
Triangulating a Nonconvex Polytope 

Abstract 
This paper is concerned with the problem of partitioning 
a three-dimensional polytope into a small number of ele- 
mentary convex parts. The need for such decompositions 
arises in tool design, computer-aided manufacturing, finite- 
element methods, and robotics. Our main result is an al- 
gorithm for decomposing a polytope with n vertices and t 
reflex edges into O(n+r’) tetrahedra. This bound is asymp 
totically tight in the worst case. The algorithm is simple and 
practical. Its running time is O(nr + r2 log r). 

1 Introduction 
This work is concerned with the problem of partitioning a 
polytope in R3 into a small number of elementary convex 
parts. The general problem of decomposing an object into 
simpler components has been the focus of much attention 
in recent years. In two dimensions, computer graphics and 
pattern recognition have been the main source of motiva- 
tion for this work. Beginning with the papers of Feng and 
Pavlidis [32] and Schachter [20], the problem of rewriting 
a simple polygon as a collection of simple parts has been 
exhaustively researched, cf. O’Rourke’s book (171 and the 
survey article (Chaselle [7]). In higher dimensions, however, 
results have been few and far between. It is known from 
(Chazelle [S]) that a polytope of n vertices can always be 
partitioned into O(n2) convex pieces and that this bound 
is tight in the worst case. On a related problem, Aronov 
and Sharir [I] have shown that the cells of an arrangement 
of n triangles in $-space can be partitioned into a total of 
O(n20(n) + h) tetrahedra, where h is the number of faces in 
the arrangement, and o(n) is the inverse Ackermann func- 
tion. For fixed arbitrary dimension d, Edelsbrunner et al. 
[ll] have given an optimal algorithm for computing the par- 
tition of d-space induced by a collection of hyperplanes. The 
stratification of real-algebraic varieties and related issues are 
discussed in [5,8,9,19,21,23]. 
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The specific problem of partitioning a three-dimensional 
poly tope into simple parts arises in mesh-generation for 
finite-element methods, computer-aided design and manu- 
facturing, automated assembly systems and robotics (Baker 
[2], Smith [22]). The problem comes under various guises, 
depending on the desired shape of partitioning elements: 
convex, simplicial, star-shaped, monotone, rectangular, iso- 
thetic, etc. In general, the quest for minimal partitions 
seems destined to be frustrated. For example, finding min- 
imum convex decompositions is NP-hard (Lingas [14]). In 
practice, however, good approximation algorithms may be 
just as attractive, especially, if the decomposition is fast, ro- 
bust, and free of pathological features. Indeed, a minimum 
partition can be sometimes so contrived that a finer, yet 
more regular, decomposition is preferable. 

How difficult is it to triangulate a polytope (that is, sub 
divide it into a collection of tetrahedra)? In practice, a 
“good” triangulation algorithm should not only guarantee 
O(n2) P ieces in the worst case, but it should also make 
the size of the triangulation dependent on both n, the size 
of the polytope, and t, the number of reflex edges. The 
polytopes arising in standard applications areas tend to be 
quasi-convex, and this fact should be used to one’s advan- 
tage. For example, a triangulation of quadratic size would 
be disastrous if, say, the polytope is convex. When both n 
and r are taken into account, the lower bound on the trian- 
gulation size becomes n(n + r2) (as is easily derived from 
[S]). By this criterion, the algorithm described in this pa- 
per is optimal: A polytope of n vertices and r reflex edges 
is triangulated into O(n + r2) pieces. The running time 

is O(nr + r210gr). The algorithm is very simple and we 
believe that it will be practical. Plans are under way to im- 
plement it and test it on actual problems arising in the use 
of finite-element methods in aerospace engineering. 

The triangulation algorithm consists of two parts. In a 
pop-out phase we identify vertices of small degree that are 
not hindered by other vertices and remove them one by one, 
much like we would pull out a ski hat off someone’s head. 
This pruning operation reduces the size of the polytope to 
O(r). Next, we enter the fence-OR phase, which involves 
erecting vertical fences from each edge of the polytope. We 
use section 2 to set our notation and move a number of 
technicalities out of the way. Section 3 describes the trian- 
gulation algorithm proper. 
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2 Cups, Crowns, Domes, and 
Other Widgets 

We begin by recalling some standard terminology and in- 
troducing some of our own. Let P be a polytope in I@. 
We assume that P is simple, meaning that it is a piecewise- 
linear bmanifold with boundary, which is homeomorphic to 
a closed Shall. We also assume that its boundary aP is 
facially structured as a two-dimensional cell complex. Its 
elements are relatively open sets which are called vertices, 
edger, or foceta, if their atline closures have dimension 0, 1, 
or 2, respectively. Simplicity rules out handles, dangling or 
abutting edges (figure l), but it allows facets to have holes. 
An edge c of P is said to be reflez if the (interior) dihedral 
angle formed by its two incident facets exceeds x. By ex- 
tension, we say that a vertex is Fepez if it is incident upon 
at least one reflex edge, and that it is flat if all its incident 
facets lie in at most two distinct planes. Finally, a vertex 
is pointed if it is neither flat nor reflex (figure 2). It is easy 
to see that a pointed vertex cannot be incident upon two 
collinear edges, although it can be incident upon two copla- 
nar (adjacent) facets of P. 

Next, we define the cone of a pointed vertex v as the 
unbounded convex polyhedron spanned by the edges inci- 
dent upon v. More precisely, cone(w) is the locus of points 

"+C*<i<k 
Qi(Wi - v), where ~1,. . . , wk are the vertices of 

P adjacenl to *i and the oi’s are arbitrary nonnegative reals. 
We are now ready to introduce the key notion of a cup. The 
cone of a pointed vertex u contains a number of vertices of 
P distinct from u. Some lie on the boundary of the cone; 
others may lie strictly inside. The cup of u is a portion of 
the cone which contains II but steers clear of the other ver- 
tices. Let K+ and K be the convex hulls of all the vertices 
of P lying in cone(v) and cone(u) \ {v}, respectively. We 
define cup(u) as the simple polytope formed by the closure 
of K+ \ K. If a vertex of P intersects the cup outside the 
cone’s boundary but is not a vertex of the cup by virtue of 
the definition given above, then we make it into one and 
caIl it rtmnded. As we shall see below, stranded vertices can 
only lie on the boundary of the cup and thus sit on facets 
with or without cup edges incident upon them (figure 3). 

A number of simple properties follow readily from the 
definition. A cup is the closure of the difference between 
the convex hull of a finite point-set A U {u} and the convex 

rejlez 
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Figure 2: The different types of vertices 

hull of A. Since u does not belong to A, its cup is a simple 
star-shaped polytope whose kernel contains v (figure 4). Its 
boundary contains a number of polygons incident upon v 
which are glued to the convex hull of A. The glueing border 
can be centrally projected onto a plane so as to appear as 
the boundary of a convex polygon. The border in question is 
a closed simple polygonal curve, called the crown of v. The 
crown acts as a Jordan curve on the boundary of the cup, 
which it separates into one piece on the boundary of the cone 
and a convex polyhedral patch, which we call the dome of u. 
Edges and vertices of the dome that are not in the crown are 
called internal. Obviously, the internal edges of the dome 
are the only edges of the cup which are reflex (with respect 
to the cup). To conclude this string of definitions, we refer 
to the pointed vertex u as the apez of cup(u). 

We now investigate the relationship between P and the 
cup of u. All cup vertices are vertices of P though, obviously, 
the same cannot be said of cup edges. A more interesting 
observation is that the cup lies inside P. This follows from 
the fact, to be proven below, that the facets of the cup that 
are not in the dome lie in aP. Thus, it is impossible for a 
facet or an edge of P to intersect the interior of the cup, 
unless a vertex of P does. But that, of course, is ruled 
out by the very definition of a cup. This establishes our 
claim and also shows that stranded vertices can only be in- 
ternal vertices of the dome. Let us now prove the premise 
of this reasoning, which is that a facet of the cup that is not 
in the dome lies on the boundary aP. It suffices to show 
that the crown lies entirely in aP. Let 91,. . . , gt be the 
facets of P incident upon w and let us (mentally) merge any 
pair of coplanar facets. This produces superfacets fi, . . . , fk 

(given in either circular order around u), such that the di- 
hedral angle between two adjacent fi’s is strictly less than 

Figure 1: A nonsimple polytope Figure 3: A cup with a stranded vertex 
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Figure 4: A cup 

r. Now, for each i = 1,. . . , k, let Ki+ (resp. A’i) be the 
two-dimensional convex hull of the vertices of P lying in fi 
(resp. fi\ {u)). The closure of Kf \Ki is the polygon formed 
by intersecting the cup of u with the plane supporting f;: 
it is the two-dimensional equivalent of a cup (figure 5). Its 
boundary consists of a two-edge convex chain followed by 
a concave chain (possibly reduced to a single edge). By a 
convex (resp. concave) chain we mean a piece of a polygon’s 
boundary which always turns strictly right (resp. left) when 
traversed clockwise. The construction works as desired be- 
cause u is pointed, and therefore exhibits an angle less than 
x in fi. The crown of w is the closed curve obtained by con- 
catenating the concave chains in sequence. This proves our 
claim that the crown lies in aP. Additionally, no vertices 
but the endpoints of such concave chains can be pointed ver- 
tices of P, Therefore, since all edges of the cup adjacent to 
the apex are also edges of P, a pointed vertex can be on the 
crown of another pointed vertex only if they are adjacent in 
P. Note however, that the converse is not always true. In 
particular, if two pointed vertices are connected by an edge 
which is incident upon two coplanar facets, none of them 
lies on the crown of the other. 

Let us summarize the various types of faces which a cup 
may have. The following statements are to be understood 
with respect to the cup and not P. The edges incident to 
the apex as well as the edges of the crown are nonreflex. Ac- 
tually, none of them can be incident to two coplanar facets. 
The remn is that the convex hull operation merges coplanar 
facets. As a result, although each facet of the cup incident 
upon w lies in 8P, it does not necessarily lie within any given 
facet of P. Returning to our classification, we shouId note 
that the internal edges of the dome are all reflex. 

We close this section with a few technical lemmas which 
hold the key to understanding the whys and wherefores of 
the pop-out phase. That phase involves identifying pointed 
vertices of small degree whose domes are unhindered. We 
say that a dome is hindered if it contains (i) an internal 

Figure 5: A facet of a cup 

vertex, or (ii) an internal edge that is also an edge of P. 
As usual, the degree of a vertex of P refers to the number 
of edges incident upon it. The idea is to pull out such a 
desirable vertex by removing the boundary of its cup and ’ 
replacing it by its dome. This shelling step decreases the 
vertex count by one without increasing the number of reflex 
edges. 

In the following, we assume that P is a simple polytope 
with n vertices and m edges, exactly r of which are reflex. 
We shall also assume that P does not have any flat vertices. 

Lemma 2.1. Let v and v’ be two distinct nonadjacent 
pointed vertices of o simple polytope. No point can be an 
internal uertez for the domes of both v and v’. Similarly, 
no line segment can be an internal edge of both domes. 

Proof: Let z be a vertex internal to the domes of u and u’. 
Let us first assume that the intersection Q of the interiors 
of the cups of w and v’ is nonempty. The closure of Q must 
have at least one vertex outside the dome of u, otherwise it 
would have empty interior. The only such vertex can be the 
apex u, however, since the interior of a cup is free of vertices. 
Thus, w lies in the cup of u’. Since it can neither coincide 
with u’ nor be an internal vertex of the dome of u’, the 
vertex u must lie in the crown of u’. But this wa mentioned 
earlier as an impossibility, since v and u’ are nonadjacent. 

So, we can now assume that the intersection of the interi- 
ors of the two cups is empty. Since t is internal to the dome 
of u, there exists a small open half-ball centered at z that 
lies entirely within the cup of u. A similar statement holds 
for v’ as well, and since the two half-balls are nonintersect- 
ing, the domes of both u and v’, locally around z, have to he 
on the plane separating the two half-balls, which contradicts 
the simplicity of P. 

This proves the first part of the lemma. The second part 
is a trivial corollary: simply introduce an artificial vertex at 
the midpoint of the internal edge. g 
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Lemma 2.2. Let d 2 6 and t > 5 + 30/(d - 5) be two 
fied integers. If m 2 (1 I- t)t &en P contoinJ at least 
u(m - r) + 2 pointed vertices of degree at mosf d, where 

t-5 2 
u=32--- d+l 

Proof: We have n > m/3 + 2, from Euler’s relation. If n’ 
is the number of reflex vertices, then the number of pointed 
vertices is 

R--R ‘> _ y + 2 - n’. 

Since each reflex vertex is incident upon at least one reflex 
edge, we have n’ < 2r. From the last two inequalities, and 
under the assumption that m > (1 + i)r, we derive 

n-n’> -~+2-2r~~(m- r) + 2. 

Since a pointed vertex is incident upon nonreflex edges only, 

Cdi 5 2(m - r), 
i 

where the sum of the degrees d; extends over all pointed 
vertices. Furthermore, 

Edi2 xdj2 (n-n’-N&+1), 
I dj>d 

where N is the number of pointed vertices of degree at most 
equal to d. The combination of the lsst two inequalities 
yields (n - R’ - JV) (d + 1) 5 2(m - r). Therefore, 

N.> (n-tat)-&(m-r) 2 (9 - 2) (m-r)+2. 
d+l 

Thus, setting u = (t - 5)/(32) - 2/(d + 1) > 0, the proof is 
complete. g 

Lemma 2.3. Any reflex vertez which is internal to a dome 
has at least three n$ez edges incident upon it. 

Proof: Let w be an internal vertex of the dome of some 
pointed vertex. There exists a small open half-ball centered 
at w that lies entirely inside P. Therefore, w is a vertex 
of the convex hull of the point-set consisting of w and of 
the endpoints of the edges incident upon it. Note that the 
convex hull edges incident upon w are also edges of the poly- 
tope, and are in fact reflex. From the simpiicity of P, we cm 
now conclude that at least three reflex edges of the polytope 
are incident upon w. H 

Lemma 2.4. A re~7e.z uertez of P can contribute internal 
vertices to at most three distinct domes. Similarly, a re- 
j?ez edge of P cnn wntribute internal edges to at most 
three domes. 

Proof: Figure 6 shows that these bounds are tight. Now, 
suppose, for contradiction, that a reflex vertex p’is internal 
to the domes of four pointed vertices u, u, w, z of P. It fol- 
lows from Lemma 2.1 that all four apexes must be adjacent 
to each other, thus forming a tetrahedron T whose six edges 
all lie in aP. This tetrahedron cannot have empty interior, 
otherwise one of the apexes would be either reflex or flat. 
Note also that the cup of a pointed vertex s contains any 

Figure 6: A reflex vertex contributing internal vertices 
to three domes 

vertex t adjacent to 8 such that the (interior) dihedral angle 
around st is strictly less than r. Therefore, the crown of 
each of u, u, w, z contains the other three apexes as vertices. 
Furthermore, since p is an internal vertex of all four domes, 
and the edges of T are nonreflex, p must lie in T. However, 
it cannot lie on any of T’s edges, otherwise there would be 
two nonadjacent apexes. 

Since p is internal to the domes of all four apexes, there 
exists a small ball centered at p that lies entirely in each 
of their cones. Because P is simple, the ball intersects the 
complement of P, and so, in particular contains a point q 
outside of P that avoids each of the six planes defined by p 
snd any two of the four apexes. It follows that p must. lie 
in the relative interior of one of the four tetrahedra defined 
by g and any three of the apexes. All four vertices of that 
tetrahedron, however, lie in the cone of the fourth apex, 
which prevents p from being a vertex of its dome, and gives 
us a contradiction. 

The proof of the second part of the lemma is similar to 
that of Lemma 2.1. We introduce an artificial reflex vertex 
at the midpoint of the edge, and make use of the previous 
result. m 

Lemma 2.5. Given an edge pq of P, there an at most two 
pointed vertices v and w, such that pq is internal to the 
domes of both v and w, and p and q lie on the crowns of 
both domes. 

Proof: Suppose that pq is internal to the domes of v, w, z, 
and that p and q lie in all three crowns. Then, all six line seg- 
ments pv, qw,pw, qw, pz, qz lie in aP, and all three triangles 
pvq, pwg, pzq lie entirely in P. Since v, w, z are pointed ver- 
tices, the boundary of each of these triangles cannot contain 
more than one of the apexes, and thus a total ordering of 
them around pq can be established. Furthermore, since the 
genus of aP is 0, these boundaries act as Jordan curves, par- 
titioning aP into two polyhedral patches each. Therefore, 
there is one apex, say w, such that each of the other two 
apexes w,z belongs to each of the two polyhedral patches 
delimited by pu, qv, and pq. It follows from Lemma 2.1 that 
v, w, z must be adjacent to each other, and so the edge wz 
must cross one of the segments pw, qw, or pq. In the first 
two cases, p and q, respectively, would be excluded from the 

1 
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a(m - r) pointed vertices of degree 5 d whoae domes are 
unhindered, where 

. 

. 

Figure 7: An internal edge with its endpoints on the 
crowns of two domes 

cup of v. In the last case the two facets. incident upon pq 
would be coplanar, which contradicts the fact that pq is a 
reflex edge. Note that the statement of the lemma is tight, 
ss shown in figure 7. g 

Lemma 2.6. The polytope P containa at most 2r pointed 
vertices whose domes am hindered. 

Roof: We partition the reflex edges of P into three classes: 

1. those with at least one endpoint being an internal ver- 
tex of some dome, 

2. internal edges of a dome with both endpoints on the 
crown, and 

3. all remaining reflex edges. 

Let us prove by contradiction that classes I and 2 are dis- 
joint. Assume that there exists a reflex edge e of P, internal 
to the domes of two pointed vertices u and w, such that one 
of its endpoints, say p, lies on the crown of u and is internal 
to the dome of v. Then, there exists a small open half-ball 
centered at p that lies entirely in the cup of u, and hence in 
P. Since e is internal to the dome of u, it is not collinear 
with pu. With pu nonreflex, it follows that the unique plane 
defined by e and pu intersects the half-ball in a half-disk cen- 
tered at p. The-internal angle between e and pu is strictly 
less than x however, therefore the half-disk cannot lie en- 
tirely in P: a contradiction. We conclude that no vertex 
can be internal to the dome of a pointed vertex and on the 
crown of another one. 
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Let ri (i = 1,2,3) be the cardinality of the i-th class 
above. According to Lemma 2.4, an edge in class 1 may 
hinder at most three domes by contributing internal ver- 
tices through one given endpoint q (so the total might be 
as high as 6). Note that if an endpoint of such an edge 
lies on the crown of some pointed vertex, then, according 
to the argument above, it cannot be internal to, and thus 
cannot hinder any dome. But the endpoint q will be inci- 
dent upon at least two additional reflex edges of Pin class 1 
(Lemma 2.3). Therefore, the ri edges in class 1 can hinder 
at most (2 x 3) /3 rr domes. Additionally, from Lemma 2.5, 
each edge in class 2 may hinder at most two domes. The 
lemma follows readily. g 

Lemma 2.7. Let d 1 6 and t > 11 + 66/(d - 5) be two 
jized integers. If m 2 (1 + t)r then P contains at least 

t-11 2 s=---* 
32 d+l 

Proof: From Lemma 2.2, we derive a lower bound on the 
number of pointed vertices of degree at most d. Among 
these vertices, at most 2r can have their domes hindered 
(Lemma 2.6). So, in order to guarantee the presence of 
pointed vertices with unhindered domes, it suffices to have 

( t-5 2 m-m 
3t d+l > 

(m-r)+2>f(m-r)z2r. 

The number of such vertices will be at least 

t-5 2 ----2)(m 
3t d+l t 

- r) = s(m - r), 

where a = (t - 11)/(3t) - 2/(d + 1) > 0. g 

3 The Triangulation Algorithm 
Given a simple polytope P with n vertices and r reflex 
edges, we show how to partition P into O(n + r’) tetra- 

hedra. The algorithm requires O(nr + r2 log r) time and 

O(n + r’) space. Up to within a constant factor, the num- 
ber of tetrahedra produced by the algorithm is optimal in 
the worst case. This follows from a lower bound of Q(m’) 
on the number of convex parts needed to partition a certain 
polytope of m vertices, which is a member of an infinite 
family {P,} (Chaxelle [6]). Indeed,, we simply add dummy 
nonreflex edges to Pr until we have a polytope of n vertices 
with r reflex edges. Although not all realizable pairs (n,r) 
might be obtained in this way, enough of them are to justify 
our claim that G(n f r’) is a tight worst-case bound on the 
number of tetrahedra needed to triangulate a polytope with 
n vertices and r reflex edges. 

As we alluded to earlier, the triangulation algorithm con- 
sists of two phases, figuratively termed pop-out and fence- 
08 We shall assume that the polytope P is free of flat 
vertices and is given to us in normal form, meaning that 
its boundary is triangulated and that all incidences are ex- 
plicitly listed. For this purpose, we can use any of the 
standard polyhedral representations given in the literature, 
e.g., winged-edge (Baumgart [4]), doubly-connected-edge- 
list @fuller and Preparata [16]), quad-edge (Guibas and 
Stolfi [13]). A simple polytope can be normalized very sim- 
ply in O(nr) time. To do so, we triangulate each facet by 
sweeping a line across its supporting plane, stopping only at 
vertices exhibiting reflex angles. Since these vertices are inci- 
dent upon reflex edges, there will be at most O(r) sweep-line 
stops, each incurring a search cost of O(n) time. Of course, 
we can push further in that direction and bring down the 
normalization time to O(n log r), using, say, Mehlhorn and 
Hertel’s triangulation algorithm [15]. Admittedly, there is 
little point optimizing the preprocessing, as its costs pale in 
the face of the O(nr + r2 log r) running time of the main 
algorithm. Note that the normalization may increase the 
number of nonreflex edges, but does not affect n or r. 



A. The fence-off phase. Our goal here is to triangulate 
a simple polytope of n vertices into O(n’) tetrahedra. The 
method works well when at least a fixed fraction of the edges 
are reflex. When this is not the case we must apply the pop 
out phase in preprocessing. As far as the fence-off procedure 
is concerned, we begin by partitioning P into cylindrical 
pieces, and then we triangulate each piece separately. To 
build the cylindrical partition we attach vertical fences to 
each edge, reflex and nonreflex, one at a time. Let us say 
that a point p is visible from an edge if it can be connected 
to it by a vertical segment whose relative interior lies in the 
interior of P. The set of points visible from e is easily seen 
to be a monotone polygon: it is called the fence of the edge 
e and is to be attached to it. Our fences are similar to the 
walls used in the slicing theorem of (Aronov and Shark [l]): 
one difference is that while fences project vertically onto 
their attaching edges, walls flood all over the free portion of 
the vertical plane passing through the edge. Three questions 
arise: (i) How do we erect a fence? (ii) Does fencing ensure 
convexity? (iii) How many new edges do we create in the 
process? We shall answer all three questions in that order. 

In general, erecting fences will result in cutting off some 
edges into sub-edges. We shall still treat each edge as one 
entity, and deal with all its sub-edges in one fell swoop. 
Note that because of sub-edges, the fence attached to an 
edge e of P might be itself decomposed into monotone sub- 
pieces separated by vertical edges. We give a very simple, 
albeit slightly inefficient, method for computing the fence 
of e. Let C be the set of segments obtained by computing 
the intersection of aP and all previous fences with the ver- 
tical plane passing through e. In general, C forms disjoint 
polygonal boundaries augmented with vertical segments cre- 
ated by previous fences. Next, we compute the trapezoidal 
map induced by the visibility relation among the segments 
of C. This is the planar partition formed by C and all the 
vertical segments that connect endpoints to their visible seg- 
ments in C. Since the number of fences is O(n) and none 
can contribute more than a single segment to C (because 
of the monotonicity of the visibility polygons), the size of 
the trapezoidal map is O(n). The entire computation can 
be carried out in O(n log n) time. The collection of regions 
incident upon e partitions its fence into trapezoids (figure 
8). Once the fence is available, it must be added on to P 

Figure 8: The fence of the edge ab 

and the previous fences. 

Note that at any given time, the construction might leave 
fences with exposed edges “sticking out”. The hope is that 
in the end P will be nicely decomposed into convex poly- 
topes. Unfortunately, this is not always true. Of course, 
every reflex edge of P is “resolved” in the sense that the 
angles between its adjacent facets cease to be reflex. The 
problem is that new reflex edges might be created between 
two fences (figure 9). Let us examine this phenomenon in 
some detail. Let e be a vertical edge of a fence. Since the 
edge e is incident upon at least one vertex of P and i3P 
is triangulated, the edge e cannot be left exposed after the 
fencing. It is conceivable, however, that e coincides with an 
edge of another fence which results in a reflex edge. What we 
can say at this point is that the fencing operation partitions 
P into cylindrical pieces which are free of nonvertical reflex 
edges. Each piece can be defined by (i) specifying a hori- 
zontal base polygon, (ii) lifting it vertically into an infinite 
cylinder, and (iii) clipping the cylinder between two planes 
(which do not intersect inside the cylinder). By triangulat- 
ing the base polygons of each cylindrical piece we refine the 
partition into one consisting of cylindrical pieces whose base 
polygons are triangles. A triangulation of P follows trivially. 

Once all fences are in, the partition of P involves a total 
of O(n’) vertices, edges, and facets. Triangulating the base 
polygons and finishing off the triangulation of P adds a con- 
stant multiplicative factor to the size of the decomposition. 
Therefore the description size of the final partition is O(n2), 

and consequently O(n’) tetrahedra are produced. The ex- 

ecution time for the entire fence-off phase is O(n’ log n). 

B. The pop-out phase. Thii is a form of preprocessing 
aimed at bringing down the number of vertices to the same 
order as the number of reflex edges. To begin with, we 
compute the degree of each pointed vertex of w of P. If the 
degree of u does not exceed some appropriate constant d, 
we compute the convex hull of its crown. The boundary of 
this hull consists of two polyhedral patches separated by the 
crown itself, one of which isolates the other from u. Let K 
be the polytope bounded by the patch in question and the 
cone of u. The cup of v is precisely K if and only if every 
reflex vertex and edge of P lies either outside K or on the 

Figure 9: A nonconvex decomposition 
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boundary of the cone. We can check this easily in O(dr) 
time and thus assert whether the dome of w is hindered or 
not. If it is not, then we insert a pointer to it in a queue 
of fauombIe vertices. Once all pointed vertices have been 
checked out and the queue is complete, we iterate on the 
following process until the queue is empty. 

1. Let v be the favorable vertex referenced by the top 
of the queue. Triangulate its cup by connecting w to 
each nonincident edge of its triangulated boundary. 

2. Remove from P each tetrahedron obtained in step 1, 
and renormalize the resulting polytope. 

3. Remove from the queue any reference to u and its 
adjacent vertices. 

Rom Lemma 2.7 and the fact that at most d+ 1 favorable 
vertices are removed from the queue each time step 3 is 
executed, we derive that this process removes at least 

> (m-4 

> (d - 5)t - ll(d + 1) s > cn 
- 2(t+l)(d+l)a - 

vertices, for some constant c > 0. Thus we are left with a 
polytope with at most (1 - c)n vertices and r reflex edges. 
Repeating this pruning pass at most O(log ra) times reduces 
the number of vertices to O(r). Every time a favorable ver- 
tex is removed, reconfiguring the new polytope P can be 
done by local manipulation in constant time. Since each 
pruning pass removes at least a fixed fraction of the ver- 
tices, the pop-out phase accounts for 

O(nr + mar + a’nr + . - -) = O(nr) 

in the running time of the algorithm, where Q is a fixed con- 
stant less than 1. Consequently, the popout phase requires 
O(nr) time. Since each popped-out vertex produces at most 
d - 2 new tetrahedra, by the end of this phase, P is decom- 
posed into a collection of O(n) tetrahedra and a polytope of 
O(r) vertices. 

C. Putting the pieces together. Given a simple poly- 
tope with n vertices and r reflex edges, we start the parti- 
tioning by (i) removing all flat vertices, and doing the obvi- 
ous clean-up, (ii) triangulating the boundary, and (iii) ap 
plying the popout phase in case n greatly exceeds r. We fin- 
ish the decomposition by going through the fence-off phase. 
The running time of the algorithm is O(nr + r’logr). In 
practice, it will be important to have a robust representation 
of cell complexes in fspace in order to carry out the compu- 
tation successfully and efficiently. A representation of three- 
dimensional polyhedral subdivisions, along with the set of 
navigational primitives needed to carry out the required cut- 
ting operations, can be found in (Dobkin and La40 [lo]). 
We summarize our results below. 

Theorem 3.1. In O(nr + rllogr) time it is possible to 
partition a simple polgtope with n vertices and r rejlez 
edges into O(n + r’) tetrahedm. The time bound includes 
the cost of producing a full-fledged triangulation with an 
ezplicit description of ita facial structure. Up to within a 
constant factor, the number of tetmhedm produced by the 
algorithm is optimal in the worst cnue. 

4 Closing Remarks 
Of course, not every n-vertex polytope with r reflex edges 
necessitates st(n + r2) tetrahedra to form a triangulation. 
Are there simple heuristics one could use to guarantee that 
the triangulation size does not exceed the minimum by more 
than a fixed constant in all cases? Is there a polynomial- 
time algorithm for such an approximation scheme? Also, it 
is often desirable to avoid long, shinny tetrahedra iu mesh 
generation. ,See (Baker et al. [3]) for similar concerns in 
two dimensions. One approach is to retriangulate the un- 
desirable tetrahedra produced by our triangulation. Again, 
are there preferred heuristics to keep the number of Steiner 
points as low as possible? 
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