0.09
PCX AvgLat (u) 6.87(9.41) 3.56(7.93) 1.59(5.42) 1.13(4.23)
CUPAvgLat (u) 1.68(4.39) 0.35(2.40) 0.14(1.63) 0.10(1.32)
IR 7.98 14.20 47.56 294.89

TABLE XII
CROSS-KEY COMPARISON OF CUP WITH PCX FOR PARETO ARRIVALS AND ZIPF-L IKE KEY DISTRIBUTION.

Average Rate (q/s) 1 1 10 10 100 1000
Pareto rate (a) 1.25 1.1 1.25 1.1 1.1 1.1
CUP/ PCX MissCost 0.85 0.79 0.65 0.66 0.44 0.23
PCX AvgLat (u) 14.10(10.54) 13.85(10.51) 12.67(10.32) 12.44(10.29) 10.48(9.90) 6.87(8.91)
CUPAvgLat (u) 13.39(10.46) 12.88(10.38) 11.03(9.92) 10.73(9.82) 7.19(8.38) 2.49(5.16)
IR 1.38 1.93 3.94 3.75 6.69 8.69

of contentalongthesearchpathof aquery. Thesestudies
do not focuson cachemaintenance,but ratherdependon
expirationor cachesizeconstraintsto limit theuseof stale
content.

CUP trees are similar to application-level multicast
trees,particularly thosebuilt on peer-to-peernetworks.
TheseincludeScribe[17] built on top of Pastry [6] and
Bayeauxbuilt on top of Tapestry[7]. Here,we focuson
Scribe.Scribeis a publish-subscribeinfrastructurewhere
subscribersinterestedin a topic join its corresponding
multicastgroup. Scribecreatesa multicasttreerootedat
therendez-vouspoint of eachmulticastgroup.Publishers
sendamessageto therendez-vouspointwhichthentrans-
mits the messageto the entiregroupby sendingit down
themulticasttree.Themulticasttreeis formedby joining
thePastryroutesfrom eachsubscribernodeto therendez-
vouspoint. Scribecouldapply the ideasCUPintroduces
to provide updatepropagationfor cachemaintenancein
Pastry.

CohenandKaplanstudythe effect that agingthrough
cascadedcacheshasonthemissratesof webclientcaches
[22]. For eachobjectan intermediatecacherefreshesits
copy of theobjectwhenits ageexceedsa fractionv of the
lifetime duration. The intermediatecachedoesnot push
this refreshto the client; instead,the client waits until
its own copy hasexpiredat which point it fetchesthe in-
termediatecache’s copy with theremaininglifetime. For
somesequencesof requestsat theclient cacheandsome
v’s, the client cachecan suffer from a higher miss rate
than if the intermediatecacheonly refreshedon expira-
tion. Their modelassumeszerocommunicationdelay. A
CUPtreecouldbeviewedasa seriesof cascadedcaches
in thateachnodedependson thepreviousnodein thetree
for updatesto an index entry. The key differenceis that
in CUP, refreshesarepusheddown the entiretreeof in-
terestednodes.Therefore,barringcommunicationdelays,
whenever a parentcachegetsa refreshsodoesthe inter-
estedchild node. In suchsituations,the missrateat the

14

child nodeactuallyimproves.

V. CONCLUSIONS

CUPis a protocolfor maintainingcachesof index en-
tries in peer-to-peernetworks. CUP querychannelsco-
alesceburstsof queriesfor the sameitem into a single
query. CUP updatechannelsasynchronouslytransport
queryresponsesandrefreshintermediatecaches.Through
light book-keepingandincentive-basedpropagationcut-
off policies, CUP controlsand confinespropagationsto
updatesthatarelikely to bejustified. In fact,CUP’sover-
headis compensatedfor by a factorof 2 to 300 timesin
termsof savingsin cachemisses.

When comparedwith path caching with expiration
(PCX), CUP significantly reducesthe averagequery la-
tency over a wide variety of workloads,including Pois-
sonandParetoqueryarrivals,networksof increasingsize
andvarioustopologies,anduniform andZipf-like multi-
key query distributions. We have also shown that even
with limited updatepropagation,CUP continuesto out-
performPCX. The overall conclusionis that CUP bene-
fits increasewith network sizeandqueryrates.Although
Poissonqueryinterarrivalsmayresultin lessunrecovered
overheadthan Paretoarrivals, the sheerforce of Pareto
burstsresultsin higherCUPbenefit(investmentreturn).

Webelieve thatCUPprovidesageneralpurposeframe-
work for maintainingmetadatain peer-to-peernetworks.
We have leveragedtheCUPprotocolto deliver metadata
requiredfor effective load-balancingof contentdemand
acrossreplicanodes[9]. Futurework includesusingCUP
to enhancemanagementof dynamiccontentreplication,
publish-subscribeapplications,andpricenegotiationand
auctioningof servicesamongstnodesin a peer-to-peer
network.

REFERENCES

[1] Y. Chawathe, S. Ratnasamy, S. Shenker, and L. Breslau,
“Can HeterogeneityMake Gnutella Scale?,” May 2002,
http://research.att.com/yatin/publications/docs/gdr-stanford.ppt.

[2] “The Gnutella Protocol Specification v0.4,”
http://gnutella.wego.com/.

[3] B. Silaghi, B. Bhattacharjee, and P. Keleher, “Rout-
ing in the TerraDir Directory Service,” 2002,
http://motefs.cs.umd.edu/terradir/.

[4] S. Ratnasamy, P. Francis,M. Handley, R. Karp, andS. Shenker,
“A ScalableContent-AddressableNetwork,” in Sigcomm, 2001.

[5] I. Stoica,R. Morris, D. Karger, F. Kaashoek,andH. Balakrish-
nan, “Chord: A ScalablePeer-to-peerLookupServicefor Inter-
netApplications,” in Sigcomm, 2001.

[6] A. RowstronandP. Druschel,“Pastry:Scalable,distributedob-
ject locationandroutingfor large-scalepeer-to-peersystems,” in
MiddleWare, Nov. 2001.

[7] B. Y. Zhao,J.D. Kubiatowicz, andA. D. Joseph,“Tapestry:An
Infrastructurefor Fault-tolerantWide-areaLocation and Rout-
ing,” Tech.Rep.UCB/CSD-01-1141,U. C. Berkeley, Apr. 2001.

[8] P. Cao, “SearchandReplicationin UnstructuredPeer-to-Peer
Networks,” in Sigmetrics, June2002.

[9] M. Roussopoulos,Controlled Update Propagation in Peer-to-
Peer Networks, Ph.D.thesis,StanfordUniversity, 2002.

[10] E.CohenandH. Kaplan,“RefreshmentPoliciesfor WebContent
Caches,” in Infocom, 2001.

[11] T. Stading,P. Maniatis,andM. Baker, “Peer-to-PeerCaching
Schemesto AddressFlashCrowds,” in IPTPS, Mar. 2002.

[12] E. P. Markatos, “Tracinga large-scalePeer-to-PeerSystem:an
hour in the life of Gnutella,” in 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2002.

[13] S. Saroiu,P. K. Gummadi,andS. D. Gribble, “A Measurement
Studyof Peer-to-PeerFile SharingSystems,” in MMCN, 2002.

[14] K. Sripanidkulchai, “The Popularity of Gnutella Queries
and its Implication on Scalability,” Feb. 2001, http://www-
2.cs.cmu.edu/kunwadee/research/p2p/gnutella.html.

[15] P. Maniatis,T.J.Giuli, andM. Baker, “EnablingtheLong-Term
Archival of SignedDocumentsthroughTime Stamping,” Tech.
Rep.cs.DC/0106058,StanfordUniversity, June2001.

[16] A. Rowstron and P. Druschel, “Storage Managementand
Cachingin PAST, A Large-scale,PersistentPeer-to-peerStorage
Utility”, ” in SOSP, Oct.2001.

[17] A. Rowstron, A. Kermarrec, M. Castro, and P. Druschel,
“SCRIBE: Thedesignof a large-scaleevent notificationinfras-
tructure,” in NGC, 2001.

[18] R. Cox, A. Muthitacharoen,andR. T. Morris, “Serving DNS
usinga Peer-to-PeerLookupService,” in IPTPS, Mar. 2002.

[19] I. Clarke, O. Sandberg, B. Wiley, andT. W. Hong, “Freenet:A
DistributedAnonymousInformationStorageandRetrieval Sys-
tem,” in DIAU, July2000.

[20] F. Dabek,M. F. Kaashoek,D. Karger, R. Morris, andI. Stoica,
“Wide-areaCooperative Storagewith CFS,” in SOSP, 2001.

[21] Q. Lv, P. Cao,E. Cohen,K. Li, andS. Shenker, “Searchand
Replicationin UnstructuredP2PNetworks,” in ICS, 2002.

[22] E. Cohenand H. Kaplan, “Aging ThroughCascadedCaches:
PerformanceIssuesin theDistribution of WebContent,” in Sig-
comm, 2001.

