
Alexandros Karakasidis

Assignment 7

1.
Let e and e’ be concurrent and let e occur at Pi and e’ at Pj. Because the events are
concurrent (not related by happened-before) we know that no message sent from Pi at
or after event e has propagated its timestamp to Pj by the time e’ occurs at Pj, and vice
versa.
The following is true: Vj[j] ≤ Vi[j]: When a process sends its timestamp vector, the
receiver increases its value by one, thus this relationship is valid, if we consider that Pj
sends its vector timestamp to Pi.
Using this, Vj[j] < Vi[j] and Vi[i] < Vj[j] so neither, V(e) ≤ V(e’) nor V(e’) ≤ V(e).

So, if V(e)<V(e’) the two events are not concurrent, which means that they should be
with the happens - before relationship and it is trivial that e->e’

2.

9. This is a legal output, if all processes printed out the result, before seeing the write
operations of the other process, something which is legal having FIFO consistency,
since in FIFO consistency all constraints have to do with writes of single processes.

10. This is a legal signature, if the processes saw the following execution order:

x =1;
print(y,z);

z = 1;
print(x,y);

y = 1;
print(x,z);

The signature is 001110.
However 001110 cannot be a valid printout. The printout for such an execution will
be 001011. No other execution can offer such a printout facilitating sequential
consistency, since sequential consistency raises the restriction that all processes
should see the same interleaving of operations.

12. The following are the six valid interleavings:

X=1;
if (y==0);
kill(P2);
y=1;
if (x==0);
kill(P1);

x=1;
y=1;
if (x==0);
kill(P1);
if (y==0);
kill(P2);

x=1;
y=1;
if (y==0);
kill(P2);
if (x==0);
kill(P1);

y=1;
if (x==0);
kill(P1);
x=1;
if (y==0);
kill(P2);

y=1;
x=1;
if (y==0);
kill(P2);
if (x==0);
kill(P1);

y=1;
x=1;
if (x==0);
kill(P1);
if (y==0);
kill(P2);

27. An operation can be removed from a queue, when it is known that it has been
performed everywhere. This means that the following relationship should be valid:

DEP(W)[k] > VAL(i)[k] for every k and for every local copy Li.

3.
In sequential consistency all processes see the same interleaving of operations, even
the order of the operations is not the actual one.

Monotonic Reads
Sequential consistency does not imply monotonic reads, because in monotonic reads,
a process always reads the most updated version, something which does not always
occur with sequential consistency.

Monotonic Writes
Having monotonic writes, all updates occur with the proper order, and the update
happens to the most recent version of the variable. However, nothing is said about the
way reads occur. Thus we can assume that processes can follow a sequential
consistency scheme, by seeing, all of them, the same interleaving of operations.

Read Your Writes
In this policy, sequential consistency is not implies, since different processes may see
writes in a different order, since in the Read Your Writes scheme each process sees its
own writes. Thus, different processes see different operations in a different order.

Writes Follow Reads
Neither does this scheme imply sequential consistency, since in Writes Follow Reads
a process will write on the same or more recent value that has seen, while in
sequential consistency there is no assurance about the version of the read variable.

	Monotonic Reads

