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Abstract. Hoàng and Reed defined the classes of Raspail (also known
as Bipolarizable) and P4-simplicial graphs, both of which are perfectly
orderable, and proved that they admit polynomial-time recognition algo-
rithms [16]. In this paper, we consider the recognition problem on these
classes of graphs and present algorithms that solve it in O(nm) time,
where n and m are the numbers of vertices and of edges of the input
graph. In particular, we prove properties and show that we can produce
bipolarizable and P4-simplicial orderings on the vertices of a graph G,
if such orderings exist, working only on P3s that participate in P4s of
G. The proposed recognition algorithms are simple, use simple data
structures and require O(n + m) space. Moreover, we present a diagram
on class inclusions and the currently best recognition time complexities
for a number of perfectly orderable classes of graphs and some prelim-
inary results on forbidden subgraphs for the class of P4-simplicial graphs.
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1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph
(G,≺) contains no induced P4 abcd with a ≺ b and d ≺ c (such a P4 is called an
obstruction). In the early 1980s, Chvátal [4] defined the class of graphs that admit
a perfect order and called them perfectly orderable graphs. Chvátal proved that if
a graph G admits a perfect order ≺, then the greedy coloring algorithm applied
to (G,≺) produces an optimal coloring using only ω(G) colors, where ω(G) is
the clique number of G. This implies that the perfectly orderable graphs are
perfect; a graph G is perfect if for each induced subgraph H of G, the chromatic
number χ(H) equals the clique number ω(H) of the subgraph H. The class of
perfect graphs was introduced and studied by Berge [1], who also conjectured
that a graph is perfect if and only if it has no induced subgraph isomorphic to
an odd cycle of length at least five, or to the complement of such an odd cycle.
This conjecture, known as the strong perfect graph conjecture, has been recently
established due to the work of Chudnovsky et al. [3].
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It is well-known that many interesting problems in graph theory, which are
NP-complete in general graphs, have polynomial solutions in graphs that ad-
mit a perfect order [2,8]; unfortunately, it is NP-complete to decide whether a
graph admits a perfect order [22]. Since the recognition of perfectly orderable
graphs is NP-complete, we are interested in characterizing graphs which form
polynomially recognizable subclasses of perfectly orderable graphs. Many such
classes of graphs, with very interesting structural and algorithmic properties,
have been defined so far and shown to admit polynomial-time recognitions (see
[2,8]); note however that not all subclasses of perfectly orderable graphs admit
polynomial-time recognitions [13].

Hoàng and Reed [16] introduced four subclasses of perfectly orderable graphs,
namely, the Raspail (also known as Bipolarizable), P4-simplicial, P4-indifference,
and P4-comparability graphs, and provided polynomial-time recognition algo-
rithms for these four classes of graphs. A graph G is bipolarizable if it admits a
linear order ≺ on its vertices such that every P4 abcd has either (b ≺ a, b ≺ c,
c ≺ d) or (b ≺ a, c ≺ b, c ≺ d). A graph G is P4-simplicial if it admits a lin-
ear order ≺ such that every P4 has either a P4-indifference ordering (i.e., every
P4 abcd has either (a ≺ b, b ≺ c, c ≺ d) or (d ≺ c, c ≺ b, b ≺ a)) or a bipo-
larizable ordering. Note that every linear order ≺ on the vertices of a graph G
yields an acyclic orientation of the edges, where each edge ab is oriented from
a to b if and only if a ≺ b. On the other hand, every acyclic orientation gives
at least one linear order (for example, the order taken by a topological sorting).
Hence, bipolarizable and P4-simplicial graphs can also be defined in terms of
orientations.

As mentioned in the previous paragraph, the recognition problem on both
bipolarizable and P4-simplicial graphs has been addressed by Hoàng and Reed
[16]; for a graph on n vertices, their algorithms run in O(n4) and O(n5) time re-
spectively. Recently, Eschen et al. [7] described recognition algorithms for several
classes of perfectly orderable graphs, among which O(n3.376)-time algorithms for
both bipolarizable and P4-simplicial graphs. We note that Hoàng and Reed also
presented algorithms which solve the recognition problem for P4-indifference
and P4-comparability graphs which run in O(n6) and O(n4) time [16,17]; recent
results on these problems include O(n + m)-time and O(nm)-time algorithms
respectively [10,23], where m is the number of edges of the input graph.

In this paper, we consider the recognition problems for bipolarizable and
P4-simplicial graphs and present O(nm)-time algorithms for their solution. Our
algorithms rely on properties that we establish and which allow us to work
only with P3s which participate in P4s of the input graph G; such P3s can
be computed in O(nm) time by means of the BFS-trees of the complement of
G rooted at each of its vertices [23]. The proposed recognition algorithms are
simple, use simple data structures and require O(n+m) space. Furthermore, we
give class inclusion results for a number of perfectly orderable classes of graphs
and show the currently best time complexities to recognize members of these
classes, and finally we also present results on forbidden subgraphs for the class
of P4-simplicial graphs.
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2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. Let G
be such a graph; then, V (G) and E(G) denote the set of vertices and of edges
of G respectively. The subgraph of G induced by a subset S of G’s vertices is
denoted by G[S]. The neighborhood N(x) of a vertex x ∈ V (G) is the set of all
the vertices of G which are adjacent to x. The closed neighborhood of x is defined
as N [x] := {x} ∪N(x).

A path in a graph G is a sequence of vertices v0v1 . . . vk such that vi−1vi ∈
E(G) for i = 1, 2, . . . , k; we say that this is a path from v0 to vk and that its
length is k. A path is called simple if none of its vertices occurs more than once;
it is called trivial if its length is equal to 0. A path (simple path) v0v1 . . . vk is
called a cycle (simple cycle) of length k+1 if v0vk ∈ E(G). A simple path (cycle)
v0v1 . . . vk is chordless if vivj /∈ E(G) for any two non-consecutive vertices vi,
vj in the path (cycle). The chordless path (chordless cycle, respectively) on n
vertices is commonly denoted by Pn (Cn, respectively). In particular, a chordless
path on 4 vertices is denoted by P4.

Let abcd be a P4 of a graph. The vertices b and c are called midpoints and the
vertices a and d endpoints of the P4 abcd. The edge connecting the midpoints of
a P4 is called the rib; the other two edges (which are incident on the endpoints)
are called the wings. For the P4 abcd, the edge bc is its rib and the edges ab and
cd are its wings.

Computing all the P3s participating in P4s of a graph G: In [23], it has
been shown that all the P3s participating in P4s of a graph G on n vertices and
m edges can be computed in O(nm) time and O(n+m) space as follows: for each
vertex v, the BFS-tree TG(v) of the complement of G rooted at v is constructed
and the vertices in the 2nd level of the tree are partitioned into sets S1, . . . , Skv

,
where two vertices belong to the same Si iff they have the same neighbors in the
1st level of TG(v); the root v of TG(v) is assumed to be located in the 0th level.
Then, avb is a P3 participating in a P4 of G iff ab /∈ E(G) and either exactly one
of a, b belongs to the 2nd level and the other to the 3rd level of TG(v), or both
a and b belong to the 2nd level but they are in different sets of the partition
S1, . . . , Skv .

Since the vertices in the 2nd and 3rd level of TG(v) form a subset of the
neighborhood of v, we can give a more unified criterion for deciding whether a
P3 avb participates in a P4 of G by defining the following partition of N(v):

Definition 2.1. For each vertex v of a graph G, we consider the following par-
tition of the neighborhood N(v) of v:

� the partition of the vertices in the 2nd level of TG(v) into S1, . . . , Skv as
described above;

� all the vertices in the 3rd level of TG(v) are placed in a set Skv+1;
� all remaining vertices in N(v) are placed in a set S0 (no such vertex a forms

a P3 avb participating in P4s of G for any vertex b of G).
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Then, for any a, b ∈ N(v), avb is a P3 participating in a P4 of G iff ab /∈ E(G),
and if a ∈ Si and b ∈ Sj then i �= 0, j �= 0, and i �= j.

Convention: Throughout the paper, we assume that the input graph G has n
vertices and m edges and is given in adjacency list representation.

3 Recognition of Bipolarizable Graphs

The definition of bipolarizable graphs implies that they can be efficiently rec-
ognized as soon as the wings of all the P4s have been computed. The method
described in [23] for computing all the P3s participating in P4s of a given graph
does not seem to extend to produce within the same time complexity which
edge of the P3 is the rib and which is the wing of the P4. However, in the case of
bipolarizable graphs, we establish a property that can be used for their efficient
recognition. First, we need the following lemma:

Lemma 3.1. Let G be a graph that contains no induced subgraph isomorphic to
a house graph or the graphs F1 and F2 of Figure 2. Then, G contains a C4 abcd
such that abc and bcd are P3s participating in P4s of G.

Proof: Suppose for contradiction that G contains a C4 abcd meeting the con-
ditions in the statement of the lemma. We distinguish cases. Suppose first that
the P3 abc participates in the P4 abcx and that the P3 bcd participates in the
P4 bcdy. Then, xd /∈ E(G), otherwise the vertices a, b, c, d, x would induce a
house in G. In a similar fashion, ya /∈ E(G) either. But then, if xy /∈ E(G), then
the subgraph induced by a, b, c, d, x, y is isomorphic to F1 whereas if xy ∈ E(G),
it is isomorphic to F2; a contradiction in either case. The remaining three cases
(depending on whether abc participates in a P4 xabc or abcx and on whether bcd
participates in a P4 ybcd or bcdy) are handled similarly.

Since the bipolarizable graphs do not contain the house graph, F1, or F2 (and
also some other subgraphs [12,16]), Lemma 3.1 implies the following corollary.

Corollary 3.1. Let G be a bipolarizable graph and let abc be a P3 participating
in a P4 of G. If bcd is another such P3, then G contains the P4 abcd.

Proof: If the path abcd is not a P4 then G must contain the edge ad. But this
creates a C4 meeting the conditions of Lemma 3.1; a contradiction.

(We note that Corollary 3.1 in fact holds for the class of weak bipolarizable
graphs [25], a superclass of the bipolarizable graphs.) Corollary 3.1 implies the
following result.

Corollary 3.2. Let G be a bipolarizable graph and let F be the orientation of G
that results from the bipolarizable ordering of the vertices of G (i.e., the wings
of each P4 are oriented towards the P4’s endpoints). Then, for each edge bc of
G for which there exist P3s abc and bcd participating in P4s of G, the edges ab
and cd (for all such a and d) get oriented towards a and d respectively.
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The algorithm for the recognition of bipolarizable graphs applies Corol-
lary 3.2. The algorithm uses two arrays, an array M [ ] and an array S[ ], of
size 2m each. The array M [ ] has entries M [xy] and M [yx], for each edge xy of
G; the entry M [xy] is equal to 1 if there exist P3s xyz participating in P4s of G,
and is equal to 0 otherwise. As a result, for an edge xy, both M [xy] and M [yx]
are equal to 1 iff there exist P3s xyz and txy participating in P4s of G. The
array S[ ] too has entries S[xy] and S[yx], for each edge xy of G; the entry S[xy]
is equal to the index number of the partition set of N(y) to which x belongs
(see Definition 2.1). As a result, a path xyz is a P3 participating in P4s of G iff
S[xy] �= 0, S[zy] �= 0, and S[xy] �= S[zy]. In more detail, the algorithm works as
follows.

Bipolarizable Graph Recognition Algorithm

1. Initialize the entries of the arrays M [ ] and S[ ] to 0; for each vertex v, sort
the records of the neighbors of v in v’s adjacency list in increasing vertex
index number;

2. Find all the P3s participating in P4s of G; for each such P3 abc, set the
entries M [ab] and M [cb] equal to 1, and update appropriately the entries
S[ab] and S[cb];

3. For each edge uv of G such that M [uv] = 1 and M [vu] = 1 do
3.1 traverse the adjacency lists of u and v in lockstep fashion in order to

locate the non-common neighbors of u and v;
3.2 for each neighbor w of v which is not adjacent to u do

if S[uv] �= 0 and S[wv] �= 0 and S[uv] �= S[wv]
then {uvw is a P3 in a P4 of G}

if the edge vw has not received an orientation
then orient it towards w;
else if it is oriented towards v

then print that G is not a bipolarizable graph; exit.
3.3 work similarly as in case 3.2 for each neighbor w of u which is not

adjacent to v;
4. Check if the directed subgraph induced by the oriented edges contains a

directed cycle; if it does not, print that G is a bipolarizable graph; otherwise,
print that it is not.

The correctness of the algorithm follows directly from Corollary 3.2. Observe
that for any P4 abcd of G, the edge bc will be considered in Step 3 of the
algorithm, and then the edges ab and cd will be oriented correctly.

Time and Space Complexity. Step 1 takes O(n+m) time since the sorted
adjacency lists can be obtained through radix sorting an array of all the ordered
pairs of adjacent vertices, while Step 2 takes O(nm) time [23]. Steps 3.2 and 3.3
take constant time per such vertex w; it is assumed that the orientation of an
edge is stored in an array of size m for constant-time access and update. For an
edge uv, Steps 3.2 and 3.3 is executed O(deg(u) + deg(v)) times, where deg(u)
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denotes the degree of vertex u. Since Step 3.1 also takes O(deg(u) + deg(v))
time, Step 3 takes O

(∑
uv∈E(G)(deg(u) + deg(v))

)
= O(nm) time. Step 4 can

be executed by constructing the resulting directed graph and then applying
topological sorting on it; if the topological sorting succeeds then no directed
cycle exists, otherwise there exists a directed cycle. From this description, it
is clear that Step 4 can be completed in O(n + m) time and space. Since the
computation of the P3s participating in P4s takes linear space, the total space
needed by the recognition algorithm is clearly linear in the size of the input
graph G.

Summarizing, we obtain the following theorem.

Theorem 3.1. Let G be an undirected graph on n vertices and m edges. Then,
it can be determined whether G is a bipolarizable graph in O(nm) time and
O(n + m) space.

The recognition algorithm can be used to produce a bipolarizable ordering
of the vertices of a bipolarizable graph G. The bipolarizable ordering coincides
with the topological ordering of the vertices of the directed graph in Step 4,
possibly extended by an arbitrary ordering of any vertices of G which do not
participate in the directed graph.

4 Recognition of P4-Simplicial Graphs

Our P4-simplicial graph recognition algorithm relies on the corresponding al-
gorithm of Hoàng and Reed [16]; our contribution is that we restate the main
condition on which their algorithm is based in terms of P3s participating in P4s
of the input graph, and we show how to efficiently take advantage of it in order
to achieve an O(nm) time complexity. In particular, their algorithm works as
follows: it initially sets H = V (G) and then it iteratively identifies a vertex x
in H such that G does not contain a P4 of the form abxc with b, c ∈ H, and
removes it from H; the graph G is P4-simplicial iff the above process continues
until H becomes the empty set.

It is not difficult to see that the property a vertex x has to have in order to
be removed from H can be equivalently stated as follows:

Property 4.1. Let H be the current set of vertices of a given graph G. Then,
a vertex x can be removed from H if and only if there does not exist any P3 bxc
participating in a P4 of G with b, c ∈ H.

In light of Property 4.1, we can obtain an algorithm for deciding whether a
given graph G is P4-simplicial by keeping count, for each vertex v ∈ H, of the
number of P3s bvc with b, c ∈ H which participate in P4s of G, and by removing a
vertex from H whenever the number of such P3s associated with that vertex is 0.
The proposed algorithm implements precisely this strategy; it takes advantage
of the computation of the P3s in P4s of G in O(nm) time, and maintains an
array NumP3[ ] of size n, which stores for each vertex v in H the number of
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P3s bvc which participate in P4s of G and have b, c ∈ H. In more detail, the
algorithm works as follows.

P4-simplicial Graph Recognition Algorithm

1. Collect all the vertices of G into a set H;
make a copy A[v] of the adjacency list of each vertex v of G while attaching
at each record of the list an additional field set ;

2. For each vertex v of G do
2.1 compute the partition of the vertices in N(v) into sets S0, . . . , Skv , Skv+1

as described in Definition 2.1, and update appropriately the fields set of
the records in the adjacency list A[v] of v;

2.2 compute the number of P3s avb participating in P4s of G and assign this
number to NumP3[v];

3. Collect in a list L the vertices v for which NumP3[v] = 0;
4. While the list L is not empty do

4.1 remove a vertex, say, x, from L;
4.2 for each vertex u adjacent to x in G do

if u belongs to H
traverse the adjacency list A[u] of u and let sx be the value of
the field set for the vertex x;
if sx �= 0
then {there may exist P3s xuw participating in P4s of G}

for each vertex w in the adjacency list A[u] of u do
sw ← value of the field set for the vertex w;
if w ∈ H and sw �= 0 and sw �= sx

then {xuw is such a P3 with x, u, w ∈ H}
NumP3[u]← NumP3[u]− 1;

if NumP3[u] = 0
then insert u in the list L;

4.3 remove x from the set H;
5. if the set H is empty, then print that G is a P4-simplicial graph; otherwise,

print that it is not.

To ensure correct execution, the algorithm maintains the following invariant
throughout the execution of Step 4 (the proof can be found in [24]).

Invariant 4.1. At the beginning of every iteration of the while loop in Step 4
of the algorithm, for each vertex v in H, NumP3[v] is equal to the number of
P3s bvc participating in P4s of G with b, c ∈ H.

Sketch of the Proof: The proof relies on the fact that NumP3[v] will be decre-
mented precisely once for each P3 avb participating in a P4 of G: if a is removed
from H before b, then NumP3[v] will be decremented during the removal of a;
when b is removed, the P3 avb will not be considered, even if v ∈ H, because
a /∈ H.
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Then, the correctness of the algorithm follows from the correctness of the
algorithm of Hoàng and Reed, Property 4.1, and the fact that at any given
time the list L contains precisely those vertices that can be removed from H (a
vertex x is inserted in L if and only if NumP3[x] = 0, i.e., there does not exist
any P3 bxc participating in a P4 of G with b, c ∈ H).

Time and Space Complexity. The set H can be implemented by means of
an array M [ ] of size n, where M [v] = 1 if v ∈ H and 0 otherwise; in this way,
insertion, deletion, and membership queries for any vertex of G can be answered
in constant time, while the emptiness of H can be checked in O(n) time. Then,
Step 1 takes O(n + m) time, Step 4.3 takes O(1) time per vertex removed, and
Step 5 O(n) time. Step 2 takes O(nm) time [23], while Step 3 takes O(n) time.
As a vertex is inserted at most once in the list L, the time complexity of Step 4

is O

(
∑

x

(
1 +

∑
u∈N(x) deg(u)

))
, where deg(u) denotes the degree of u in

G. Since
∑

u∈N(x) deg(u) = O(m), the time complexity of Step 4 is O(nm).
Since the computation of the P3s participating in P4s takes linear space, the
total space needed by the recognition algorithm is clearly linear in the size of
the input graph G.

Summarizing, we obtain the following theorem.

Theorem 4.1. Let G be an undirected graph on n vertices and m edges. Then,
it can be determined whether G is a P4-simplicial graph in O(nm) time and
O(n + m) space.

5 Class Inclusions and Recognition Time Complexities

Figure 1 shows a diagram of class inclusions for a number of perfectly orderable
classes of graphs and the currently best time complexities to recognize members
of these classes. For definitions of the classes shown, see [2,8]; note that the P4-
free and the chordal graphs are also known as co-graphs and triangulated graphs
respectively. In the diagram, there exists an arc from a class A to a class B if
and only if B is a proper subset of A. Hence, if any two classes are not connected
by an arc, then each of these classes contains graphs not belonging to the other
class (there are such sample graphs for each pair of non-linked classes).

Most of these class inclusions can be found in [2] where a similar diagram
with many more graph classes appears; Figure 1 comes from a portion of the
diagram in [2] augmented with the introduction of the inclusion relations for the
classes of P4-simplicial, bipolarizable, and P4-indifference graphs, as described
in the following lemmata (the complete proofs have been omitted due to lack of
space but can be found in [24]):

Lemma 5.1. The class of P4-simplicial graphs is a proper subset of the class of
brittle graphs and a proper superset of the class of weak bipolarizable1 graphs.
1 A graph is weak bipolarizable if it has no induced subgraph isomorphic to Ck (k ≥ 5),

the house graph, or to any of the graphs F1 and F2 of Figure 2 [25].
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Perfectly Orderable 

P4-comparability 

Brittle 

P4-simplicial 

HHD-free 

Weak Bipolarizable 

Bipolarizable 

Chordal 

Split 

P4-sparse 

P4-reducible 

P4-free 

P4-indifference 

O(n m) 

O(n+m) 

NP-complete 

Co-chordal 

O(min{n3 log2n, m2})

O(min{n3, m2}) 

Fig. 1. Class inclusions and recognition time complexities.

Sketch of the Proof: The fact that P4-simplicial ⊆ Brittle has been shown in
[16]; the subset relation is proper since the graph F1 of Figure 2 is brittle but
not P4-simplicial. To show that Weak Bipolarizable ⊆ P4-simplicial, we apply
induction on the size of the graph by taking advantage of Theorem 1 of [25] which
states that a graph G is weak bipolarizable if and only if every induced subgraph
of G is chordal or contains a homogeneous set; the proper inclusion follows from
the fact that the house graph is P4-simplicial but not weak bipolarizable.

Lemma 5.2. The class of bipolarizable graphs is a proper subset of the class of
weak bipolarizable graphs and a proper superset of the classes of P4-sparse and
split graphs.

Lemma 5.3. The class of P4-indifference graphs is a proper subset of the class
of weak bipolarizable graphs and a proper superset of the class of P4-reducible
graphs.

Regarding the relation of P4-simplicial and the HHD-free and co-chordal
graphs, we note that the graph F1 of Figure 2 is both HHD-free and co-chordal
but is not P4-simplicial whereas the house graph and P5 are P4-simplicial but not
HHD-free and not co-chordal respectively. The non-inclusion relation between
bipolarizable and co-chordal graphs follows from the counterexamples for the
non-inclusion relation of the P4-simplicial and co-chordal graphs. A non-inclusion
relation also holds for the bipolarizable and the chordal graphs (consider a C4
and the forbidden subgraph D of [12]) and for the bipolarizable and the P4-
indifference graphs (consider the forbidden subgraphs F5 of [15] and D of [12]).
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Figure 1 also shows the depicted classes of graphs partitioned based on the
time complexities of the currently best recognition algorithms: see [7,27] for the
O(min{n3 log2 n, m2})-time complexity range, [14,18] for the O(min{n3, m2})-
time complexity range, [23,25] for the O(nm)-time complexity range, and [10,
19,20,5,26,9,11] for the O(n+m)-time range. We note that the algorithm of [14]
for the recognition of HHD-free graphs has a stated time complexity of O(n4);
this can be easily seen to be O(m2) if the number m of edges of the graph is
taken into account. Similarly, the algorithm of [25] for the recognition of weak
bipolarizable graphs has a stated time complexity of O(n3); since O(n+m) time
suffices to determine whether a graph is chordal and to compute a homogeneous
set (by means of modular decomposition [21,6]), if one exists, the stated time
complexity can be seen to be O(nm).

6 On Forbidden Subgraphs for P4-Simplicial Graphs

The minimal set of forbidden subgraphs for the class of bipolarizable graphs
has been established in [12,16]. For the class of P4-simplicial graphs, however,
no work on forbidden subgraphs is available in the literature to the best of our
knowledge; in this section, we give a number of forbidden subgraphs for this
class, and attempt to give a first characterization of them.

Fig. 2. Some forbidden subgraphs for the class of P4-simplicial graphs

Clearly, a hole, the graph F1 (sometimes also called “A”), and the graph F2
(also known as domino graph or D6) in Figure 2 are all forbidden subgraphs
for P4-simplicial graphs. On the other hand, the house graph (i.e., P 5) is P4-
simplicial. Figure 2 shows all forbidden subgraphs on up to 7 vertices; note that
F3 is F 2, F4 is C6, and F5 is P 6. Additionally, even if the holes are excluded, one
can easily generate a number of arbitrarily large forbidden subgraphs. Figure 3
gives two such examples.

In any case, Lemma 5.1 implies the following property for all forbidden sub-
graphs other than a hole, and the graphs F1 and F2 of Figure 2:
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Lemma 6.1. Any forbidden subgraph for the class of P4-simplicial graphs, other
than a hole, F1, and F2, contains at least one house graph as induced subgraph.
Following up on Lemma 6.1, we believe that any minimal forbidden subgraph
for the class of P4-simplicial graphs, other than a hole, F1, and F2, has at least
two houses as induced subgraphs. In fact, we conjecture that the set of such
forbidden subgraphs includes a number of graphs containing at least two vertex-
sharing houses (see Figure 2) and a small number of graphs that have exactly
two vertex-disjoint houses as induced subgraphs (as in Figure 3).

Fig. 3.

7 Concluding Remarks

We have presented recognition algorithms for the classes of bipolarizable (also
known as Raspail) and P4-simplicial graphs running in O(nm) time. Our pro-
posed algorithms are simple, use simple data structures and require O(n + m)
space. We have also presented results on class inclusions and recognition time
complexities for a number of perfectly orderable classes of graphs, and also some
results on forbidden subgraphs for the class of P4-simplicial graphs.

We leave as an open problem the designing of o(nm)-time algorithms for
recognizing bipolarizable and/or P4-simplicial graphs. In light of the linear-
time recognition of P4-indifference graphs [10], it would be worth investigat-
ing whether the recognition of P4-comparability, P4-simplicial, and bipolarizable
graphs is inherently more difficult; it must be noted that the approach used in
[10] is different from those used for the recognition of the remaining classes as
it reduces in part the problem to the linear-time recognition of interval graphs.
Finally, another interesting open problem is that of completing the characteri-
zation of the P4-simplicial graphs by forbidden subgraphs.
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