
1

Distributed Systems, Fall 2003 1

Communication

Distributed Systems, Fall 2003 2

Interprocess communication is at the heart of all
distributed systems

Based on low-level message passing offered by the underlying
network

Protocols: rules for communicating processes
structured in layers

Four widely-used models:
Remote Procedure Call (RPC)
Remote Method Invocation (RMI)
Message-Oriented Middleware (MOM)
streams

Introduction

Distributed Systems, Fall 2003 3

Topics to be covered

Layered Protocols
Remote Procedure Call (RPC)
Remote Method Invocation (RMI)
Message-Oriented Middleware (MOM)
Streams

Distributed Systems, Fall 2003 4

Layered Protocols

Low-Level
Transport

Application
Middleware

Distributed Systems, Fall 2003 5

Layered Protocols

A wants to communicate with B
A builds a message in its own address space

A executes a call to the OS to send the message

Need to agree on the meaning of the bits being sent

The ISO OSI or the OSI model

Distributed Systems, Fall 2003 6

The OSI Model

Designed to allow open systems to communicate

Two general type of protocols:

Connection-oriented: before exchanging data, the sender and the receiver
must establish a connection (e.g., telephone)

Connectionless: no setup in advance (e.g., sending an email)

Each layer
provides an
interface to the
one above

Message send
(downwards)
Message received
(upwards)

Each layer adds
a header

2

Distributed Systems, Fall 2003 7

The OSI Model

• The information in the layer n header is used for the layer n protocol

• Independence among layers

• Protocol suite or protocol stack: collection of protocols used in a particular
system

• OSI protocols not so popular, instead Internet protocols (e.g., TCP and IP)

• reference model
Distributed Systems, Fall 2003 8

Lower-level

Low-level Layers

These layers implement the basic functions of a computer network

Distributed Systems, Fall 2003 9

Low-level Layers
Physical layer:
Concerns with transmitting 0 and 1s
Standardizing the electrical, mechanical and signaling interfaces so that
when A sends a 0 bit, it is receives as a 0
Example standard: RS-232-C for serial communication lines

the specification and implementation of bits, and their transmission between sender
and receiver

Data link layer:
Group bits into frames and sees that each frame is correctly received

Puts a special bit pattern at the start and end of each frame (to mark
them) as well as a checksum

Frames are assigned sequence numbers

prescribes the transmission of a series of bits into a frame to allow for error and
flow control

Distributed Systems, Fall 2003 10

Low-level Layers: The Data Link Layer

Discussion between a receiver and a sender in the data link layer.
A tries to sends two messages, 0 and 1, to B

Distributed Systems, Fall 2003 11

Low-level Layers
Network layer:

Routing: choose the best (“delay-wise”) path

Example protocol at this layer: connectionless IP (part of the Internet
protocol suite)

IP packets: each one is routed to its destination independent of all others.
No internal path is selected or remembered

describes how packets in a network of computers are to be routed.

NOTE
For many distributed systems, the lowest level interface is that of
the network layer.

Distributed Systems, Fall 2003 12

Transport Protocols

Turns the underlying network into something that an application
developer can use

3

Distributed Systems, Fall 2003 13

Transport Layer

Reliable connection

The transport layer provides the actual communication facilities for
most distributed systems.

Breaks a message received by the application layer into packets and
assigns each one of them a sequence number and send them all

Header: which packets have been sent, received, there is room for,
need to be retransmitted

Reliable connection-oriented transport connections built on top of
connection-oriented (all packets arrive in the correct sequence, if
they arrive at all) or connectionless network services

Distributed Systems, Fall 2003 14

Transport Layer

Standard (transport-layer) Internet protocols:

• Transmission Control Protocol (TCP): connection-oriented, reliable, stream-
oriented communication (TCP/IP)

• Universal Datagram Protocol (UDP): connectionless, unreliable (best-effort)
datagram communication (just IP with minor additions)

TCP vs UDP

Works reliably over any network
Considerable overhead

use UDP + additional error and flow control for a specific application

Distributed Systems, Fall 2003 15

Transport Layer: Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP (T/TCP) enhancement

3-way handshake:

To reach an
agreement on

sequence
numbering

Distributed Systems, Fall 2003 16

Higher-level

Higher-level Layers

In practice, only the application layer is used

Distributed Systems, Fall 2003 17

Application Layer

Intended to contain a collection of standard network applications,
such as those for email, file transfer, etc

From the OSI reference model, all distributed systems just
applications

Many application protocols are directly implemented on top of
transport protocols, doing a lot of application-independent work.

Distributed Systems, Fall 2003 18

Middleware Layer

Middleware is invented to provide common services and
protocols that can be used by many rich set of communication
protocols, but which allow different applications to
communicate

• Marshaling and unmarshaling of data, necessary for
integrated systems
• Naming protocols, so that different applications can
easily share resources
• Security protocols, to allow different applications to
communicate in a secure way
• Scaling mechanisms, such as support for replication and
caching
• Authentication protocols

4

Distributed Systems, Fall 2003 19

Middleware Protocols

An adapted reference model for networked communication.

Distributed Systems, Fall 2003 20

RPC

Basic RPC Model
Parameter Passing

Variations

Distributed Systems, Fall 2003 21

Remote Procedure Call (RPC)

Some issues:

Calling and called procedures in different address
spaces
Parameter passing
Crash of each machine

Basic idea:

Allow programs to call procedures located on other
machines

Distributed Systems, Fall 2003 22

Conventional Procedure Call

Principle: “communication”
with local procedure is
handled by copying
data to/from the
stack (with a few
exceptions)

Local procedure call: count = read(fd, buf, nbytes)
1: Caller: Push parameter values of the procedure on a stack + return address
2: Called procedure takes control
3: Called proc: Use stack for local variables, executes, pop local variables,save in
cache return result, use return address
4: Caller: Pop results (in parameters)

Example: incr(i, i), initially i = 0

Call-by-Value, i = 0

Call-by-Reference, (push the
address of the variable), i = 2

Call-by-Copy/Restore

The value is copied in the stack
as in call-by-value, and then
copied back by the called
procedure, i = 1

Distributed Systems, Fall 2003 23

Client and Server Stubs
RPC supports location transparency (the calling procedure does not know that
the called procedure is remote)

Client stub:

local version of the called procedure

called using the “stack” procedure

it packs the parameters into a message and requests this message to be
sent to the server (calls send)

it calls receive and blocks till the reply comes back

When the message arrives, the server OS passes it to the server stub

Server Stub:

typically waits on receive

it transforms the request into a local procedure call

after the call is completed, it packs the results, calls send

it calls receive again and blocks

Distributed Systems, Fall 2003 24

Client and Server Stubs

Call to procedure x -> call client stub for x -> client stub calls send and blocks -> upon
receipt, the server stub gets control -> the server stub calls the local procedure x -> after
the procedure x ends, control returns to the server stub that calls send, and then receive
again and blocks -> the client OS, passes it to the client stub, copies it to the caller and
returns

5

Distributed Systems, Fall 2003 25

Steps of a Remote Procedure Call

1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS

4. Remote OS gives message to server stub

5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS

9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Distributed Systems, Fall 2003 26

Parameter Passing
Remote procedure add(i, j)

A server stub may handle more than one remote procedure

Two issues with parameter passing:
Marshalling

Reference Parameters

Distributed Systems, Fall 2003 27

Parameter Passing
Parameter marshaling: There’s more than just wrapping parameters
into a message:

• Client and server machines may have different data
representations (think of byte ordering)

• Wrapping a parameter means transforming a value into a
sequence of bytes

• Client and server have to agree on the same encoding:
- How are basic data values represented (integers,
floats, characters)
- How are complex data values represented (arrays,
unions)

• Client and server need to properly interpret messages,
transforming them into machine-dependent representations.

Distributed Systems, Fall 2003 28

Passing Value Parameters

a) Original message on the Pentium (right-to-left)
b) The message after receipt on the SPARC (left-to-right)
c) The message after being inverted. The little numbers in boxes

indicate the address of each byte

An integer (one 32-bit word), and a four-character string (one 32-bit word)

Example, integer 5 and string JILL

Distributed Systems, Fall 2003 29

Passing Reference Parameters
Pointer refers to the address space of the process it is being used

Solutions:

Forbid pointers and reference parameters in general

Use copy in/copy out semantics: while procedure is executed,
nothing can be assumed about parameter values (only Ada supports
this model).

RPC assumes all data that is to be operated on is passed by
parameters. Excludes passing references to (global) data.

One optimization, if the stubs know which are parameters are input
and output parameters -> eliminate copying

What about pointers to complex (arbitrary) data structures?

Distributed Systems, Fall 2003 30

Parameter Specification and Stub Generation

Need to agree on:

Encoding rules

Actual exchange of
messages (e.g., TCP/IP)

Implement the stubs!

Stubs for the same
protocol and different
procedures differ only in
their interfaces to the
applications

Interface Definition
Language (IDL)

6

Distributed Systems, Fall 2003 31

Extensions

Calls to local procedures

Asynchronous RPC

Distributed Systems, Fall 2003 32

Doors
Try to use the RPC mechanism as the only mechanism for interprocess
communication (IPC).

Doors are RPCs implemented for processes on the same machine
A single mechanism for communication: procedure calls (but with doors, it is
not transparent)

Server calls door_create:
registers a door, an id is
returned

fattach: associates a symbolic
name with the id

Client invokes a door using
door_call, the id and any
parameters

The OS does an upcall to the
server

To return the result
door_return

Distributed Systems, Fall 2003 33

Asynchronous RPC
Try to get rid of the strict request-reply behavior, and let the client
continue without waiting for ananswer from the server.

Traditional RPC Asynchronous RPC

Asynchronous RPC: the server immediately sends a reply back to the client the
moment the RPC request is received, after which it calls the requested
procedure

Distributed Systems, Fall 2003 34

Differed Synchronous RPC

Deferred Synchronous RPC: two asynchronous RPCs combined

The client uses asynchronous RPC to call the server

The server uses asynchronous RPC to send the reply

One way RPC: the client does not wait at all (reliability?)

Distributed Systems, Fall 2003 35

Performing an RPC

At-most-one semantics: no call is ever carried out more
than once, even in the case of system crashes

Idempotent remote procedure: a call may be repeated
multiple times

Distributed Systems, Fall 2003 36

DCE RPC

Let the developer concentrate on only the client- and server-specific
code; let the RPC system (generators and libraries) do the rest.

7

Distributed Systems, Fall 2003 37

Writing a Client and a Server

The steps in writing a client and a server in DCE RPC.

IDL permits procedure declarations (similar to function prototypes in C).Type definitions, constant
declarations, etc to provide information to correctly marshal/unmarshal paramters/results. Just the
syntax (no semantics)

A globally unique identifier Generate a
prototype IDL with

a unique id

Edit the IDL, fill in the
names of the remote
procedures and their

parameters

Distributed Systems, Fall 2003 38

Binding a Client to a Server
1. Locate the server machine

2. Locate the server on the machine: need to know an endpoint (port) on the server
machine to which it can send messages

A table of (server, endpoints) is maintained on each server machine by a process
called the DCE daemon

The server asks the OS for an endpoint and registers this endpoint with the DCE

The client asks the DCE daemon at the server’s machine to lookup the endpoint

Distributed Systems, Fall 2003 39

Remote Object Invocation

Distributed Objects
Remote Object Invocation

Parameter Passing

Distributed Systems, Fall 2003 40

Distributed Objects

Expand the idea of RPCs to invocations on
remote objects

Data and operation encapsulated into an object

Operations are implemented as methods, and are accessible
through interfaces

An object offers only its interface to clients

Object server is responsible for a collection of objects

Client stub (proxy) implements interface

Server skeleton handles (un)marshaling and object invocation

Distributed Systems, Fall 2003 41

Distributed Objects

A client binds to a distributed object: an implementation of the object’s interface,
called a proxy, is loaded into the client’s address space

Proxy (analog to a client stub)

Marshals method invocations into messages

Un-marshals reply messages

Actual object at a server machine: offers the same interface

Skeleton (analog
to server stub)

Un-marshals
requests to
proper method
invocations at the
object’s interface
at the server

Note: the object itself is
not distributed, aka
remote object

Distributed Systems, Fall 2003 42

Distributed Objects

Compile-time objects:

Objects defined as instances of a class
Compiling the class definition results in code that allows to
instantiate Java objects
Language-level objects, from which proxy and skeletons are
automatically generated.
Depends on the particular language

Runtime objects: Can be implemented in any language, but
require use of an object adapter that makes the
implementation appear as an object.
Adapter: objects defined based on their interfaces
Register an implementation at the adapter

8

Distributed Systems, Fall 2003 43

Distributed Objects

Transient objects: live only by virtue of a server: if the server
exits, so will the object.

Persistent objects: live independently from a server: if a server
exits, the object’s state and code remain (passively) on disk.

Distributed Systems, Fall 2003 44

Provide system-wide object references, freely passed between
processes on different machines
Reference denotes the server machine plus an endpoint for the object
server, an id of which object

When a process holds an object reference, it must first bind to the
object

Bind: the local proxy (stub) is instantiated and initialized for specific
object – implementing an interface for the object methods

Two ways of binding:
Implicit binding: Invoke methods directly on the referenced object

Explicit binding: Client must first explicitly bind to object before
invoking it (generally returns a pointer to a proxy that then becomes
locally available

Binding a Client to an Object

Distributed Systems, Fall 2003 45

Binding a Client to an Object

(a) Example with implicit binding using only global references
(b) Example with explicit binding using global and local references

Distr_object* obj_ref; //Declare a systemwide object reference
obj_ref = …; // Initialize the reference to a distributed object
obj_ref-> do_something(); // Implicitly bind and invoke a method

(a)

Distr_object objPref; //Declare a systemwide object reference
Local_object* obj_ptr; //Declare a pointer to local objects
obj_ref = …; //Initialize the reference to a distributed object
obj_ptr = bind(obj_ref); //Explicitly bind and obtain a pointer to the local proxy
obj_ptr -> do_something(); //Invoke a method on the local proxy

(b)

Distributed Systems, Fall 2003 46

Static vs Dynamic RMI
Remote Method Invocation (RMI)

Static invocation: the interfaces of an object are known when the client
application is being developed

If interfaces change, the client application must be recompiled

Dynamic invocation: the application selects at runtime which method it will
invoke at a remote object

invoke(object, method, input_parameters, output_parameters)

method is a parameter, input_parameters, output_parameters data structures

Static: fobject.append(int)

Dynamic: invoke(fobject, id(append), int)

id(append) returns an id for the method append

Example uses: browsers, batch processing service to handle invocation
requests

Distributed Systems, Fall 2003 47

Object References as Parameters

When invoking a method with an object reference as a parameter, when it
refers to a remote object, the reference is copied and passed as a value
parameter (pass-by-reference)

When the reference refers to a local object (i.e., an object in the same
address space as the client) the referred object is copied as a whole and
passed along with the invocation (pass-by-value)

Distributed Systems, Fall 2003 48

Message-Oriented Communication

Persistence and Synchronicity
Message-Oriented Transient (sockets, RMI)

Message-Oriented Persistent/Message Queuing

9

Distributed Systems, Fall 2003 49

Communication Alternatives
RPC and RMI hide communication and thus achieve access transparency

Client/Server computing is generally based on a model of synchronous
communication:

• Client and server have to be active at the time of communication

• Client issues request and blocks until it receives reply

• Server essentially waits only for incoming requests, and subsequently processes them

Drawbacks synchronous communication:

• Client cannot do any other work while waiting for reply

• Failures have to be dealt with immediately (the client is waiting)

• In many cases the model is simply not appropriate (mail, news)

Distributed Systems, Fall 2003 50

Asynchronous Communication Middleware

Message-oriented middleware: Aims at high-level asynchronous
communication:

Processes send each other messages, which are queued

Asynchronous communication: Sender need not wait for immediate reply,
but can do other things

Synchronous communication: Sender blocks until the message arrives at
the receiving host or is actually delivered and processed by the receiver

Middleware often ensures fault tolerance

Distributed Systems, Fall 2003 51

Example Communication System
• Applications execute on hosts
• Communication servers are responsible for passing (and routing)
messages between hosts

• Each host offers an interface to the communication system through
which messages can be submitted for transmission

• Buffers at the hosts and at the communication servers

An electronic mailing system
Local
mail

server

Distributed Systems, Fall 2003 52

Persistent vs Transient Communication
Persistent communication: A message is stored at a communication
server as long as it takes to deliver it at the receiver.

Transient communication: A message is discarded by a
communication server as soon as it cannot be delivered at the next
server, or at the receiver.

Typically, all transport-level communication services offer only transient, a
communication server corresponds to a store-and-forward router

Distributed Systems, Fall 2003 53

Messaging Combinations

Persistent asynchronous
Message stored persistently at the
sending host or at the first
communication server

e.g., electronic mail systems

Persistent synchronous
Message stored persistently at the
receiving host or the connected
communication server (weaker)

Distributed Systems, Fall 2003 54

Messaging Combinations

Transient asynchronous
Transport-level datagram
services (such as UDP)

One-way RPC

Receipt-based transient synchronous
Sender blocks until the message is stored
in a local buffer at the receiving host

10

Distributed Systems, Fall 2003 55

Messaging Combinations

Delivery-based transient
synchronous
Sender blocks until the message is
delivered to the receiver for further
processing

Asynchronous RPC

Response-based transient
synchronous

Strongest form

Sender blocks until it receives a reply
message

RPC and RMI

Distributed Systems, Fall 2003 56

Communication Alternatives

Need for persistent communication services in particular when
there is large geographical distribution

(cannot assume that all processes are simultaneously executing)

Distributed Systems, Fall 2003 57

Outline

Message-Oriented Transient Communication

Transport-level sockets

Message-Passing Interface (MPI)

Message-Oriented Persistent Communication

Message Queuing Model

General Architecture

Example (IBM MQSeries: check the textbook)

Distributed Systems, Fall 2003 58

Berkeley Sockets

Socket primitives for TCP/IP.

Release the connectionClose

Receive some data over the connectionReceive

Send some data over the connectionSend

Actively attempt to establish a connectionConnect

Block caller until a connection request arrivesAccept

Announce willingness to accept connectionsListen

Attach a local address to a socketBind

Create a new communication endpointSocket

MeaningPrimitive

Socket: a communication endpoint to which an application can write data to
be sent out over the network and from which incoming data may be read

server

Distributed Systems, Fall 2003 59

socket: creates a new communication endpoint for a specific transport protocol (the
local OS reserves resources to accommodate sending and receiving messages for the
specified protocol)

bind: associates a local address with the newly created socket (e.g., the IP address of
the machine + a port number)

listen: (only in the case of connection-oriented communication) non-blocking call; allows
the OS to reserve enough buffers for a specified max number of connections

accept: blocks the server until a connection request arrives. When a request arrives,
the OS creates a new socket and returns it to the caller. Then , the server can fork off
a process that will subsequently handle the actual communication through the new
connection.

Berkeley Sockets

Distributed Systems, Fall 2003 60

socket: (client)

connect: attempt to establish a connection; specifies the transport-
level address to which a connection request is to be sent

write/read: send/receive data

close: called by both the client and the server

Berkeley Sockets

11

Distributed Systems, Fall 2003 61

The Message-Passing Interface (MPI)

Suitable for COWs and MPPs

MPI designed for parallel applications and thus
tailored to transient communication

Assumes communication within a known group of
processes, a (group_ID, process_ID) uniquely
identifies a source or destination of a message

Distributed Systems, Fall 2003 62

The Message-Passing Interface (MPI)

Check if there is an incoming message, but do not blockMPI_irecv

Receive a message; block if there are noneMPI_recv

Pass reference to outgoing message, and wait until receipt startsMPI_issend

Pass reference to outgoing message, and continue (for local MPI)MPI_isend

(response-based transient synchronous, RPC) Send a message and
wait for replyMPI_sendrecv

(delivery-based transient synchronous) Send a message and wait until
receipt startsMPI_ssend

(blocking send) Send a message and wait until copied to local or
remote bufferMPI_send

(transient-asynchronous) Append outgoing message to a local send
bufferMPI_bsend

MeaningPrimitive

Some of the message-passing primitives of MPI

Distributed Systems, Fall 2003 63

Outline

Message-Oriented Transient Communication

Transport-level sockets

Message-Passing Interface (MPI)

Message-Oriented Persistent Communication

Message Queuing Model

General Architecture

Example (IBM MQSeries: check the textbook)

Distributed Systems, Fall 2003 64

Message-Oriented Middleware

Message-queuing systems or Message-Oriented
Middleware (MOM)

Targeted to message transfers that take minutes instead
of seconds or milliseconds

In short: asynchronous persistent communication through
support of middleware-level queues
Queues correspond to buffers at communication servers.

Not aimed at supporting only end-users (as e.g., e-mail
does). Enable persistent communication between any
processes

Distributed Systems, Fall 2003 65

Message-Queuing Model

Four combinations for loosely-coupled communications using queues.

Message can contain any data

Addressing by providing a system-wide unique name of the destination queue

Distributed Systems, Fall 2003 66

Message-Queuing Model

Basic interface to a queue in a message-queuing system.

Install a handler (as a callback function) to be automatically invoked when
a message is put into the specified queue.
Often implemented as a daemon on the receiver’s side

Notify

Check a specified queue for messages, and remove the first. Never block.Poll

Block until the specified queue is nonempty, and remove the first message
Variations allow searching for a specific message in the queue

Get

Call by the sender
Append a message to a specified queue
Non-blocking

Put

MeaningPrimitive

12

Distributed Systems, Fall 2003 67

General Architecture of a Message-Queuing System

Messages are put only into local to the sender queues, source queues

Messages can be read only from local queues

A message put into a queue contains the specification o a destination
queue

Message-queuing system: provides queues to senders and receivers;
transfers messages from their source to their destination queues.

Queues are distributed across the network ⇒ need to map queues to
network address

A (possibly distributed) database of queue names to network locations

Queues are managed by queue managers

Relays: special queue managers that operate as routers and forward
incoming messsges to other queue managers ⇒ overlay network

Distributed Systems, Fall 2003 68

General Architecture of a Message-Queuing System

Why routers?

Only the routers
need to be updated
when queues are
added or removes

Allow for secondary
processing of
messages (e.g., logging
for fault tolerance)

Used for
multicasting purposes

Act as message
brokers

Distributed Systems, Fall 2003 69

Message Brokers
Message broker: acts as an application-level gateway, coverts incoming
messages to a format that can be understood by the destination application

Contains a database of conversion rules

Distributed Systems, Fall 2003 70

Stream-Oriented
Communication

Streams
Quality of Service

Synchronization

Distributed Systems, Fall 2003 71

Support for Continuous Media

So far focus on transmitting discrete, that is time independent data

Continuous (representation media): the temporal relationships between
data items fundamental to correctly interpreting what the data means

Examples: audio, video, animation, sensor data

Example: motion represented by a series of images, in which successive images
must be displayed at a uniform spacing T in time (30-40 msec per image)
Correct reproduction ⇒ showing the stills in the correct order and at a
constant frequency pf 1/T images per sec

Discrete (representation media): the temporal relationships between
data items not fundamental to correctly interpreting what the data
means

Example: text, still images, executable files

Distributed Systems, Fall 2003 72

Transmission Modes

(Continuous) Data Stream: a connection oriented communication facility
that supports isochronous data transmission

Asynchronous transmission mode: data items are transmitted one after
the other but no further timing constraints

Discrete data streams, e.g., a file

Synchronous transmission mode: there is a maximum end-to-end delay
for each unit in a data stream

E.g., sensor data

Isochronous transmission mode: there is both a maximum and minimum
end-to-end delay for each unit in a data stream (called bounded (delay)
jitter)

E.g., multimedia systems (audio, video)

Different timing guarantees with respect to data transfer:

13

Distributed Systems, Fall 2003 73

Stream Types

Simple stream: only a single sequence of data

Complex stream: several related simple streams (substreams)

Relation between the substreams is often also time dependent

Example: stereo video transmitted using two substreams each for a single
audio channel

Data units from each substream to be communicated pairwise for the
effect of stereo

Example: transmitting a movie: one stream for the video, two streams for
the sound in stereo, one stream for subtitles

Distributed Systems, Fall 2003 74

Data Streams

Streams are unidirectional

Considered as a virtual connection between a source and a sink

Between (a) two process or (b) between two devices

Distributed Systems, Fall 2003 75

Data Streams
Multiparty communication: more than one source or sinks

Multiple sinks: the data streams is multicasted to several receivers

Problem when the receivers have different requirements with respect to
the quality of the stream

Filters to adjust the quality of the incoming stream differently fo
outgoing streams

Distributed Systems, Fall 2003 76

Quality of Service

Quality of Service (Qos) for continuous data streams:
timeliness, volume and reliability

Difference between specification and implementation
of QoS

Distributed Systems, Fall 2003 77

Flow Specification of QoS
token-bucket model to express QoS

Token: fixed number of bytes (say k) that an application is allowed to pass
to the network

Basic idea: tokens are generated at a fixed rate

Tokens are buffered in a bucket of limited capacity

When the bucket is full, tokens are dropped

To pass N bytes, drop N/k tokens

Distributed Systems, Fall 2003 78

•Loss sensitivity (bytes)
•Loss interval (µsec)
maximum acceptable loss rate

•Burst loss sensitivity (data units)
How many consecutive data units may be lost

•Minimum delay noticed (µsec)
How long can the network delay delivery of a
data unit before the receiver notices the delay

•Maximum delay variation (µsec)
Maximum tolerated jitter

•Quality of guarantee
Indicates how firm are the guarentess

•maximum data unit size (bytes)
•Token bucket rate (bytes/sec)

•Token bucket size (bytes)

•Maximum transmission rate
(bytes/sec)

Service RequiredCharacteristics of the Input

Flow Specification of QoS

14

Distributed Systems, Fall 2003 79

Implementing QoS

QoS specifications translate to resource reservations in the
underlying communication system

Resources: bandwidth, buffers, processing capacity

There is no standard way of (1) QoS specs, (2) describing
resources, (3) mapping specs to reservations.

Distributed Systems, Fall 2003 80

The principle of explicit synchronization on the level of data units.

Stream Synchronization
Given a complex stream, how do you keep the different substreams in synch?
Two forms: (a) synchronization between a discrete and a continuous data
stream and (b) synchronization between two continuous data streams

A process that simply executes read and write operations on several simple
streams ensuring that those operations adhere to specific timing and
synchronization constraints

Distributed Systems, Fall 2003 81

The principle of synchronization as supported by high-level interfaces.

Stream Synchronization

Distributed Systems, Fall 2003 82

Extra Slides

Distributed Systems, Fall 2003 83

Example: IBM MQSeries
All queues are managed by queue managers

Queue managers are pair-wise connected through message channels

Each of the two ends of a message channel is managed by a message
channel agent (MCA)

Distributed Systems, Fall 2003 84

Some attributes associated with message channel agents.

Maximum times MCA will try to put received message into queueDelivery retries

Specifies maximum number of retries to start up the remote MCASetup retry
count

Maximum length of a single messageMessage length

Indicates that messages are to be delivered in the order they are sentFIFO delivery

Determines the transport protocol to be usedTransport type

DescriptionAttribute

Example: IBM MQSeries

15

Distributed Systems, Fall 2003 85

The general organization of an MQSeries queuing network using routing
tables and aliases.

Example: IBM MQSeries

Distributed Systems, Fall 2003 86

Primitives available in an IBM MQSeries MQI

Get a message from a (local) queueMQget

Put a message into an opened queueMQput

Close a queueMQclose

Open a (possibly remote) queueMQopen

DescriptionPrimitive

Example: IBM MQSeries

Distributed Systems, Fall 2003 87

The DCE Distributed-Object Model

a) Distributed dynamic objects in DCE.
b) Distributed named objects

2-19

Distributed Systems, Fall 2003 88

Implementing QoS
Resource reSerVation Protocol (RSVP) a transport-level control
protocol for resource reservation in network routers

