
Assignment 3

Georgia Koloniari
Salteas-Kalogeras Panagiotis

Problem 9:

We discern two approaches for designing a multithreaded server that supports multiple protocols by using
sockets.

The first approach is based on the use of a single superserver that listens to a well-known endpoint.
During the initialization the server calls socket and bind to bind the endpoint (port) where it would accept
client requests. The superserver then calls listen and accept and waits for incoming client requests. When
a client wants to communicate with the server by using a specific protocol, it sends a request to the well-
known port of the superserver specifying the protocol that it wishes to use in the rest of their
communication. When the server receives the request it creates a new thread that will be responsible to
communicate with the client by using the specified protocol. The new thread also calls socket and bind to
bind to a new endpoint that will be used for its communication with the requesting client. The thread
answers to the client from the new endpoint and their communication can now begin. After the client is
served the thread is destroyed. Thus, this approach actually creates one thread per client that is destroyed
after the client is served.
 The second approach we could use for the design of the multithreaded server uses a different thread
for each of the different protocol that the server supports. We once again use the notion of the superserver
that binds and listens to well-known port for incoming clients request. However in this approach, during the
initialization of the server it creates a thread for each one of the different protocols it supports. Each thread
binds to a different point which it eventually will use to communicate with the clients. A client sends a
request to the superserver specifying the protocol it wishes to use. The server replies with the endpoint of
the corresponding thread responsible for the specified protocol. Each thread now has a queue for clients
that wait to be served while the thread is occupied with another client. The threads are obviously not
destroyed after serving a client, and they continue working with the next client in their queue. In this
approach, the number of threads running is fixed and does not depend on the number of clients.

Problem 12:

The main design issue we have to consider when creating an object adapter for persistent objects is the
invoking policy we will follow. We can choose to create the object every time a client requests it, however
since we are talking about persistent objects the natural solution is to create all the objects at the
initialization of the server.

A persistent object is an object that continues to exist even if it is not currently contained in the
server’s address space. The object’s stage can be stored at secondary storage and a new server can read it
and manage the object. Thus the server will create the objects at the beginning and associate one thread per
object. Whenever an invocation comes for an object the adapter responsible for implementing the activation
policy will pass the client request to the corresponding thread. If the thread is busy the client will be queued
in the thread’s queue. This approach also improves the server’s performance since we do not have to create
each object for every request and lose time while reading its status, or storing its state on disk before
destroying.

When designing the adapter we also need to ensure that we handle concurrent attempts of accessing
the same data. By using a thread for each object as we proposed above, this problem is also solved without
any further effort. However we are not interested in object specific code since the adapter is independent of
the particular objects it manages and only depends on their activation policy. This is the only way we can
construct generic object adapters and conceptually place them in the middleware.

Problem 17:

In UNIX systems we can achieve strong mobility by allowing a process to fork a child-process on a remote
machine. Strong mobility is obtained when we transfer not only the code but the execution segment of a
process as well. The fork procedure creates an exact copy of the parent procedure by copying the data
space, the heap and the stack to the child procedure. Not only code and initial data but execution segment
as well are copied and thus we have the strong mobility scenario. Since an exact copy is created, the above
procedure is known as remote cloning. The cloned procedure is executed in parallel with the original
process only in a different machine.

