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Abstract. In this paper, we consider the recognition problem on two
classes of perfectly orderable graphs, namely, the HHD-free and the
Welsh-Powell opposition graphs (or WPO-graphs). In particular, we
prove properties of the chordal completion of a graph and show that
a modified version of the classic linear-time algorithm for testing for
a perfect elimination ordering can be efficiently used to determine in
O(min{nmα(n), nm + n2 log n}) time whether a given graph G on
n vertices and m edges contains a house or a hole; this leads to an
O(min{nmα(n), nm+n2 log n})-time and O(n+m)-space algorithm for
recognizing HHD-free graphs. We also show that determining whether
the complement G of the graph G contains a house or a hole can be effi-
ciently resolved in O(nm) time using O(n2) space; this in turn leads
to an O(nm)-time and O(n2)-space algorithm for recognizing WPO-
graphs. The previously best algorithms for recognizing HHD-free and
WPO-graphs required O(n3) time and O(n2) space.

1 Introduction

A linear order ≺ on the vertices of a graph G is perfect if the ordered graph
(G,≺) contains no induced P4 abcd with a ≺ b and d ≺ c (such a P4 is called
an obstruction). In the early 1980s, Chvátal [2] defined the class of graphs that
admit a perfect order and called them perfectly orderable graphs.

The perfectly orderable graphs are perfect; thus, many interesting problems
in graph theory, which are NP-complete in general graphs, have polynomial-
time solutions in graphs that admit a perfect order [1, 5]; unfortunately, it is
NP-complete to decide whether a graph admits a perfect order [12]. Since the
recognition of perfectly orderable graphs is NP-complete, we are interested in
characterizing graphs which form polynomially recognizable subclasses of per-
fectly orderable graphs. Many such classes of graphs, with very interesting struc-
tural and algorithmic properties, have been defined so far and shown to admit
polynomial-time recognitions (see [1, 5]); note however that not all subclasses of
perfectly orderable graphs admit polynomial-time recognition [7].
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Fig. 1. Some simple graphs.

In this paper, we consider two classes of perfectly orderable graphs, namely,
the HHD-free and the Welsh-Powell opposition graphs. A graph is HHD-free if it
contains no hole (i.e., a chordless cycle on ≥ 5 vertices), no house, and no domino
(D) as induced subgraphs (see Figure 1). In [8], Hoáng and Khouzam proved that
the HHD-free graphs admit a perfect order, and thus are perfectly orderable. It
is important to note that the HHD-free graphs properly generalize the class of
triangulated (or chordal) graphs, i.e., graphs with no induced chordless cycles of
length greater than or equal to four [5]. A subclass of HHD-free graphs, which
also properly generalizes the class of triangulated graphs, is the class of HH-
free graphs; a graph is HH-free if it contains no hole and no house as induced
subgraphs (see Figure 1). Chvátal conjectured and later Hayward [6] proved that
the complement G of an HH-free graph G is also perfectly orderable.

A graph is called an Opposition graph if it admits a linear order ≺ on its
vertices such that there is no P4 abcd with a ≺ b and c ≺ d. Opposition graphs
belong to the class of bip∗ graphs (see [1]), and hence are perfect graphs [14].
The complexity of recognizing opposition graphs is unknown. It is also open
whether there is an opposition graph that is not perfectly orderable [1]. The
class of opposition graphs contains several known classes of perfectly orderable
graphs. For example, bipolarizable graphs are, by definition, opposition graphs;
a graph is bipolarizable if it admits a linear order ≺ on its vertices such that
every P4 abcd has b ≺ a and c ≺ d [15]. Another subclass of opposition graphs,
which we study in this paper, are the Welsh-Powell opposition graphs. A graph
is defined to be a Welsh-Powell Opposition graph (or WPO-graph for short), if it
is an opposition graph for every Welsh-Powell ordering; a Welsh-Powell ordering
for a graph is an ordering of its vertices in nondecreasing degree [18].

Hoàng and Khouzam [8], while studying the class of brittle graphs (a well-
known class of perfectly orderable graphs which contains the HHD-free graphs),
showed that HHD-free graphs can be recognized in O(n4) time, where n denotes
the number of vertices of the input graph. An improved result was obtained by
Hoàng and Sritharan [9] who presented an O(n3)-time algorithm for recognizing
HH-free graphs and showed that HHD-free graphs can be recognized in O(n3)
time as well; one of the key ingredients in their algorithms is the reduction
to the recognition of triangulated graphs. Recently, Eschen et al. [4] described
recognition algorithms for several classes of perfectly orderable graphs, among
which a recognition algorithm for HHP-free graphs; a graph is HHP-free if it
contains no hole, no house, and no “P” as induced subgraphs (see Figure 1).
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Their algorithm is based on the property that every HHP-free graph is HHDA-
free graph (a graph with no induced hole, house, domino D, or “A”), and thus
a graph G is HHP-free graph if and only if G is a HHDA-free and contains no
“P” as an induced subgraph. The characterization of HHDA-free graphs due
to Olariu (a graph G is HHDA-free if and only if every induced subgraph of
G either is triangulated or contains a non-trivial module [15]) and the use of
modular decomposition [11] allowed Eschen et al. to present an O(nm)-time
recognition algorithm for HHP-free graphs.

For the class of WPO-graphs, Olariu and Randall [16] gave the following
characterization: a graph G is WPO-graph if and only if G contains no induced
C5 (i.e., a hole on 5 vertices), house, P5, or “P” (see Figure 1). It follows that
G is a WPO-graph if and only if G is HHP-free and G is HH-free. Eschen et
al. [4] combined their O(nm)-time recognition algorithm for HHP-free graphs
with the O(n3)-time recognition algorithm for HH-free graphs proposed in [9],
and showed that WPO-graphs can be recognized in O(n3) time.

In this paper, we present efficient algorithms for recognizing HHD-free graphs
and WPO-graphs. We show that a variant of the classic linear-time algorithm
for testing whether an ordering of the vertices of a graph is a perfect elimination
ordering can be used to determine whether a vertex of a graph G belongs to a
hole or is the top of a house or a building in G. We take advantage of properties
characterizing the chordal completion of a graph and show how to efficiently
compute for each vertex v the leftmost among v’s neighbors in the chordal com-
pletion which are to the right of v without explicitly computing the chordal
completion. As a result, we obtain an O(min{nmα(n), nm+n2 log n})-time and
O(n + m)-space algorithm for determining whether a graph on n vertices and
m edges is HH-free. This result along with results by Jamison and Olariu [10],
and by Hoáng and Khouzam [8] enable us to describe an algorithm for recogniz-
ing HHD-free graphs which runs in O(min{nmα(n), nm + n2 log n}) time and
requires O(n + m) space.

Additionally, for a graph G on n vertices and m edges, we show that we can
detect whether the complement G of G contains a hole or a house in O(nm)
time using O(n2) space. In light of the characterization of WPO-graphs due to
Olariu and Randall [16] which implies that a graph G is a WPO-graph if and
only if G is HHP-free and its complement G is HH-free, and the O(nm)-time
recognition algorithm for HHP-free graphs of Eschen et al. [4], our result yields
an O(nm)-time and O(n2)-space algorithm for recognizing WPO-graphs.

2 Preliminaries

We consider finite undirected graphs with no loops or multiple edges. Let G
be such a graph; then, V (G) and E(G) denote the set of vertices and of edges
of G respectively. The subgraph of a graph G induced by a subset S of G’s
vertices is denoted by G[S]. A subset B ⊆ V (G) of vertices is a module if
2 ≤ |B| < |V (G)| and each vertex x ∈ V (G)−B is adjacent to either all vertices
or no vertex in B. The neighborhood N(x) of a vertex x ∈ V (G) is the set of
all the vertices of G which are adjacent to x. The closed neighborhood of x is
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Fig. 2. The perfect elimination ordering testing algorithm.

defined as N [x] := N(x) ∪ {x}. We use M(x) to denote the set V (G) − N [x]
of non-neighbors of x. Furthermore, for a vertex v ∈ M(x), we use n(v, x) to
denote the number of vertices in the set N(v) ∩ N(x), i.e., the set of common
neighbors of v and x. The degree of a vertex x in a graph G, denoted deg(x), is
the number of edges incident on x; thus, deg(x) = |N(x)|.

Let G be a graph and let x, y be a pair of vertices. If G contains a path
from vertex x to vertex y, we say that x is connected to y. The graph G is
connected if x is connected to y for every pair of vertices x, y ∈ V (G). The
connected components (or components) of G are the equivalence classes of the
“is connected to” relation on the vertex set V (G). The co-connected components
(or co-components) of G are the connected components of the complement G of
the graph G.

A graph G has a perfect elimination ordering if its vertices can be linearly
ordered (v1, v2, . . . , vn) such that each vertex vi is simplicial in the graph Gi

induced by the vertex set {vi, . . . , vn}, 1 ≤ i ≤ n; a vertex of a graph is simplicial
if its neighborhood induces a complete subgraph. It is well-known that a graph
is triangulated if and only if it has a perfect elimination ordering [1, 5, 17]. The
notion of a simplicial vertex was generalized by Jamison and Olariu [10] who
defined the notion of a semi-simplicial vertex: a vertex of a graph G is semi-
simplicial if it is not a midpoint of any P4 of G. A graph G has a semi-perfect
elimination ordering if its vertices can be linearly ordered (v1, v2, . . . , vn) such
that each vertex vi is semi-simplicial in the graph Gi = G[{vi, . . . , vn}], 1 ≤
i ≤ n. A graph is a semi-simplicial graph if and only if it has a semi-perfect
elimination ordering (see [4]).

Let σ = (v1, v2, . . . , vn) be an ordering of the vertices of a graph G; σ(i)
is the i-th vertex in σ, i.e., σ(i) = vi, while σ−1(vi) denotes the position of
vertex vi in σ, i.e., σ−1(vi) = i, 1 ≤ i ≤ n. In Figure 2, we include the classic
algorithm PEO(G, σ) for testing whether the ordering σ is a perfect elimination
ordering; if the graph G has n vertices and m edges, the algorithm runs in
O(n + m) time and requires O(n + m) space [5, 17]. Note that, in Step 4 of the
Algorithm PEO(G, σ), the set X is assigned the neighbors of the vertex u which
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have larger σ−1( )-values; that is, X = N(u) ∩ {σ(i + 1), . . . , σ(n)}. Thus, in
Step 6, the vertex w is the neighbor of u in G which is first met among the
vertices to the right of u along the ordering σ. Since neither the graph G nor the
ordering σ changes during the execution of the Algorithm PEO, we can without
error replace Step 6 by

6. w ← Next NeighborG,σ[u];

where Next NeighborG,σ[ ] is an array whose values have been precomputed in
accordance with the assignment in Step 6 of the Algorithm PEO.
Note: Due to lack of space we have omitted the proofs of several Lemmata and
Theorems of this paper; all the proofs can be found in [13].

3 Recognizing HH-free Graphs

The most important ingredient (and the bottleneck too) of the HHD-free graph
recognition algorithm of Hoàng and Sritharan [9] is an algorithm to determine
whether a simplicial vertex v of a graph G is high, i.e., it is the top of a house
or a building1 (or belongs to a hole) in G, which involves the following steps:

� They compute an ordering of the set M(v) of non-neighbors of v in G where,
for two vertices y, y′ ∈M(v), y precedes y′ whenever n(y, v) ≤ n(y′, v); recall
that, n(y, v) is the number of common neighbors of y and v, or, equivalently,
the degree of the vertex y ∈M(v) in the graph induced by the set N(v)∪{y}.
As we will be using this ordering in the description of our approach, we call
it a DegMN-ordering of M(v).

� They perform chordal completion on G[M(v)] with respect to a DegMN-
ordering of M(v).

� The vertex v is high if and only if the graph G′
v resulting from G after the

chordal completion on G[M(v)] is triangulated.

As we mentioned in the introduction, the algorithm of Hoàng and Sritharan runs
in O(n3) time, where n is the number of vertices of the input graph. In order
to be able to beat this, we need to avoid the chordal completion step. Indeed,
we show how we can take advantage of the Algorithm PEO and of properties of
the chordal completion in order to compute all necessary information without
actually performing the chordal completion. In particular, we prove that the
following results hold:
Lemma 3.1. Let G be a graph, v a vertex of G, and (y1, y2, . . . , yk) a DegMN-
ordering of the non-neighbors M(v) of v in G. Moreover, let G′

v be the graph
resulting from G after the chordal completion on G[M(v)] with respect to the
DegMN-ordering (y1, y2, . . . , yk) and let σ = (y1, y2, . . . , yk, x1, x2, . . . , xdeg(v), v)
where x1, x2, . . . , xdeg(v) is an arbitrary ordering of the neighbors of v in G. If
Algorithm PEO(G′

v, σ) returns “false” while processing vertex yi ∈ M(v), then
A(yi)−N(yi) ⊆ N(v).
1 A building is a graph on vertices v1, v2, . . . , vp, where p ≥ 6, and edges v1vp, v2vp,

and vivi+1 for i = 1, 2, . . . , p − 1; the vertex v1 is called the top of the building.
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Fig. 3. Algorithm for determining whether a vertex v belongs to a hole or is the top
of a house or a building.

Proof: Since the Algorithm PEO returns “false” while processing vertex yi ∈
M(v), then A(yi) − N(yi) 	= ∅. Suppose that there exists a vertex yj ∈ M(v)
belonging to A(yi) − N(yi). The vertex yj was added to A(yi) at Step 7 of a
prior iteration of the for-loop, say, while processing vertex y�. It follows that
σ−1(y�) < σ−1(yi) < σ−1(yj), and yi, yj ∈ N(y�). Since yj /∈ N(yi), we have
that y� is not simplicial in G′

v[{y�, y�+1, . . . , yk}]; a contradiction.

Lemma 3.2. Let G′
v and σ be as in the statement of Lemma 3.1. The vertex v

belongs to a C5 or is the top of a house in the graph G′
v if and only if Algorithm

PEO(G′
v, σ) returns “false” while processing vertex z, where z ∈M(v).

Lemma 3.1 implies that, while running Algorithm PEO(G′
v, σ), it suffices to

collect in the set X (Step 4) only the common neighbors of u and v; in turn,
Lemma 3.2 implies that it suffices to execute the for-loop of Steps 2-8 only for the
non-neighbors of v. The above can be used to yield the Algorithm Not-in-HHB,
presented in Figure 3, which takes as input a graph G and a vertex v of G, and
returns “true” if and only if the vertex v does not belong to a hole, and it is not
the top of a house or a building in G. That is, we can show the following result.

Theorem 3.1. Algorithm Not-in-HHB(G, v) returns “false” if and only if the
vertex v belongs to a hole or is the top of a house or a building in G.

3.1 Computation of the Values of Next NeighborG′
v,σ[ ]

In order to avoid computing the graph G′
v, we take advantage of the following

property of the chordal completion of a graph:

Lemma 3.3. Let G be a graph, let (v1, v2, . . . , vk) be an ordering of its vertices,
and let G′ be the graph resulting from G after the addition of edges so that, for
all i = 1, 2, . . . , k, vertex vi is simplicial in the subgraph induced by the vertices
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Fig. 4. Algorithm for computing the contents of the array Next NeighborG′
v ,σ[ ].

vi, vi+1, . . . , vk. Then, the graph G′ contains the edge vrvj, where r < j, if and
only if there exists an edge vivj in G such that i ≤ r and the vertices vi, vr belong
to the same connected component of the subgraph of G induced by the vertices
v1, v2, . . . , vi, . . . , vr.

We note that the above lemma implies Lemma 2 of [9] as a corollary. Lemma 3.3
implies that for the computation of the value Next NeighborG′

v,σ[yr], where
σ = (y1, y2, . . . , yk), it suffices to find the leftmost (w.r.t. σ) vertex among
yr+1, yr+2, . . . , yk which is adjacent in G to a vertex in the connected com-
ponent of G[{y1, y2, . . . , yr}] to which yr belongs. This can be efficiently done by
processing the vertices in the order they appear in σ. In detail, the algorithm to
compute the contents of the array Next NeighborG′

v,σ[ ] is presented in Figure 4.
It is important to observe that, at the completion of the processing of ver-

tex yj, the sets of vertices maintained by the algorithm are in a bijection with
the connected components of G[{y1, y2, . . . , yj}]; while processing yj, we consider
the edges yiyj where i < j, and we union the set containing yj (which has ver-
tex yj as its rightmost vertex with respect to σ) to another set iff yj is adjacent
to a vertex in that set. The correctness of the algorithm is established in the
following lemma.

Lemma 3.4. The Algorithm Compute-Next Neighbor correctly computes the val-
ues of Next NeighborG′

v,σ[yi] for all the vertices yi ∈M(v) (i.e., all the vertices
that are not adjacent to v in G).

3.2 Time and Space Complexity

Let us assume that the graph G has n vertices and m edges and that ver-
tex v of G has k non-neighbors in G. The execution of the Algorithm Not-in-
HHB(G, σ, v) for vertex v takes O(n+m) time and space plus the time and space
needed for the computation of the entries of the array Next NeighborG′

v,σ[ ]. So,
let us now turn to the time and space complexity of the Algorithm Compute-
Next Neighbor(G, σ, v). If we ignore the operations to process sets (i.e., make a
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set, union sets, or find the rightmost (w.r.t. σ) vertex in a set), then the rest of
the execution of the Algorithm Compute-Next Neighbor takes O(n + m) time.
The sets are maintained by our algorithm in a fashion amenable for Union-Find
operations, where additionally the representative of each set also contains a field
storing the rightmost (w.r.t. σ) vertex in the set. Then,
• making a set which contains a single vertex yi requires building the set and

setting the rightmost (w.r.t. σ) vertex in the set to yi;
• finding the rightmost (w.r.t. σ) vertex in the set to which a vertex yj belongs

requires performing a Find operation to locate the representative of the
set from which the rightmost vertex is obtained in constant time per Find
operation;
• unioning two sets requires constructing a single set out of the elements of

the two sets, and updating the rightmost (w.r.t. σ) vertex information; since
we always union a set with the set containing yj , where yj is the rightmost
vertex in any of the sets, then the rightmost vertex of the resulting set is yj ,
and this assignment can be done in constant time per union.

As the Algorithm Compute-Next Neighbor creates one set for each one of the
vertices y1, y2, . . . , yk, it executes k make-set operations; this also implies that
the number of union operations is less than k. The number of times to find the
rightmost (w.r.t. σ) vertex in a set is O(m) since the algorithm executes one
such operation for each edge connecting two non-neighbors of v. Hence, if we use
disjoint-set forests to maintain the sets, the time to execute the above operations
is O(mα(k)) [3], where α( ) is a very slowly growing function; if instead we use
the linked-list representation, then the time is O(m + k log k) [3]. In either case,
the space required (in addition to the space needed to store the graph G) is O(k).
Thus, the computation of the values of the array Next NeighborG′

v,σ[ ] for the
k non-neighbors of the vertex v takes a total of O(n + min{mα(k), m + k log k})
time and O(k) space. Therefore, we have:

Theorem 3.2. Let G be a graph on n vertices and m edges. Determining whether
a vertex v of G belongs to a hole or is the top of a house or a building can be
done in O(n + min{mα(k), m + k log k}) time and O(n + m) space, where k is
the number of non-neighbors of v in G.

Applying the Algorithm Non-in-HHB on every vertex of a graph and observing
that a building contains a hole, we obtain the following corollary:

Corollary 3.1. Determining whether a graph G on n vertices and m edges con-
tains a hole or a house (i.e., is not HH-free) can be done in O(min{nmα(n), nm+
n2 log n}) time and O(n + m) space.

4 Recognition of HHD-free Graphs

Our HHD-free graph recognition algorithm is motivated by the corresponding
algorithm of Hoàng and Sritharan [9], which in turn is motivated by the work of
Hoàng and Khouzam [8] and relies on the following characterization of HHD-free
graphs proved by Jamison and Olariu:
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Theorem 4.1. (Jamison and Olariu [10]) The following two statements are
equivalent:

(i) The graph G is HHD-free;
(ii) For every induced subgraph H of the graph G, every ordering of vertices of

H produced by LexBFS is a semi-perfect elimination.

In fact, we could use the Algorithm Not-in-HHB(G, v) in Hoàng and Sritha-
ran’s HHD-free graph recognition algorithm in order to determine if vertex v
is high, and we would achieve the improved time and space complexities stated
in this paper. However, we can get the much simpler algorithm which we give
below.

Algorithm Rec-HHD-free

Input: an undirected graph G on n vertices and m edges.

Output: “true,” if G is an HHD-free graph; otherwise, “false.”

1. if the graph G is not HH-free
then return(“false”);

2. Run LexBFS on G starting at an arbitrary vertex w, and let (v1, v2, . . . , vn)
be the resulting ordering, where vn = w.

3. for i = 1, 2, . . . , n− 5 do
if vi is not semi-simplicial in G[{vi, vi+1, . . . , vn}]
then return(“false”);

4. return(“true”).

Note that, after Step 1, we need only check whether the input graph G contains a
domino; this is why, we only process the n−5 vertices v1, v2, . . . , vn−5 in Step 3.
Additionally, it is important to observe that, for all i = 1, 2, . . . , n, the ordering
(vi, vi+1, . . . , vn) is an ordering which can be produced by running LexBFS on
the subgraph G[{vi, vi+1, . . . , vn}] starting at vertex vn. The correctness of the
algorithm follows from Theorem 4.1 and the fact that if the currently processed
vertex vi in Step 3 is semi-simplicial then clearly it cannot participate in a
domino (note that none of the vertices of a domino is semi-simplicial in any
graph containing the domino as induced subgraph).

4.1 Time and Space Complexity

According to Corollary 3.1, Step 1 takes O(min{nmα(n), nm + n2 log n}) time
and O(n+m) space. Step 2 takes O(n+m) time and space [5, 17]. The construc-
tion of the subgraphs G[{vi, vi+1, . . . , vn}] in Step 3 can be done in a systematic
fashion by observing that G[{v1, . . . , vn}] = G and that G[{vi+1, . . . , vn}] can be
obtained from G[{vi, . . . , vn}] by removing vertex vi and all its incident edges; if
the graph G is stored using a (doubly-connected) adjacency-list representation
with pointers for every edge ab connecting the record storing b in the adja-
cency list of a to the record storing a in the adjacency list of b and back, then
obtaining G[{vi+1, . . . , vn}] from G[{vi, . . . , vn}] takes time proportional to the
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degree of vi in G[{vi, . . . , vn}] and hence O(deg(vi)) time, where deg(vi) denotes
the degree of vertex vi in G. Additionally, in order to check whether a vertex is
semi-simplicial, we take advantage of the following result of Hoàng and Khouzam
(which was also used in [9]):
Theorem 4.2. (Hoàng and Khouzam [8]) Let G be a graph and x be a semi-
simplicial vertex of G. If x is not simplicial, then each big co-component of the
subgraph G[N(x)] is a module of G.
(A connected component or co-component of a graph is called big if it has at
least two vertices; we also note that if a vertex x is simplicial then none of
the co-components of the subgraph G[N(x)] is big.) Since computing the sub-
graph induced by the neighbors of vertex vi in G[{vi, . . . , vn}], computing its
co-components, and testing whether a vertex set is a module in G[{vi, . . . , vn}]
can all be done in time and space linear in the size of G[{vi, . . . , vn}], Step 3
takes a total of O

(∑
i

(
n + m + deg(vi)

))
= O(nm) time and O(n + m) space.

Finally, Step 4 takes constant time. Therefore, we obtain the following theorem.
Theorem 4.3. Let G be an undirected graph on n vertices and m edges. Then,
it can be determined whether G is an HHD-free graph in O(min{nmα(n), nm +
n2 log n}) time and O(n + m) space.

5 Recognition of WPO-graphs

Our algorithm for recognizing WPO-graphs relies on the fact that a graph G is
a WPO-graph if and only if G is HHP-free and its complement G is HH-free,
which follows from the following characterization due to Olariu and Randall [16].
Theorem 5.1. (Olariu and Randall [16]) A graph G is a WPO-graph if and only
if G contains no induced C5, P5, house, or “P”.
Eschen et al. [4] described an O(nm)-time algorithm for recognizing whether a
graph G on n vertices and m edges is HHP-free by using the modular decom-
position tree of G and Theorem 4.2 due to Hoàng and Khouzam [8]. We next
show that we can detect whether the complement G of G contains a hole or a
house in O(nm) time. Combining these two algorithms, we get an O(nm)-time
algorithm for recognizing WPO-graphs.
Let G be a graph and let v be an arbitrary vertex of G. We construct the
graph Ĝv from G as follows:

◦ V (Ĝv) = V (G)
◦ E(Ĝv) = { vy | y ∈M(v) }

∪ { xy | x ∈ N(v), y ∈M(v), and xy /∈ E(G) }
∪ { xx′ | x, x′ ∈ N(v) and xx′ /∈ E(G) }

Note that in G the neighbors of v are the vertices in M(v), i.e., the non-neighbors
of v in G, and the non-neighbors are the vertices in N(v). Thus, the graph Ĝv

is precisely G with any edges between vertices in M(v) removed. Then, it is not
difficult to see that the following result holds.
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Lemma 5.1. The vertex v belongs to a hole or is the top of a house or a building
in G if and only if v belongs to a hole in Ĝv.

Because in Ĝv there are no edges between vertices adjacent to v, the vertex v
cannot be the top of a house or a building. Thus, we can run the Algorithm
Not-in-HHB(Ĝv, v) and the vertex v belongs to a hole in Ĝv if and only if the
algorithm returns “false.” Assuming that the graph G has n vertices and m
edges, the graph Ĝv has n vertices and O(n deg(v) + deg2(v)) = O(n deg(v))
edges, where deg(v) is the degree of the vertex v in G; then, the construction
of Ĝv takes O(m + n deg(v)) time and O(n deg(v)) space, and the execution of
Not-in-HHB(Ĝv, v) runs in O(n + n deg(v) + deg(v) log deg(v)) = O(n deg(v))
time (Theorem 3.2; note that k = deg(v)). Thus, we can determine whether the
vertex v belongs to a hole in Ĝv in O(m+n deg(v)) time and O(n deg(v)) space.

Therefore, in light of Lemma 5.1, we have the following result.

Theorem 5.2. Let G be an undirected graph on n vertices and m edges. Then,
it can be determined whether the complement G is an HH-free graph in O(nm)
time and O(n2) space.

From Theorem 5.2 and the result of Eschen et al. [4] (i.e., HHP-free graphs can
be recognized in O(nm) time and O(n + m) space), we obtain the following
theorem.

Theorem 5.3. Let G be an undirected graph on n vertices and m edges. Then, it
can be determined whether G is a WPO-graph in O(nm) time and O(n2) space.

6 Concluding Remarks

We have presented recognition algorithms for the classes of HHD-free graphs
and WPO-graphs running in O(min{nmα(n), nm + n2 log n}) and O(nm) time,
respectively, where n is the number of vertices and m is the number of edges of
the input graph. Our proposed algorithms are simple, use simple data structures,
and require O(n + m) and O(n2) space, respectively. Moreover, our HH-free
and HHD-free graph recognition algorithms can be easily augmented to yield a
certificate (a hole, a house, or a domino) whenever they decide that the input
graph is not HH-free or HHD-free [13].

We leave as an open problem the designing of O(nm)-time algorithms for
recognizing HHD-free graphs. In light of the O(nm)-time recognition of P4-
comparability, P4-simplicial, bipolarizable, and WPO-graphs, it would be worth
investigating whether the recognition of brittle and semi-simplicial graphs is
inherently more difficult.
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