Execution Environment of Peer-to-peer Services
in a Mobile Environment

Tadashige Iwao', Makoto Okada', Kazuya Kawashima?, Satoko Matsumura?,

Hajime Kanda?, Susumu Sakamoto?,
Tatsuya Kainuma?, and Makoto Amamiya®

! Service Management Laboratory, Fujitsu Laboratories Ltd.,
4-1-1 Kamikodanaka, Nakahara-ku, 211-8588 Kawasaki, Japan
{iwao, okadamkt}@flab.fujitsu.co.jp
2 2nd Development Division, Fujitsu Prime Soft Technologies Ltd.,
1-16-38 Aoi, Higashi-ku, 461-0004 Nagoya, Japan
{kawashima, matsumura, h-kanda, susumu, kainuma}@pst.fuj itsu.com
? Qraduate School of Information Science and Electrical Engineering,
Kyushu University,
6-1 Kasuga-Koen, Kasuga, 816 Fukuoka, Japan
amamiya@is.kyushu-u.ac. jp

Abstract. This paper describes a execution environment for peer-to-
peer services in a mobile environment. These days, mobile devices such
as PDAs and mobile telephones have the power and the capability to sup-
port a variety of services independently. In the near future, peer-to-peer
services, for mobile devices in a mobile environment, will be common-
place. However, it is difficult for these devices to provide peer-to-peer
services such as file sharing and the access of CPU power since the per-
formance of these devices is not comparable to those of PCs. Suitable
peer-to-peer services and their execution environment in a mobile envi-
ronment are required. Hence, we propose execution environment for suit-
able peer-to-peer services in a mobile environment. We have performed
a large-scale experiment using a practical application on our execution
environment with six hundred participants. This paper also contains the
results and discussions of this experiment.

1 Introduction

Recently, the performance of mobile devices, such as PDAs and mobile phones,
has increased enough to provide a wide variety of services independently. In
the near future, peer-to-peer services will be commonplace for mobile devices.
The peer-to-peer services on mobile devices will enable people to use them in
a mobile environment. However, performance of these devices 1s not compara-
ble to those of PCs. In a mobile environment with low power devices, a basic
service 1s information browsing. Therefore, one possible peer-to-peer service is
the simple exchange of information among peers in a mobile environment. In
addition, information that depends on physical locations will be of use in a mo-
bile environment. In such a situation, the location-dependent information may

2 Tadashige Iwao et al.

change according to users. For example, permitting only the regular members to
view the flight information from airports. It is required that the information, in
peer-to-peer services in a mobile environment, manages itself according to the
location and users.

Current major peer-to-peer systems such as Gnutella[1], Napster[2], and
SETI@home[3] focus on PCs, and do not provide services for the mobile en-
vironment. These systems are popular on the Internet, and have thousands of
users. Gnutella and Napster provide file sharing in a peer-to-peer format. Users
of these systems find other peers who have the files they want. These systems
focus on PCs because of the large data storage requirements. Also, SETI@home
is a project that performs calculations to find signals of extra-terrestrial origin
by using PCs, in which the owners of the Internet-connected PCs give consent
to participate in the project. The software that performs these calculations op-
erates as a screen saver, since the calculation places a heavy load on the PC
during use. These kinds of applications need high CPU performance, and are
not suitable for mobile devices such as PDAs and mobile telephones. It is dif-
ficult for mobile users to use applications which saps the performance of PDAs
and mobile telephones. Thus, file sharing and accessing of computing power are
not suitable for the mobile environment. Hence, a study must be conducted to
determine what kinds of services are suitable for peer-to-peer services on mobile
devices. We also need an execution environment for the peer-to-peer services in
a mobile environment such as location and user dependent services.

We propose an execution environment for peer-to-peer services in a mobile en-
vironment, called Virtual Private Community (VPC)[4, 5], that makes informa-
tion an agent that controls itself, and interact with other agents autonomously.
The peer-to-peer services are defined as policy packages that consist of rules to
activate agents, agent definitions called roles, and contents for the services. VPC
is carried out by VPC platforms(VPC-Ps) that manage users’ attributes, and
decide which agents to activate according to the rules in the policy package, and
users’ attributes. VPC-Ps works on users’ mobile devices. VPC allows services
to provide according to location and users, and to propagate among users in
a mobile environment. Large-scale experiments were conducted with practical
applications using VPC for a period of two weeks. About six hundred people
participated in the experiment.

Section 2 discusses suitable services of peer-to-peer services and their execu-
tion environment in a mobile environment. Section 3 describes details of VPC.
Section 4 shows the practical application of a VPC prototype system to peer-to-
peer services in a large-scale experiment.

2 Execution Environment for Peer-to-peer Services in a
Mobile Environment

The exchange of information among peers is the most important feature in
peer-to-peer services. Information is provided by, and used by, the peers in a
peer-to-peer environment. There are two phases in treating the information; the

P2P Execution Envrionment 3

propagation, and the utilization of information. The propagation of information
is performed by the transfer of information from one peer to another. In the uti-
lization of information phase, there are two modes; a stand-alone mode and an
interaction mode. A stand-alone mode involves the use information off-line, such
as playing music files. This mode does not require interaction with other peers.
An interaction mode involves the interaction among peers to use applications
such as chat, network games, and groupware. The number of peers involved in
the interaction may be small or large, and the interaction should be conducted
in a peer-to-peer manner.

Also, location dependency of information is important in a mobile environ-
ment. Information also has dependence on location, time, users, context, and
so on. Services are affected by information dependency, and are provided using
information. There are services with information dependent on physical loca-
tion since users move around in a mobile environment. For instance, one of the
services is a explanation service of displays in front of users in a museum. More-
over, user dependency of information makes services exclusive. Only the users
on which information depends can receive the services with the information.
Thus, information dependencies affect services, and should be also considered
in peer-to-peer services in a mobile environment. Execution environments for
peer-to-peer services have not only to support the two phases and two modes,
but also to support information dependencies.

One methodology is to make the information an agent that decides its own
behavior among the peers in the propagation and utilization phases. The agents
are also able to control information dependencies. The agent propagates among
the peers, and authenticates users in the users’ own mobile devices. The agent
also interacts with other propagated agents that work with other peers. The
agent may change itself according to peers by the result of authentification, and
copyright information. In order to make this a reality, we need a framework for
the agent.

3 Virtual Private Community (VPC)

Our framework, called Virtual Private Community (VPC), enables information
in peer-to-peer services to act as an agent. VPC provides a mechanism that
defines an agent behavior, authenticate users, and executes agents. Necessary
agents for a peer-to-peer service are defined in a policy package that consists of
a condition rule to decide active agents according to users, a set of agents(called
roles), and necessary information(contents) for the service. Agents communicate
with each other through communities that are created by agents who have ac-
cepted the policy packages. Services are offered by interaction among agents in
communities. For example, in a music retail service, a policy package contains
two agents, an authorized agent which can play the complete music file, and a
trial agent which can play only part of the music file. Users who have purchased
the music file can listen to the music through authorized agents.

4 Tadasl

Policy Package

Rule
Attr A ->rolel
Attr B ->role2
Role
rolel definition (°°
ole 2 definition

Instanti

Contents

Evaluate Create

. Refel | Gileresult .
Profile T« Policy [—+Community

Manager Evaluator Manager

VPC Platform

Fig. 1. Basic Model of VPC

Dependencies of information in VPC are separated into attributes of entities
such as users and location, and activation rules of information (agents). Entities
have their own attributes. Activation rules are described in each service (policy
package). The dependencies of information are deduced by a set of attributes of
entities and activation rules.

3.1 VPC Basic Model

Figure 1 shows a basic model of VPC. In the basic model, a policy package defines
the agents, condition of activation for each agent, and information that is treated
by the agents. Agents are activated by VPC platforms (VPC-Ps) that manage
user attributes, evaluate policy packages according to the user attributes, decide
appropriate roles; and create the community. The agents access contents in the
policy packages, in which the agents are defined.

Main parts of a VPC-P are a profile manager, a policy evaluator, and com-
munity manager. A profile manager manages the user profile in anti-tamper
devices such as Java Card [6]. A policy evaluator decides roles depending on the
user attributes. A community manager executes selected agents, and connects
with other community managers on other VPC-Ps that have the same policy
packages. VPC supports both phases of propagation and utilization, and also
supports both the stand-alone and interaction models in the utilization phase.
In the stand-alone mode, the community manager does not connect with the
others, even if others have the same community.

Figure 2 shows the overview of the communication process of VPC. VPC-Ps
are able to exchange policy packages among themselves, and to communicate
with each other using the policy packages. Communities are created by VPC-Ps
that accept the same policy packages. VPC-Ps provide services by collabora-
tion among themselves. VPC-Ps can join existing communities by accepting the
policy packages used by the VPC-Ps in the respective communities. VPC-Ps

P2P Execution Envrionment 5

Role D

VPC-P Role B

hange
T . ‘7
Policy Package :
Role Definition Part vPCP -
Contents Part

Fig. 2. VPC communication overview

analyze the policy packages, deduce their own roles according to the rules of
the policy packages, and user attributes. VPC allows any role such as database
access, calculation, and control of other existing systems.

A community consists of VPC-Ps that accept a particular policy package.
Thus, VPC-Ps form communities by connecting to each other. Communities
consist of sub-communities on each VPC-P. Entities of a community reside on
distributed VPC-Ps that connect the community.

3.2 Policy Package

Figure 3 depicts a structure of policy packages. A policy package consists of a set
of rules as a condition table, a set of roles as transitions, and a set of contents. A
rule consists of a condition and role names. A condition is described with logical
expressions using attributes. An attribute consists of a database name, a variable
name, and the value of the variable. A role consists of a role name, a program
name, and an initialization method. A content consists of a content name, and
content path that locates the real content data. Content includes program codes
that implements roles. A policy package is written in XML.

Policy packages are encoded by S/MIME [7]. S/MIME enables VPC to de-
tect falsification of policy packages by checking hash codes of policy packages.
When VPC detects falsification of policy packages, the VPC discards the policy
packages.

3.3 User Profiles

A profile manager has access interfaces for roles. User profiles are stored as a
variable and its value, or as digital certificates of PKI[8]. Roles and a policy
evaluator are able to access data through a profile manager by specifying the
variable name.

6 Tadashige Iwao et al.

<policy package> ::= <rules> <roles> <contents>

<rules> = <rule> | <rule> <rules>

<rule> ::= <condition> <role names>

<role names> ::= <role name>> | <role name> <role names>
<condition> == "TRUE”

| ”and” <condition> <condition>
| ”not” <condition>
7eq” <attribute> | 7<” <attribute>

<attribute> ::= <variable name> <value>

<roles> ::= <role> | <role> <roles>

<role> ::= <role name> <program name> <init description>
<contents> ::= <content> | <content> <contents>

<content> ::= <content name> <content path>

Fig. 3. Structure of Policy Packages

A profile manager evaluates expressions of variables and values. A profile
management part has corresponding evaluation modules for each database. It
evaluates given expressions using the evaluation modules. Therefore, the profile
management part allows evaluation of expressions that use types.

3.4 Evaluation of Rules in Policy Packages

A policy evaluator deduces roles by evaluating rules in policy packages according
to users’ attributes. A policy evaluator refers to conditions of rules in policy
packages, evaluates each term of each condition with a profile manager, and
decides appropriate roles for the user. Then, 1t compares a list of current active
roles and deduced roles, installs necessary roles that are not currently active into
sub-communities, and removes unnecessary roles from the sub-communities.

A policy evaluator requests evaluation of each term of conditions in a rule of
a policy package to a profile manager. The profile manager accesses the specified
variables in a term, and gets a value for specified variables. Then, it evaluates
the term with the value, and returns TRUE or FALSE as a result. The policy
evaluator combines the results, and decides the validity of the condition. The
policy evaluator deduces appropriate role names by evaluating all conditions in
the rule according to users’ profiles.

The policy evaluator gets role programs with deduced role names from the
policy package. Role programs are Java objects in VPC-Ps. The role assignment
part creates instances of role programs with initialization according to init de-
scription in the policy package, and adds them into corresponding communities.

A user has a set of attributes A = {ay,...,a, }. A rule part of a policy is a set
of activation rule W = {¢; — r1,...,¢; — r; }. A activation rule consists of a pair
of a condition, that is combination of attributes (¢ = ag, A...Aag,), and arole ry
to activate. A evaluator E(A, W) = {ri|ck = rr € W, ¢, - A} is a function that
determines a set of roles according to users’ attributes and activation rules. A
predicate ¢ F A means Yay, € elements(cg) Aa, € A. A function elements(cy)

P2P Execution Envrionment 7

returns a set of attributes used in ¢;. Roles that are assigned for users are given
by the evaluator I/ with activation rules.

3.5 Interaction among Roles in Communities

Collaboration among agents in communities is performed by message passing
and the messages have to be accepted by appropriate roles in order to enable
the collaboration. Our framework adopts the mechanism of collaboration among
roles developed by Field Reactor Model [9] that is a coordination model [10]
based on Dataflow Computing [11]. The Field Reactor Model (FRM) provides a
method of flexible collaboration among agents by employing pattern matching.

VPC-P provides pattern invocation that is based on FRM. The patterns
in VPC-P correspond to patterns in FRM and pattern invocation provides a
method of invoking functions of roles without signatures of functions and ad-
dresses of roles. When a message of a pattern is sent into a community, VPC-P
automatically invokes the appropriate functions. As well, values returned from
the functions are put into the community as messages. Collaboration among
roles 1s constructed as a chain of message passing and the roles do not require
the specification of addresses of roles to invoke. VPC-P allows the user to define
patterns and roles.

Role calculation is performed according to the following; a set of patterns
that are used in a community C'is P = {p1,...,pm}. There are roles Ry, ..., R,
in community C(C = {Ry,...,R,}) and a role Ry is expressed as Ry =<
I, fx, Ox >. fr is a function that has pattern I;(€ P) as an argument and
returns pattern Oy (€ P) . The pattern matcher M (m) checks whether a message
m matches the pattern of function fi, and if there is success, then it invokes
function fi. Then the function fi returns messages as its values with this process
being described by M (m) = {U_,; Ok |, = m} . Thus the computation between
roles in the community C proceeds as M (m),¥m,, € M(my,_1). The community
C repeats this process until complete collaboration among roles is created. This
method of collaboration is similar to the coordination model such as Linda [12].

Patterns of roles are object types. A VPC-P allows any Java objects as roles
and messages. VPC-Ps provide type match invocation that is a method, in which
methods of objects are invoked when the same type of messages as an argument
of the methods are put in the communities. Return values of the methods are
put back into the communities when the return values are not null. The methods
of roles are merely declared as normal methods.

3.6 Peer-to-peer services with VPC

VPC makes information agents act as roles in a policy package. Authorized users
that have certificates can see and use the information through assigned roles. In
addition, VPC supports location dependent services; Figure 4 shows overview
of location dependent services. In VPC, location dependent services are also
described as policy packages. The policy packages contain roles for browsing a
list of services that are provided at the location, and for download the policy

8 Tadashige Iwao et al.

Policy
L package Broadcast
Policy [(distributionl

packages

Receiver role
Policy package 1
distribution communit 1
1

(—— package

Policy |distribution2
packages 7

Receiver role
Policy package
distribution communit

Fig. 4. Location dependent services

packages. A policy package manages several policy packages through roles. Roles
to obtain policy packages act as gate keepers of each policy packages. Only users
who have certificates can reach the inner part of policy packages. This mechanism
allows adaptation of services not only depending on location, but also depending
on time, context in a service, and so on.

VPC-Ps that have policy packages depend on the corresponding location
broadcast a URL of a policy package that distributes location dependent policy
packages. When users come to certain location such as a hotspot, the VPC-Ps
of the users receive the URL, get the policy packages distribution package, and
evaluate it. Then, a receiver role is assigned to VPC-Ps of the users, and gets
corresponding policy packages to the location. By the receiver role evaluating
the received policy packages, the users may see information according to the
users’ attributes.

4 Experiment with Practical Application

We have performed large-scale experiment on VPC in an underground shopping
center in Nagoya city (Japan) for two weeks. This experiment aimed to make
sure of the effectiveness of a new peer-to-peer (p2p) service and a p2p medium
using VPC in a stand-alone mode.

In the experiment, each user has a PDA that is WindowsCE, and users get
information, such as special bargain price information of shops around the user,
depending on the user’s location, through a wireless LAN. The information of the
service 1s provided as a policy package with VPC. Users can see the information
that matches the user’s attributes. For example, the information in a drug store
has two contents, cosmetics for ladies and shaving lotion for gentlemen. When
the user is a woman, she can see the cosmetics information. We employed a
bingo game as a user interface in order to make the experiment more attractive

P2P Execution Envrionment 9

S—+=—N
300m

[T [T
@ Lady's Fashion ihiL'e _ D
B Food Drink N A S 5
O Fashion Item 1 N

5% 5| I P 1
| OMusic & Book &Art = @ le— v

B Drug Cosme)

® Access Point | Wireless Repeater
@ Men's Fashion

QO Cover Area [l Registration Center & Server

Fig. 5. Categories of shops Fig. 6. Overview of the shopping cen-

ter

Shop A Palicy Packagg

Shop Information Table || User Favorite Table|[User Location Table] female > viewer 1
Shop A - (point a, fashion) || User 1 {fashion,..}|| User 1 point a male > viewe 2
Shop B --- (point b, foods) ||User 2 {foods,...} || User 2--- point b

Viewer2|
get

User 1 PDA

Shop A Community’

J User 1PDA o :

[lommunity | content1 Bingo card
Policy Getter Role

; ttributes| VPC Platform

female |
‘ VPC Platform ‘

Fig. 8. Exchange information among

Fig. 7. System overview peers

for users. A bingo card for each user is given during registration. Each set of
information includes its own ID that is a bingo number. Users can exchange
given information(policy packages) among them. When users win the game, they
can get a coupon that is only able to be used in the shopping center.
Categories of shops in the shopping center are shown in figure 5. This exper-
iment had been broadcasted by some TV media, FM radio stations and newspa-
pers. About six hundred people participated in this event, thanks to the media.

4.1 System overview

Figure 6 shows an overview of the shopping center and location of wireless LAN
access points. The size of the shopping center is about 300m x 100m. There are
107 shops 1n it. We employed 802.11b for wireless LAN. Ten access points are
set in this area. Each access point is connected by wireless LAN repeaters. The
number of repeaters 1s twenty. Each access point covers an area in which about
ten shops reside, and manages MAC addresses of PDA terminals. Channels of
access points are different from neighborhood in order to avoid interference.
Users are registered at the registration center when they begin the game.

3 oo =

10 Tadashige Iwao et al.

A system overview is shown in figure 7. The system consists of a server, which
sends information to each user, and VPC that works on user’s PDA terminals. We
could not prepare PCs or PDAs for each access point because it 1s too expensive
and 1s against the fire prevention laws in Japan. Therefore, we decided to use a
server and to multiplex it. The server has policy packages of all the shops and
three tables; shop information table, user favorite table, and user location table.
A user location table maintains connections between PDAs and access points. A
user favorite table has a set of users’ favorite categories, and is created for each
user during registration. The shop information table has pairs of shops’ locations
and the categories for each shop. The main module is a matchmaker that decides
policy packages to send for each user according to matching user’s location and
favorite with shop information. The server has a postbox for each user inside
it, and dispatches corresponding information within the area, in which users
exist, to the users’ postboxes. Users” VPC-Ps get delivered policy packages and
evaluate them.

Figure 8 shows diagram of exchange of information among peers. A ”pol-
icy get” community that has a ”policy getter” role is to exchange information
among peers and to get information from the server, and is activated on the PDA
terminals. The role also inquires other peers by broadcasting messages periodi-
cally. When the user wants information and other peers indicate will giving the
information, the two ”policy getter” roles on both users’ VPC-Ps exchange the
information each other. The ”policy getter” role also checks the user’s postbox
periodically. The ”policy getter” role creates shop communities, when it gets new
policy packages from the postbox or other peers. A ”viewer” role that enables
a user to see its contents (HTML) is activated. The ”viewer” role is changed
according to user’s attributes.

4.2 Results and discussion

About six houndred users came to participate in the experiment. Figure 9(a)
shows the numbers of persons per generation. Figure 9(b) shows the change in
the numbers of players per a day. It also shows the total numbers of information
exchanges, and the numbers of repeat players of the game. The increase in the
number of repeat players was especially remarkable.

The followings are user comments:

— It is a lot of fun as a game.

— I am interested in the time services.

— I want to exchange information more.

— I need to exactly pinpoint information by location.

The followings are shop owners’ comments:

— P2P services may be new advertisement media.
— We want to use these services as new market tool to focus on specific cus-
tomers.

P2P Execution Envrionment 11

160 - 70 18
140 F o 136 60 [[mEE Exchange : 1
| |mm Total 114
120 | 50 Repeater _|_ 412
100 F 240 | I 5
3 5 108
E 8 &30 | : s §
z 60 I O female 20 | 6
40 - B male b _._ : g 7‘ 4
10
- 2
0 by, |2 B PTG I APN 00001011 L
22 I
0 —= RS 533 ZELESESB2ZERS
2 - 0 - N
0 10 20 30 40 5 60 70 sfZEZENg§sEcs%s¢s
Age Date
(a) Generation (b) Change in the numbers of players per a day

Fig. 9. Results

— PDAs are not popular for ordinary people. We require these services with
mobile phones.
— Please perform this event for a year.

We have got one answer for the question that ordinary people use or require
p2p services. The customers need media which they can discover goods or services
they require in order to get them with efficiency. On the other hand, shop owners
want to advertise goods or services to customers who are interested in. There
are sufficient possiblity that the p2p services become such media. Especially, the
p2p services in VPC enable users to access information according to location,
time, service context, and so on.

5 Conclusion

This paper proposed execution environmnet for peer-to-peer services in a mobile
environment with mobile devices such as PDAs and mobile telephones. Very re-
stricted mobile devices are not suitable for file sharing and the renting of CPU
power. In a mobile environment, information browsing is basic. Also, the informa-
tion may change according to the location and users. Moreover, as the copyright
of information needs to be protected, we provide a framework, called a Virtual
Private Community, to make information an agent that manages access rights,
and to interact with other agents autonomously. The peer-to-peer services are
defined as policy packages that consist of the rules to activate agents, agent(role)
definitions, and contents. VPC is carried out by VPC platforms(VPC-Ps) that
manage users’ attributes and decide the agents to activate according to rules in
the policy package and users’ attributes. We performed a large-scale experiment
with a practical application using VPC about six hundred people enjoying the
experiment. In the experiment, young ladies (teens-20s) came again and again,
and enjoyed this peer-to-peer service with their friends. The news of the experi-
ment spread through the grapevine for these ages. They also freuently exchanged

12 Tadashige Iwao et al.

information among themselves. The i-mode that is web browser for mobile tele-
phones of DoCoMo Ltd. in Japan increased explosively from people of these ages,
and has thirty million users now. There is possibility that peer-to-peer services
will become very popular due to the influence of people of these ages.

Acknowledgments

This work was done under a grant to the ”Research on Management of Se-
curity Policies in Mutual Connection” from Telecommunications Advancement
Organization (TAO) of Japan.

References

1. Fernando Bordignon and Gabriel Tolosa, Gnutella: Distributed Sys-
tem for Information Storage and Searching Model Description,
http://www.gnutella.co.uk/library /pdf/paper final_gnutella_english.pdf (2000)

2. Napster: http://www.napster.com. (1998)

3. By Eric Korpela, Dan Werthimer, David Anderson, Jeff Cobb, and Matt
Lebofsky:SETI@Home: Massively Distributed Computing for SETI. Computing
in science & engineering, January/February 2001 (Vol. 3, No. 1), pp. 78-83,
http://www.computer.org/cise/articles/seti.htm, IEEE (2001)

4. T. Iwao, Y. Wada, S. Yamasaki, M.shiouchi, M. Okada, and M. Amamiya, ”A
Framework for the Next Generation of E-Commerce by Peer-to-Peer Contact: Vir-
taul Private Community”, WETICE2001, pp.340-341, IEEE (2001)

5. T. Iwao, Y. Wada, S. Yamasaki, M. Shiouchi, M. Okada, and M. Amamiya, ”Col-
laboration among Agents in Logical Network of Peer-To-Peer Services, SAINT2002,
pp- 6-7, IEEE (2002)

6. Sun Microsystems, ” Java Card 2.1.1 Platform”,
http://www.java.sun.com /products/javacard/javacard21.html,

7. B. Ramsdell, Editor, 7”S/MIME Version 3 Message Specification”,
http://www.fags.org/rfcs/rfc2633.html, 1999

8. Stephen Kent, and Tim Polk, ”Public-Key Infrastructure”,
http://www.ietf.org/html.charters/pkix-charter.html, 2000

9. Tadashige Iwao, Makoto Okada, Yuji Takada and Makoto Amamiya, ”Flexible
Multi-Agent Collaboration using Pattern Directed Message Collaboration of Field
Reactor Model”, LNAI 1733 pp.1-16, PRIMA’99

10. G. A. Papadopoulos and F. Arbab, ”Coordination Models and Languages”, Ad-
vances in Computers Vol. 46, pp 329-400, 1998

11. Amamaiya, M., Hasegawa, R.: Dataflow Computing and Eager and Lazy Evalu-
ation, New Generation Computing, 2, pp.105-129, OHMSHA and Springer-Verlag
(1984).

12. Carriero, N. and Gelernter, D,” Linda in Context”, Communications of the ACM
Vol. 32-4, pp 444-458, 1989

