Communication
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Introduction

Interprocess communication is at the heart of all
distributed systems

Based on low-level message passing offered by the underlying
network

Protocols: rules for communicating processes
structured in layers

Four widely-used models:
Remote Procedure Call (RPC)
Remote Method Invocation (RMI)
Message-Oriented Middleware (MOM)
streams
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Topics to be covered

Layered Protocols

Remote Procedure Call (RPC)

Remote Method Invocation (RMI)
Message-Oriented Middleware (MOM)
Streams
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Layered Protocols

Low-Level
Transport
Application
Middleware
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Layered Protocols
A wants to communicate with 8
A builds a message in its own address space
A executes a call o the OS to send the message

Need to agree on the meaning of the bits being sent

The ISO OSI or the OSI model
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The OSI Model

Desighed to allow open systems to communicate
Two general type of protocols:

Connection-oriented: before exchanging data, the sender and the receiver
must establish a connection (e.g., telephone)

Connectionless: no setup in advance (e.g., sending an email)
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The OSI Model

— Data link layer header
Nebwork layer header
— Transport layer header
— Session layer header
— Presentation layer header

| | | I ication |
Y YYVYYY Application layer header

Message - Data link
layer trailer

Bits that actually appear on the network

+ The information in the layer n header is used for the layer n protocol
+ Independence among layers

+ Protocol suite or protocol stack: collection of protocols used in a particular
system

+ OSI protocols not so popular, instead Internet protocols (e.g., TCP and IP)

- reference model
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Low-level Layers

These layers implement the basic functions of a computer network
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Low-level Layers

Physical layer:

Concerns with transmitting O and 1s

Standardizing the electrical, mechanical and signaling interfaces so that
when A sends a O bit, it is receives as a 0

Example standard: RS-232-C for serial communication lines

the specification and implementation of bits, and their transmission between sender
and receiver

Data link layer:
Group bits into frames and sees that each frame is correctly received

Puts a special bit pattern at the start and end of each frame (to mark
them) as well as a checksum

Frames are assigned sequence numbers

prescribes the transmission of a series of bits into a frame to allow for error and
Flow control
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Low-level Layers: The Data Link Layer

Time A B Event
o [ Datat A sends data message 0
1 A pata0 E gets 0, sees bad checksum
f 1 I 1 Asends data message 1
2 Datat | | Coatrol 01 5 complains about the checksum

3 | Control 0 " A pata1 | Both messages arrive correctly

A retransmits data message 0

4 DataQ | { Contral 1 B says: "l want 0, not 1"

5 [ Contral 1 & A noa0 | Both messages arve correctly

8 [ Datan | A retransmits data message 0 again
A .

T Data 0 E finally gets message 0

Discussion between a receiver and a sender in the data link layer.
A tries to sends two messages, 0 and 1, Yo B
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Low-level Layers
Network layer:
Routing: choose the best (“delay-wise") path

Example protocol at this layer: connectionless IP (part of the Internet
protocol suite)

IP packets: each one is routed to its destination independent of all others.
No internal path is selected or remembered

describes how packets in a network of computers are to be routed.

NOTE
For many distributed systems, the-lowest level interface is that of
the network layer.

Distributed Systems, Fall 2003 1

Transport Protocols

Turns the underlying network into something that an application
developer can use

Application protocol

Application ol 15
Presentabon ! - Presentation protocol of L .
Sessaon [ - Session protocol of [ .
ITransport : - Transport pratocol o : - p l
Hgnwork, -« TIeTerars protoeel T
Diata link E -« Data link protocal ol 'l )2
Physical - Physical protocal ol \
l
Matwork
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Transport Layer

Reliable connection

= The transport layer provides the actual communication facilities for
most distributed systems.

= Breaks a message received by the application layer into packets and
assigns each one of them a sequence number and send them all

= Header: which packets have been sent, received, there is room for,
need to be retransmitted

= Reliable connection-oriented fransport connections built on top of

connection-oriented (all packets arrive in the correct sequence, if
they arrive at all) or connectionless network services
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Transport Layer

Standard (transport-layer) Internet protocols:

« Transmission Control Protocol (TCP): connection-oriented, reliable, stream-
oriented communication (TCP/IP)

+ Universal Datagram Protocol (UDP): connectionless, unreliable (best-effort)
datagram communication (just IP with minor additions)
TCP vs UDP

Works reliably over any network
Considerable overhead

use UDP + additional error and flow control for a specific application
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Transport Layer: Client-Server TCP
Clent Server Chert Secver

3-way handshake

To reach an
agreement on
sequence
numbering

SYH SYN.raguest FIN
-

SYNACKISTN) SYMACK(FIN) answes Fit

ACKIFIN)
L -
FiIn »
-
ACKireq+FIN)
M .
angwer s
- FiN
-
Time 9 Time
ACK[FIN)
CH[FIN -
¥ A\l

) [}

a)  Normal operation of TCP.
b)  Transactional TCP (T/TCP) enhancement
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Higher-level Layers

In practice, only the application layer is used

b s
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Physical M el 1
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Application Layer
Intended to contain a collection of standard network applications,
such as those for email, file transfer, etc

From the OSI reference model, all distributed systems just
applications

Many application protocols are directly implemented on top of
transport protocols, doing a lot of application-independent work.
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Middleware Layer

Middleware is invented tfo provide common services and
protocols that can be used by many rich set of communication
protocols, but which allow different applications to
communicate
* Marshaling and unmarshaling of data, necessary for
integrated systems
+ Naming protocols, so that different applications can
easily share resources
+ Security protocols, to allow different applications to
communicate in a secure way
+ Scaling mechanisms, such as support for replication and
caching
+ Authentication protocols
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Middleware Protocols

Application protocol

Application | I > — B
Middleware protocol [
Middleware I [« > — 5
Transport protocol I
Transport I - > - 4
- Metwork protocal » 1
Metwork - - 3
Data link protocol 1
Data link I [« > — 2
Physical protocol
Physical [ ¥ e > 1

Metwark

An adapted reference model for networked communication.
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RPC

Basic RPC Model
Parameter Passing
Variations
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Remote Procedure Call (RPC)

Basic idea:

Allow programs to call procedures located on other
machines

Some issues:

Calling and called procedures in different address
spaces

Parameter passing

Crash of each machine
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Conventional Procedure Call

Local procedure call: count = read(fd, buf, nbytes)
1: Caller: Push parameter values of the procedure on a stack + return address

2: Called procedure takes control

3: Called proc: Use stack for local variables, executes, pop local variables,save in
cache return result, use return address
4: Caller: Pop results (in parameters)

Principle:  “communication”
Stack pointer with local procedure is
handled g copying
Main program's Main program's data  to/from "‘the
local variables local vaniables stack (_W'H" afew
1 <F exceptions)
ytes
buf
fd | Example: incr(i, i), initially i = 0
return address )
read's local Call-by-Value,i=0
varishles - Call-by-Reference, (push the
address of the variable), i = 2
Call-by-Copy/Restore
(@) (]

The value is copied in the stack
as in call-by-value, and then
copied back by the called
procedure, i =1
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Client and Server Stubs
RPC supports location transparency (the calling procedure does not know that
the called procedure is remote)
Client stub:
= local version of the called procedure
= called using the “stack” procedure

= it packs the parameters into a message and requests this message to be
sent to the server (calls send)

= it calls receive and blocks till the reply comes back
When the message arrives, the server OS passes it to the server stub
Server Stub:
= typically waits on receive
= it tfransforms the request into a /oca/ procedure call
= after the call is completed, it packs the results, calls send
= it calls receive again and blocks
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Client and Server Stubs

Call to procedure x -> call client stub for x -> client stub calls send and blocks -> upon
receipt, the server stub gets control -> the server stub calls the local procedure x -> after
the procedure x ends, control returns to the server stub that calls send, and then receive
again and blocks -> the client OS, passes it to the client stub, copies it to the caller and
returns

‘Wiait for result

« Ay
Call remote
procedure

Client

Retun
from call

Request
¥

Call local procedure Time »
and return results
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Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local 0S
3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server
6.  Server does work, returns result to the stub
7.  Server stub packs it in message, calls local 0S
8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub

10.  Stub unpacks result, returns to client
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Parameter Passing

Remote procedure add(i, j)

Client machine Server machine

Chient process + Cienteallt Server process
P',;l;_jaw ° Implementation 6. Stub makes
of add local call to “add”
o wid] Server stub o add
1. ai ) | ‘ Cliant stub al [ 1= (¥}
proe: “add" proe: “add”
L nt vl | 2 Stub builds e valilh §. Stub unpacks
it valig) rmessage et vall) | message
i
' pros "add - t 4 Server 05
Client 05 [t | Server OS5 hands message
I ot veld) ) I to server stub
3, Message is sent
across the network
A server stub may handle more than one remote procedure
Two issues with parameter passing:
= Marshalling
= Reference Parameters
bistributed Systems, Fall 2003 2

Parameter Passing

Parameter marshaling: There's more than just wrapping parameters
into a message:

« Client and server machines may have different data
representations (think of byte ordering)

* Wrapping a parameter means transforming a value into a
sequence of bytes

« Client and server have to agree on the same encoding:
- How are basic data values represented (integers,
floats, characters)
- How are complex data values represented (arrays,
unions)

« Client and server need to properly interpret messages,
transforming them into machine-dependent representations.
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Passing Value Parameters

An integer (one 32-bit word), and a four-character string (one 32-bit word)
Example, integer 5 and string JILL

1a) (b} ]

a) Original message on the Pentium (right-to-left)

b)  The message after receipt on the SPARC (left-to-right)

c) The message after being inverted. The little numbers in boxes
indicate the address of each byte
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Passing Reference Parameters
Pointer refers to the address space of the process it is being used
Solutions:
= Forbid pointers and reference parameters in general
= Use copy in/copy out semantics: while procedure is executed,
nothing can be assumed about parameter values (only Ada supports

this model).

RPC assumes a// data that is to be operated on is passed by
parameters. Excludes passing references to (global) data.

One optimization, if the stubs know which are parameters are input
and output parameters -> eliminate copying

What about pointers to complex (arbitrary) data structures?
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Parameter Specification and Stub Generation

Need to agree on:
foabar's focal Encoding rules
variabies
* Actudl exchange of

; messages (e.g., TCP/IP)

[0}
20l
foobar char x it . ink 25]) 2:15 Implement the stubs!
i 20 Stubs for the same
} 2[4 protocol and different
procedures differ only in
fa) ] their interfaces to the
applications
Interface Definition
Language (IDL)
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Extensions

= Calls to local procedures

= Asynchronous RPC
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Doors
Try to use the RPC mechanism as the only mechanism for interprocess
communication (IPC).

Doors are RPCs implemented for processes on the same machine

A single mechanism for communication: procedure calls (but with doors, it is
not transparent)

Server calls door_create:
registers a door, an id is
returned Sompts

fattach: associates a symbolic .
name with the id

Client invokes a door using ™~ .
door_call, the id and any — '

S——
parameters
The OS does an upcall to the
server I
To refurn the result S x "
door_return b regatered

at e e Hptuon caling procews
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Asynchronous RPC

Try to get rid of the strict request-reply behavior, and let the client
continue without waiting for ananswer from the server.

Chent Wait for result Client ‘Wait for acceptance
« Ay « Ay
Call remote Return Call remote Return
procedure fram call procedure from call
Request ¥ Regly Request ¥ Accept request
Server  Call local procedure  11me B Server Call local procedure  Time —
and return results
(ah (&)

Traditional RPC Asynchronous RPC

Asynchronous RPC: the server immediately sends a reply back to the client the
moment the RPC request is received, after which it calls the requested
procedure
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Differed Synchronous RPC

Wait for Interrupt client
acceptance
Client L hJ
« Ay rl
Call remate Return "
o from call eturn
prosedure results Acknowledge
Accept
Request i request
Server Y
Call local procedure Time >
Call client with
one-way RPC

Deferred Synchronous RPC: two asynchronous RPCs combined
The client uses asynchronous RPC to call the server
The server uses asynchronous RPC to send the reply

One way RPC: the client does not wait at all (reliability?)

Distributed Systems, Fall 2003

Performing an RPC

At-most-one semantics: no call is ever carried out more
than once, even in the case of system crashes

Idempofent remote procedure: a call may be repeated
multiple times
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DCE RPC

Let the developer concentrate on only the client- and server-specific
code; let the RPC system (generators and libraries) do the rest.

Distributed Systems, Fall 2003




Writing a Client and a Server

IDL permits procedure declarations (similar to function prototypes in C).Type definitions, constant
declarations, etc to provide information fo correctly marshal/unmarshal paramters/results. Just the
syntax (no semantics)

A globally unique identifier

Generate a
Uuigen, prototype IDL with
v
Imertace
doteton tin Edif the TDL, fill in the
names of the remote
¥ procedures and their
1DL comper parameters
v =
Ciant eode Heaser Server st Sorer cote
- v v -
snchuise
v v v
© comgier © compier © compier
v v
art Sereot spts S
otgect tis ot fie otgect fhe
v A T
< Funtes Rurkme
Lnkee o [ Sbracy > Likar
v
Clent Socvar
baary bnary

The steps in writing a client and a server in DCE RPC.
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Binding a Client o a Server

1. Locate the server machine

2. Locate the server on the machine: need to know an endpoint (port) on the server
machine to which it can send messages

A tfable of (server, endpoints) is maintained on each server machine by a process
called the DCE daemon

The server asks the OS for an endpoint and registers this endpoint with the DCE
The client asks the DCE daemon at the server's machine to lookup the endpoint

Directory maching

Directory
Sarver
3 Look up server |7 [¥]._ 2 Register service
Client machine Server machine
5 Do RPC 1. Register endpoint

Client

4. Ask for endpoint

Endpaint
table
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Remote Object Invocation

Distributed Objects
Remote Object Invocation
Parameter Passing
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Distributed Objects

Expand the idea of RPCs to invocations on
remote objects

= Data and operation encapsulated into an object

= Operations are implemented as methods, and are accessible
through interfaces

= An object offers only its interface to clients

= Object server is responsible for a collection of objects

= Client stub (proxy) implements interface

= Server skeleton handles (un)marshaling and object invocation
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Distributed Objects

A client binds to a distributed object: an implementation of the object's interface,
called a proxy, is loaded into the client's address space

Proxy (analog to a client stub)
Marshals method invocations into messages
Un-marshals reply messages

Actual object at a server machine: offers the same interface

Skeleton  (analog
to server stub)

Cheet machea Sarver machng

Chpect
Cert Sarver » Un-marshals
— - Sune requests to
Chant wtortuce - Mathos proper method
ok — - | wvonmet < invocations at the
rethed Y oa S | w metace  ODject’s interface
Prey. same eoathod Shalercn at the server
| I at it A |
Chent 05 Server OS5
[ Note: the object itself is
Masshated imvocation et
& paveed acriws namrk not  distributed,  aka

remote object
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Distributed Objects

Compile-time objects:

Objects defined as instances of a class

Compiling the class definition results in code that allows to
instantiate Java objects

Language-level objects, from which proxy and skeletons are
automatically generated.

Depends on the particular language

Runtime objects: Can be implemented in any language, but
require use of an object adapter that makes the
implementation appear as an object.

Adapter: objects defined based on their interfaces

Register an implementation at the adapter
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Distributed Objects

Transient objects: live only by virtue of a server: if the server
exits, so will the object.

Persistent objects: live independently from a server: if a server
exits, the object's state and code remain (passively) on disk.
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Binding a Client to an Object

Provide system-wide object references, freely passed between
processes on different machines

Reference denotes the server machine plus an endpoint for the object
server, an id of which object

When a process holds an object reference, it must first bind to the
object

Bind: the local proxy (stub) is instantiated and initialized for specific
object - implementing an interface for the object methods

Two ways of binding:
Implicit binding: Invoke methods directly on the referenced object

Explicit binding: Client must first explicitly bind to object before
invoking it (generally returns a pointer to a proxy that then becomes
locally available
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Binding a Client to an Object

Distr_object* obj_ref;
obj_ref = ...;
obj_ref-> do_something();

//Declare a systemwide object reference
// Initialize the reference to a distributed object
// Implicitly bind and invoke a method

(@)

//Declare a systemwide object reference

//Declare a pointer to local objects
//Initialize the reference to a distributed object
//Explicitly bind and obtain a pointer to the local proxy
//Invoke a method on the local proxy

Distr_object objPref;
Local_object* obj_ptr;

obj .

obj_pt bind(obj_ref);
obj_ptr -> do_something();

(b)

(a) Example with implicit binding using only global references
(b)  Example with explicit binding using global and local references
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Static vs Dynamic RMI
Remote Method Invocation (RMI)

Static invocation: the interfaces of an object are known when the client
application is being developed

If interfaces change, the client application must be recompiled

Dynamic invocation: the application selects at runtime which method it will
invoke at a remote object

invoke(object, method, input_p s, output_p s)

data structures

method is a parameter, input_par , output_par

Static: fobject.append(int)
Dynamic: invoke(fobject, id(append), int)
id(append) returns an id for the method append
Example uses: browsers, batch processing service to handle invocation

requests
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Object References as Parameters

When invoking a method with an object reference as a parameter, when it
refers to a remote object, the reference is copied and passed as a value
parameter (pass-by-reference)

When the reference refers to a /ocal object (i.e., an object in the same
address space as the client) the referred object is copied as a whole and
passed along with the invocation (pass-by-value)

Machine A Machine B
Local object
ocal o femete R"“g‘"nn'm
rederence L1 reference R1 ¥ -
- -
e v
Client code with
RMI to sérver at C
[proy) New loca
reference Copy of 01
v
Remate ad
rcation with -
i I WA

Server code

Machine C {method imglementation)
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Message-Oriented Communication

Persistence and Synchronicity
Message-Oriented Transient (sockets, RMI)
Message-Oriented Persistent/Message Queuing
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Communication Alternatives

RPC and RMI hide communication and thus achieve access transparency

Client/Server computing is generally based on a model of synchronous
communication:

« Client and server have to be active at the time of communication
« Client issues request and blocks until it receives reply

« Server essentially waits only for incoming requests, and subsequently processes them

Drawbacks synchronous communication:
+ Client cannot do any other work while waiting for reply
+ Failures have to be dealt with immediately (the client is waiting)

+ In many cases the model is simply not appropriate (mail, news)
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Asynchronous Communication Middleware

ge-oriented iddleware:  Aims at high-level

asynchronous
communication:

Processes send each other messages, which are queued

Asynchronous communication: Sender need not wait for immediate reply,
but can do other things

Synchronous communication: Sender blocks until the message arrives at
the receiving host or is actually delivered and processed by the receiver

Middleware often ensures fault tolerance
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Example Communication System
« Applications execute on hosts

« Communication servers are responsible for passing (and routing)
messages between hosts

« Each host offers an interface to the communication system through
which messages can be submitted for transmission

* Buffers at the hosts and at the communication servers
Local

mail An electronic mailing system

Messagirg lerlace L server

Persistent vs Transient Communication

Persistent communication: A message is stored at a communication
server as long as it takes to deliver it at the receiver.

Transient communication: A message is discarded by a
communication server as sooh as it cannot be delivered at the next
server, or at the receiver.

v

Pony and rider E:::le o
4 v -

Serding host | Communicaten server Communication server  Recewing host ﬁ’ . .
Post Past
Buffes indeperdent office » | office
Applicat Routing of communicating Fouting o
plication prograrn || [hosts peograen ppbtaton Pl . ) . ¥
o A | [a m M| Post »
¥ yp | Toother remote) ¥ ¥ Mail stored and sorted, to office
communicaticn - be sent cut depending on destination h £
Al sereer i L . A and when pony and rider avaiable
os os| - = 05
T T ] [ . o . .
Typically, all transport-level communication services offer only transient, a
Local buftey  LOC9! netwark Intarnatace ocal buster 4 .
NCOAING MESSIOE communication server corresponds to a store-and-forward router
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Messaging Combinations Messaging Combinations
A sends message A sends message A A sends message Send request and wait
and continues A stopped and waits until accepted mmm and continues unti received
\ running
4 — A - - — . —
A v A A Message can be A 4
Message is siored e ?::,liggv iBis
__ at B's location for Accepted Eerqecu::ed Ak
Time later delivery Time Tlrneb ¥ Time
A\ B [P, S — —
B - '_—" B oo ——
ME— . . B receives Running, but deang Process.
B starts and Bs not B starts and message something else request
Bisnot receives running receives
nunning message message ] {d
fa)

]

Persistent asynchronous Persistent synchronous

Message stored persistently at the
sending host or at the first
communication server

Message stored persistently at the
receiving host or the connected
communication server (weaker)
e.g., electronic mail systems
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Transient asynchronous
Receipt-based transient synchronous

Transport-level datagram

services (such as UDP)

One-way RPC

Sender blocks until the message is stored
in a local buffer at the receiving host
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Messaging Combinations

Send request and wait until Send request
accepted and wait for reply
Y
A — ¥
4 A . A
Request Request Accepted
is recaived Accepted is received
¥ Time v Tirne:
P ——] » B — >
Running, but doing Process Running, but daing Process
something else request something else request
le) "
Deli based . Response-based transient
elivery-based transient synchronous
synchronous

Sender blocks until the message is Strongest form

delivered to the receiver for further

processing Sender blocks until it receives a reply

Communication Alternatives

Need for persistent communication services in particular when
there is large geographical distribution

(cannot assume that all processes are simultaneously executing)

message
Asynchronous RPC
RPC and RMT
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) Berkeley Sockets
Outline

Message-Oriented Transient Communication
Transport-level sockets
Message-Passing Interface (MPT)

Message-Oriented Persistent Communication
Message Queuing Model
General Architecture

Example (IBM MQSeries: check the textbook)
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Socket: a communication endpoint to which an application can write data to
be sent out over the network and from which incoming data may be read

Primitive Meaning

server Socket Create a new communication endpoint
Bind Attach a local address to a socket
Listen Announce willingness to accept connections
Accept Block caller until a connection request arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection
Receive Receive some data over the connection
Close Release the connection

Socket primitives for TCP/IP.
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Berkeley Sockets

Server - -
['socket - bind |- listen —® accept! ( t read W write ] close

Synchronization point —

Y Al
socket =wuu=u—= wiite ——® read | close

Communication

Client —
socket: creates a new communication endpoint for a specific transport protocol (the
local OS reserves resources to accommodate sending and receiving messages for the
specified protocol)

bind: associates a local address with the newly created socket (e.g., the IP address of
the machine + a port number)

listen: (only in the case of connection-oriented communication) non-blocking call; allows
the OS to reserve enough buffers for a specified max number of connections

accept: blocks the server until a connection request arrives. When a request arrives,
the OS creates a new socket and returns it to the caller. Then , the server can fork of f
a process that will subsequently handle the actual communication through the new
connection.
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Berkeley Sockets

Server
['socket - bind |- listen —® accept! t read W write " close

Synchronization point —

» ¥
#connect

Client S —

Communication

h |
wiite ——®» read ™ close

socket: (client)

connect: attempt to establish a connection; specifies the transport-
level address to which a connection request is fo be sent

write/read: send/receive data

close: called by both the client and the server
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The Message-Passing Interface (MPT)

= Suitable for COWs and MPPs

= MPI designed for parallel applications and thus
tailored to fransient communication

= Assumes communication within a known group of
processes, a (group_ID, process_ID) uniquely
identifies a source or destination of a message
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The Message-Passing Interface (MPT)

Some of the message-passing primitives of MPT

Primitive Meaning

(transient-asynchronous) Append outgoing message to a local send

MPI_bsend buffer

(blocking send) Send a message and wait until copied to local or

MPL_send remote buffer

(delivery-based transient synchronous) Send a message and wait until

MP1_ssend receipt starts

(response-based transient synchronous, RPC) Send a message and

MPI_sendrecv "
wait for reply

MPI_isend Pass reference to outgoing message, and continue (for local MPI)
MPI_issend Pass reference to outgoing message, and wait until receipt starts
MPI_recv Receive a message; block if there are none

MPI_irecv Check if there is an incoming message, but do not block
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Outline

Message-Oriented Transient Communication
Transport-level sockets
Message-Passing Interface (MPT)

— Message-Oriented Persistent Communication
Message Queuing Model
General Architecture

Example (IBM MQSeries: check the textbook)
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Message-Oriented Middleware

= Message-queuing
Middleware (MOM)

systems or Message-Oriented

= Targeted to message transfers that take minutes instead
of seconds or milliseconds

= In short: asynchronous persistent communication through
support of middleware-level queues
Queues correspond to buffers at communication servers.

= Not aimed at supporting only end-users (as e.g., e-mail

does). Enable persistent communication between any
processes
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Message-Queuing Model

Four combinations for loosely-coupled communications using queues.

Sender Sender Sender Sender
running running passve passe
\J A\l
v v
Recener Recener Recarves Recenves
running passive Funaing passve
(@) ] ] i)

= Message can contain any data
= Addressing by providing a system-wide unique name of the destination queue
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Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Primitive Meaning
Call by the sender

Put Append a message to a specified queue
Non-blocking

Get Block until the specified queue is nonempty, and remove the first message
Variations allow searching for a specific message in the queue

Poll Check a specified queue for messages, and remove the first. Never block.

Install a handler (as a callback function) to be automatically invoked when
Notify a message is put into the specified queue.
Often implemented as a daemon on the receiver’s side
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General Architecture of a Message-Queuing System

= Messages are put only into local to the sender queues, source queues
* Messages can be read only from local queues

= A message put into a queue contains the specification o a destination
queue

= Message-queuing system: provides queues fo senders and receivers;
transfers messages from their source to their destination queues.

= Queues are distributed across the network = need to map queues to
network address

= A (possibly distributed) database of queue names to network locations
= Queues are managed by queue managers

= Relays: special queue managers that operate as routers and forward
incoming messsges to other queue managers = overlay network
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General Architecture of a Message-Queuing System

Why routers?

Sendes A

=Only the routers

Applicaton - need to be updated
« Arisien when  queues are
e x added or removes
- R2
> o - L} = Allow for secondary

Sendqueve | 4 v i processing of
messages (e.g., logging
for fault tolerance)

"1 o “«om = Used for
" H multicasting purposes
¥ - - Recewer 8
Apgication =Act as message
Renner

brokers
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Message Brokers

Message broker: acts as an application-level gateway, coverts incoming
messages to a format that can be understood by the destination application

Contains a database of conversion rules

Database with
Source client Message broker conversion rules  Destination chent
I . L] I ¥
Broker
program
4 A
AL QJEumg.
s : layer
o5 * OS5 * o5
Metwork
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Stream-Oriented
Communication

Streams
Quality of Service
Synchronization
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Support for Continuous Media

So far focus on transmitting discrete, that is time independent data

Discrete (representation media): the temporal relationships between
data items not fundamental to correctly interpreting what the data
means

Example: text, still images, executable files

Continuous (representation media): the temporal relationships between
data items fundamental to correctly interpreting what the data means

Examples: audio, video, animation, sensor data

Example: motion represented by a series of images, in which successive images
must be displayed at a uniform spacing T in time (30-40 msec per image)

Correct reproduction = showing the stills in the correct order and at a
constant frequency pf 1/T images per sec
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Transmission Modes
Different timing guarantees with respect to data transfer:

= Asynchronous transmission mode: data items are transmitted one after
the other but no further timing constraints

Discrete data streams, e.g., a file

= Synchronous transmission mode: there is a maximum end-to-end delay
for each unit in a data stream

E.g., sensor data

= Isochronous fransmission mode: there is both a maximum and minimum
end-to-end delay for each unit in a data stream (called bounded (delay)
jitter)

E.g., multimedia systems (audio, video)

(Continuous) Data Stream: a connection oriented communication facility
that supports isochronous data transmission
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Stream Types

= Simple stream: only a single sequence of data

= Complex stream: several related simple streams (substreams)
= Relation between the substreams is often also time dependent
= Example: stereo video transmitted using two substreams each for a single
audio channel
Data units from each substream to be communicated pairwise for the

effect of stereo

= Example: transmitting a movie: one stream for the video, two streams for
the sound in stereo, one stream for subtitles
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Data Streams

= Streams are unidirectional

= Considered as a virtual connection between a source and a sink

= Between (a) two process or (b) between two devices
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Data Streams

Multiparty communication: more than one source or sinks
Multiple sinks: the data streams is multicasted to several receivers
Problem when the receivers have different requirements with respect to

the quality of the stream

Filters to adjust the quality of the incoming stream differently fo
outgoing streams

—_— Sink

Stream
 — Intermediate
node, pessibly
Source A vith filters
—
L

Leower bandwidth *
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Quality of Service

Quality of Service (Qos) for continuous data streams:
timeliness, volume and reliability

Difference between specification and implementation

of QoS
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Flow Specification of QoS

token-bucket model to express QoS

Token: fixed number of bytes (say k) that an application is allowed to pass
to the network

Basic idea: tokens are generated at a fixed rate
= Tokens are buffered in a bucket of limited capacity
= When the bucket is full, fokens are dropped
= To pass N bytes, drop N/k tokens
Application
pplicatio b T q_

| One token is added

Iregular stream
of data units to the bucket every AT
- e cee

Regutar strearn

-« -0
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Flow Specification of QoS

Characteristics of the Input

Service Required

emaximum data unit size (bytes)
sToken bucket rate (bytes/sec)

«Token bucket size (bytes)

*Maximum transmission rate
(bytes/sec)

sLoss sensitivity (bytes)

sLoss interval (usec)

maximum acceptable loss rate

*Burst loss sensitivity (data units)

How many consecutive data units may be lost
eMinimum delay noticed (usec)

How long can the network delay delivery of a
data unit before the receiver notices the delay

eMaximum delay variation (usec)
Maximum tolerated jitter
«Quality of guarantee
Indicates how firm are the guarentess
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Implementing QoS

QoS specifications translate to resource reservations in the
underlying communication system

Resources: bandwidth, buffers, processing capacity

There is no standard way of (1) QoS specs, (2) describing
resources, (3) mapping specs to reservations.
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Stream Synchronization

Given a complex stream, how do you keep the different substreams in synch?
Two forms: (a) synchronization between a discrete and a continuous data
stream and (b) synchronization between two continuous data streams

The principle of explicit synchronization on the level of data units.

Recevers machne
Application
Procedure that reads.
two audio data units for
each video data unit »
e ;
e
Inceming stream A A !
o8

\ [

Network
A process that simply executes read and write operations on several simple
streams ensuring that those operations adhere to specific timing and
synchronization constraints
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Stream Synchronization

The principle of synchronization as supported by high-level interfaces.

Application tells
middleware what
to do with incoming

Receiver's machine

Multimedia control

[ | streams
is part of middleware Application
Ay »
) Al oy ¥ )
Middleware layer —m | & 1
F >
A/ I — =l
Incoming stream os
A |

Metwork
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Extra Slides
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Example: IBM MQSeries
= All queues are managed by queue managers
= Queue managers are pair-wise connected through message channels

= Each of the two ends of a message channel is managed by a message
channel agent (MCA)

Client's recetve
Recewing client

Sending client Routing table  Send queus queue
¥ Y 12
Queue == Cueve [==]|
Pragram manager = manager == Program
M Interface 4 o e} " A 1
b - - =
Stub Samer | IMcalpaca MCA ca| | Server b
: - | o b ‘
4 »
RPC Local network ) ;L
{synchrenous) Intemetwork

To other remate
Message passing queLe managers

(asynchroncus)
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Example: IBM MQSeries

Attribute Description
Transport type | Determines the transport protocol to be used
FIFO delivery Indicates that messages are to be delivered in the order they are sent

Message length | Maximum length of a single message

Setup retry

count Specifies maximum number of retries to start up the remote MCA

Delivery retries | Maximum times MCA will try to put received message into queue

Some attributes associated with message channel agents.
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Example: IBM MQSeries

Alias tabde  Routing table |
o] Alias table  Routing table

La1_[GME [ame] sar | g
Laz [omp]  [omc|sor | [[Lat [ama| (OMA [ 501
oMp| 567 LAZ [OMD| OMC|S01
C e
so2 sa1
QAMA N T Eel
TR QMB
4
-

Routing table  goq 1 aMmc Reuting table
aMA_ 501 - T
(ama, 501 | 1 [oma | 50
%gi‘ soz | 4 oMB | 521

1 oD | 501
Alias table % .
[t [ oma sa1
LAz [ aME| g

The general organization of an MQSeries queuing network using routing
tables and aliases.
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Example: IBM MQSeries

Primitive Description
MQopen Open a (possibly remote) queue
MQclose Close a queue
MQput Put a message into an opened queue
MQget Get a message from a (local) queue

Primitives available in an IBM MQSeries MQT

Distributed Systems, Fall 2003

The DCE Distributed-Object Model

Server machine Server maching
namic
(private) abject
2-19 Named (shared)
onject
Dymarnic Dynarnic 4 4 *
(private) object (private) object
4 |3
Remate
A" relerence
. . . . . .
Client #1 Client #2 Chent #3 Chent #1 Client#2 Client #3
]

@)

a)  Distributed dynamic objects in DCE.
b)  Distributed named objects
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Implementing QoS

Resource reSerVation Protocol (RSVP) a transport-level control
protocol for resource reservation in network routers

Sl sissasd REVP.gnatsie moat

RSVP process
psicatnn Doy
Jrere— -
dite wroun
[
pragiam
T
Lol 05 v Fpnarsston msussts
rom e RV hoats

Dt bk e b

Dot b e
ot wrmam s
- Irtemstass

Liew netmorh.
St rormaten
ot YD bty
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