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Abstract. We consider the following motion planning problem for a
point robot inside a simple polygon P : starting from an arbitrary point
s of P , the robot aims at reaching the closest point t of P from where the
entire polygon P can be seen; the robot does not have complete knowl-
edge of P but is equipped with a 360-degree vision system that helps
it “see” its surrounding space. We are interested in a competitive path
planning algorithm, i.e., one that produces a path whose length does not
exceed a constant c times the length of the shortest off-line path (in this
case, c × distance(s, t)); the constant c is called the competitive factor.
In this paper, we present a new strategy that achieves a competitive
factor of ∼3.126, improving over a 4.14-competitive strategy of Icking
and Klein and a 3.829-competitive strategy of Lee et al. Our strategy
possesses two additional advantages: first, the first point reached from
where the entire polygon P is seen is precisely the closest such point to
the starting position s, and second, all the points of the path are directly
determined in terms of s and of polygon vertices, which implies that an
actual robot following the strategy is not expected to deviate much from
its course due to numerical error. The competitiveness analysis is based
on properties of the class of curves with increasing chords.

Keywords: Motion planning, competitive algorithm, kernel, simple
polygon, curve with increasing chords.

1 Introduction

The field of robot motion planning has received considerable attention during
the 1980s, but research intensified in the late 1980s when technological advances
allowed the autonomous function of robots. This, along with the need for au-
tonomous robots to undertake tasks that may be dangerous for humans (areas
polluted by chemicals, space exploration, etc.), led to a number of results pertain-
ing to motion planning problems in unknown or partially known environments
(see [4] for a survey). The general motion planning problem for an autonomous
robot involves devising a strategy which can help the robot to get to a destina-
tion point in an environment which is being “discovered” by means of a vision
system (or tactile sensing in some early work). Most motion planning problems
are being modeled as two-dimensional problems where the robot is a point mov-
ing inside or around polygonal shapes. This is not really restrictive, as real-world
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problems can be reduced to this formulation by means of transformations of the
geometric boundaries of the objects in the robot’s world (Minkowski sum, etc).

Of course, one is interested in having strategies which guarantee that the
path traveled by the robot up to its destination is no more than a constant times
the length of the shortest path if the environment was completely known. Such
strategies are called competitive [14], and the ratio of the length of the actual path
traveled over the length of the shortest path is called the competitive factor. In
other words, the competitive strategies guarantee that the effort expended is not
far from the optimal. Research results have indicated that finding competitive
strategies for different motion planning problems exhibits varying degrees of
difficulty (from obtaining constant competitive solutions to proving that finding
a competitive solution is P-SPACE complete; see [1], [12]).

In this paper, we consider the problem of planning the path of a robot inside
a polygon from any given starting position to a point from where the entire
polygon can be seen; in fact, the closest such point to the starting position
is sought. The robot is equipped with a 360-degree vision system. This is the
problem of reaching the kernel of a polygon, and is what a mechanical guard
is called to solve in order to position itself so that it watches its territory. The
problem has been considered by Icking and Klein [5] who described a strategy to
reach the closest point of the kernel at a competitive factor of ∼5.48; a tighter
analysis by Lee and Chwa [8] showed that the strategy is ∼4.14-competitive.
Icking and Klein also showed that no competitive factor less than

√
2 can be

achieved. A different strategy with a competitive factor of ∼3.829 was later
described by Lee et al. [9], while López-Ortiz and Schuierer [10] improved the
lower bound to ∼1.48. López-Ortiz and Schuierer also noted that the competitive
factor of [5] is not guaranteed for negative instances (i.e., when the polygon has
empty kernel) and described a strategy that is guaranteed to work even in this
case at a competitive factor of ∼46.35.

Our work contributes a new strategy for reaching the kernel of an unknown
polygon P with nonempty kernel which achieves a competitive factor of ∼3.126.
The path consists of line segments and circular arcs whose total number is linear
in the size of P . Our strategy is designed so that the robot walks into the kernel
at precisely the point that is closest to the starting position; additionally, it
has the advantage that any point of the course is determined by the starting
position of the robot and vertices of P , and therefore an actual robot following
the strategy is not expected to deviate much from its course due to accumulated
numerical errors. The competitiveness analysis is based on properties of the
class of curves with increasing chords [13]. Experimental results suggest that
the strategy performs better than the theoretical competitive factor. (A similar
strategy has been used in [7] for motion planning in a street-polygon.)

The paper is structured as follows. In Section 2 we review the terminology
that we use throughout the paper, and in Section 3 we outline our strategy
and state some of the properties of the resulting path. In Section 4 we establish
the competitive factor of the strategy, and in Section 5 we conclude with final
remarks and open questions.
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2 Terminology

A simple polygon is the region enclosed by a single closed non-self-intersecting
polygonal line; thus, a simple polygon does not have “holes” in it. The set of all
points p of a simple polygon P such that the line segment that connects p with
any other point of P lies entirely in P is called the kernel of the polygon. If we
define the inner halfplane of an edge as the closed halfplane which is defined by
the edge and contains all the points of P in a sufficiently small neighborhood
of the edge’s midpoint, then the kernel of P is equal to the intersection of the
inner halfplanes of all the edges of P and is therefore convex.

We will follow the terminology of Icking and
Klein [5]; we briefly summarize it in this para-
graph. From its starting position s, the robot prob-
ably does not see parts of the polygon P in which it
stands; if the robot sees all of P , then s belongs to
the kernel and the robot need not move. The hid-
den portions of the polygon are called caves. Each
cave is adjacent to a reflex vertex of P , whose very
existence creates the cave; these reflex vertices are
called constraint vertices (Figure 1). A cave (asso-
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ciated with a constraint vertex v) is characterized as either left if it lies to
the left of the directed line −→sv, or right otherwise. By extension, we say that
a vertex is a left constraint vertex if it is a constraint vertex associated with a
left cave, and similarly for a right constraint vertex. In Figure 1, the vertices
v and w are left constraint vertices, and the shaded regions next to them are
the associated caves; the vertex u is a right constraint vertex. For each of the
constraint vertices v, we define its inner halfplane with respect to the current
position p as the closed halfplane which is delimited by the line pv and does not
contain the corresponding cave.

From its starting position, the robot may detect zero or more left caves and
zero or more right caves. If the robot sees at least one left cave, the following
lemma holds (see [11] for a proof).

Lemma 1. Suppose that from its starting position s in a simple polygon P the
robot detects one or more left caves next to the constraint vertices l1, . . ., lk
(k ≥ 1). Suppose further that no left constraint vertex exists such that the closure
of the complement of its inner halfplane contains all the left constraint vertices.
Then, the kernel of P is empty.

A similar lemma holds for the right constraint vertices. Therefore, if the condi-
tions of Lemma 1 hold, we need do nothing, since the polygon has empty kernel.
Otherwise, there is a left constraint vertex such that the closure of the com-
plement of its inner halfplane contains all the left constraint vertices and it is
unique (if there are more than one vertices collinear with s then we choose the
one farthest away from s); we call this vertex maximal left constraint vertex. In
Figure 1, v is the maximal left constraint vertex. In a similar fashion, we have
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the maximal right constraint vertex. It can be proven that in a polygon with
nonempty kernel, the left and right constraint vertices are not “intermixed” and
this is why in papers on this problem which assume polygons with nonempty
kernel, figures show the left and the right constraint vertices all gathered on the
left and on the right of the polygon boundary respectively.

Crucial in the analysis of our strategy is the notion of a curve with increasing
chords; a curve has increasing chords if |ad| ≥ |bc| for any four points a, b, c, d
lying on the curve in that order (|pq| denotes the length of the line segment
connecting p and q). For a plane curve with increasing chords, Rote proved that

Lemma 2. [13] The length of a plane curve with increasing chords connect-
ing two points a and b does not exceed 2π

3 times the length of the line segment
connecting a and b.

We close this section with a well known geometric fact and another lemma.

Fact 1. Consider a circle with diameter ab. Then, the angle âpb of the triangle
with vertices a, b, and p is less than, equal to, or greater than π/2 if p lies
outside, on the boundary, or inside the circle, respectively.

Lemma 3. Let C1 be a connected non-self-intersecting curve which does not
intersect the line segment connecting its endpoints a and b, and C2 a convex
polygonal line with the same endpoints which lies in the region enclosed by C1
and the line segment ab. Then, the length of C2 does not exceed the length of C1.

Angle Notation: Since three points define two angles (which sum up to 2π),
in the following, the notation âbc (where a, b, c are three non-collinear points)
is meant to indicate the smallest of the two corresponding angles.

3 The Strategy

The basic motivation behind our strategy stems from
the study of the simplest case, i.e., a single reflex ver-
tex v whose incident edges are not both visible from
the starting position s. Since the robot does not know
the direction of the invisible edge e incident upon v, it
does not know where the closest point t of the kernel
might be. However, in all cases, t belongs to the semi-
circle with diameter sv, assuming that the semicircle
lies in the polygon P (Figure 2). So, it seems a good
idea to follow this semicircle.
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Our strategy is based on this idea. Thus, the path of the robot consists of
circular arcs and line segments; each circular arc belongs to a circle with diameter
sp, where s is the starting position and p is a constraint vertex. This strategy
makes the robot reach the kernel at its closest point to s.1

1 It must be noted that this strategy is not optimal for the simple case of a single
reflex vertex; it yields a worst-case competitive factor of π/2 ' 1.57. See [6], for a
proof that the optimal competitive factor is ∼1.212, and for a strategy achieving it.
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We first consider the one-sided case, where there are only left or only right
caves; our strategy for the general case consists of applying the one-sided case
strategy twice, first for the left caves until we see them all, and then for the right
caves (if needed).

3.1 The One-Sided Case

Without loss of generality, we consider the case where there are only left caves
(the case where we have only right caves is similar). Until the robot sees all
the left caves, there exist left constraint vertices and among them a maximal
left constraint vertex, which may change as the robot moves. Initially, the robot
finds the maximal left constraint vertex v0 as seen from the starting position
s and starts following the semicircle with diameter sv0. The two fundamental
cases that characterize the robot’s path are:

1. A new maximal constraint vertex u is discovered. Then, the robot will start
following the semicircle with diameter su (Figure 3: point a). Interestingly,
the current location of the robot belongs to both semicircles.

2. The cave next to the currently maximal constraint vertex u becomes visible.
This implies that the second edge e incident upon u has become visible as
well. Then, the robot at its current position, say, b, finds the new maximal
constraint vertex. If no such vertex exists, then the entire polygon is visible
and the robot has achieved its goal. If such a vertex exists —let it be v—
and v is a constraint vertex just seen for the first time (for example, if v is
the other endpoint of e), then we execute the previous case. The remaining
possibility is if v is a constraint vertex that has already been seen, in which
case the robot walks along the line segment bu trying to reach (if possible)
the semicircle with diameter sv (Figure 3: points b and c).
Note that it may be the case that the robot has to reach the currently
maximal constraint vertex u in order to see the cave next to u. (This can
only happen if u is the maximal left constraint vertex v0 seen from s.) In
this case, if there exists a new maximal constraint vertex w, w has to be
a constraint vertex just discovered, for otherwise the polygon has empty
kernel. The robot at u lies on or outside the semicircle with diameter sw,
and it will try to walk along the line su away from s in an attempt to see
the cave next to w.

The above two cases do not take into account the fact that the robot may
take advantage of what it has seen. Clearly, the kernel of the polygon P is a
subset of the inner halfplanes of the edges of P and of the inner halfplanes
of the constraint vertices. Since the robot seeks to locate the kernel, it seems
reasonable that it should not leave the inner halfplane of any of the polygon
edges or constraint vertices which it sees or has seen. To be able to do that, the
robot maintains the free polygon which is the subset of P in which the robot
may walk. Initially, the free polygon is the intersection of the inner halfplanes of
the visible edges and the visible constraint vertices from the starting point s. As
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a new edge or a new constraint vertex becomes visible, the robot updates its free
polygon by intersecting it with the corresponding inner halfplane. By requiring
that the robot maintains the free polygon up to date and remains in it, we ensure
that the portion of the polygon seen by the robot never decreases; at the same
time, the free polygon keeps shrinking and when the robot reaches the kernel,
the free polygon is precisely the kernel of P . Additionally, a left (resp., right)
constraint vertex will remain so until both its incident edges become visible; it
will not turn into a right (resp., left) constraint vertex, which might happen if
the robot zig-zagged inside P .

At any time during its trip, the robot lies at a point, say, p, on the boundary
of the current free polygon and it can only walk in the free polygon, that is, in the
wedge delimited by the lines supporting the free polygon edges that are incident
upon p. Since the free polygon is defined as the intersection of halfplanes, the
opening angle of this wedge does not exceed π. Because the line supporting the
edge to the left of p (with respect to the robot’s motion towards the interior
of the free polygon) bounds the current free polygon from the left, we call it a
left-bounding line; similarly, the line supporting the edge to the right of p is a
right-bounding line.

The following two cases complete the path planning strategy of the robot.

3. The robot’s intended course leads or lies outside the free polygon. Then the
robot walks along the boundary of the free polygon as close to the intended
course as possible. In terms of left- and right-bounding lines, the robot walks
along the left-bounding (right-bounding, respectively) line of the current free
polygon if and only if the intended course leads to the left (right, respectively)
of the free polygon.

4. An edge that was not visible becomes visible. Then, the robot updates the
free polygon by intersecting it with the inner halfplane of that edge. Note
that this case has to be executed in case 2.

An example is shown in Figure 4. It is important to note that the ending point
h lies on the line supporting the edge which was seen last. Another important
observation pertains to the way the value of the angle p̂sv0 behaves, where p
denotes the current position of the robot on its way from s to h, and v0 is the
maximal left constraint vertex as observed from s. In the most general case,
the following behavior of the angle p̂sv0 is exhibited: it is initially π/2, then it



Competitive Kernel-Searching 373

decreases, potentially reaching 0 but not decreasing below 0 (sub-path from s
to f in Figure 4), and then it increases (sub-path from f to h). (Note that the
robot may walk along sv0.) However, two special cases may arise: first, the value
of p̂sv0 is always decreasing from s to h (for example, consider the case that the
caves of both v and w of Figure 4 were visible at f), and second, the value of
p̂sv0 is always non-decreasing. The latter case may occur if, due to clipping, the
left-bounding line of the free polygon is farther to the right from the semicircle
with diameter sv0; in this case, the robot will not follow any of the semicircles
defined by s and the maximal left constraint vertices.

Lemma 4. Suppose that the angle p̂sv0 decreases and then increases, reaching
its minimum value when the robot is at the point x. Then,
(i) x is either on or outside the corresponding semicircle,
(ii) the part of the robot’s path past x lies outside the semicircle defined by s and
the currently maximal constraint vertex.

3.2 The General Case

Our strategy for the general case consists of applying the one-sided strategy
twice, first for the left caves and then for the right caves. Suppose that the robot
is at point h, when it finally sees all the left caves. Then, the robot finds the
maximal right constraint vertex u and updates its free polygon by intersecting
it with the inner halfplane of u at h. The robot’s intention is to walk along the
semicircle Csu with diameter su; however, it has to reach Csu first. To do this,
the robot tries to walk along the line hu towards the semicircle; by walking in
this direction, the robot does neither gain nor lose visibility of the cave next
to u. Of course, this course is subject to clipping about the free polygon; so, if
the path along hu towards Csu leads outside the free polygon, the robot follows
left-bounding lines if h is inside Csu and right-bounding lines if h is outside Csu.

The final path consists of two sub-paths, one from s to h and the other from h
to the final point t, each similar to the path shown in Figure 4. That is, each one
of them consists of a number of clipped circular arcs and line segments (cases 1
and 2 of Section 3.1), potentially followed by one or more line segments that
result from clipping whenever the corresponding semicircles fall outside the free
polygon (Figures 5-7 show examples of paths). Our observation in Section 3.1
about the behavior of the values of the angle p̂sv0 (where p is the robot’s cur-
rent position and v0 is the maximal left constraint vertex as observed from s) is
extended and implies that, in the most general case, p̂sv0 is initially π/2, then
decreases, potentially reaching 0 but not decreasing below 0, then it starts in-
creasing assuming values up to ̂u0sv0 (where u0 is the maximal right constraint
vertex as observed from s), and then it may start decreasing again up to 0.

3.3 Simulating the Strategy

The obvious way to simulate a motion strategy involves starting at the prede-
termined starting position and executing small steps applying the rules of the
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strategy. This method has the obvious disadvantage that a good approximation
of the robot’s path requires a large number of steps which may lead to increased
execution time and large errors resulting from accumulated numerical errors at
each step.

A second approach is to split the given polygon P into regions in each of
which the robot follows the same curve. Clearly, we will have to split P about
the lines supporting the polygon edges incident upon reflex vertices. Moreover,
we need to split P about lines that connect pairs of (left or right) constraint
vertices that consecutively become maximal. To do that, we find the tree of
shortest paths inside P from s to all the reflex vertices and we split P about
the lines supporting the edges of this tree as well. Then, the robot can traverse
any of the resulting regions in one computational step; the only computation
in each region involves finding the points of intersection of the path with the
region boundary. This method involves fewer steps compared to the previous
one but it requires computing the partition of the polygon about the above
mentioned lines; the total number of these lines is linear in the number n of
polygon vertices. Building the partition requires O(n2) space and it can be done
incrementally in O(n2) time in a fashion similar to the incremental construction
of an arrangement of lines; see [3] and [2]. The free polygon is maintained by
turning on or off a bit associated with each region.

3.4 Path Properties

It is interesting to observe that every point of the robot’s path belongs either to a
semicircle defined by the starting point and a vertex of the polygon P (a maximal
constraint vertex) or to the line supporting an edge of P . This guarantees that an
actual robot following our strategy is not expected to deviate from the intended
course, as opposed to other strategies where this is possible because the motion
of the robot is dependent on the current position. For example, in Icking and
Klein’s strategy, the robot follows the bisector of an angle with apex the current
position; but then, due to accumulated numerical error, the robot may deviate
substantially from the expected course.

Additionally, the following lemmata establish two important properties of
the robot’s path (proofs can be found in [11]).

Lemma 5. The path resulting from the application of the above described strat-
egy reaches the kernel of the polygon at the kernel’s point that is closest to the
starting point s.

Lemma 6. The path that the robot follows in accordance with our strategy con-
sists of O(n) line segments or circular arcs, where n is the number of vertices of
the polygon P .
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4 Competitiveness Analysis

In order to compute the competitive factor of our strategy, we need to compute
the worst-case ratio of the length of the path resulting from the application of
our strategy over the length of the line segment connecting the starting point s to
the ending point t. Obviously, the worst case scenario involves double application
of the one-sided case. Our analysis relies on computing the competitive factor of
an “augmented” path (we ignore (most of) the clipping) whose length is no less
than the length of the actual path traveled.

Before we describe the “augmentation” procedure, we review the important
stops in the robot’s path and define the l-path and r-path which will be used to
augment the path. The robot first applies the one-sided strategy trying to see
all the left caves; let h be the final point during this phase, that is, the point
from where all the left caves are visible. Then, the robot applies the one-sided
strategy again, for the right caves this time. As mentioned in Section 3.2, the
angle p̂sv0 (defined by the current position p of the robot, the starting position
s, and the maximal left constraint vertex v0 observed from s) decreases, then it
may increase and finally it may decrease again; let x and y be the turning points
where these changes of monotonicity occur (if the robot walks along the line sx
or sy, we let x and y be the closest such points to s). Note that x may coincide
with h or may be before or after h along the robot’s path; y may coincide with t,
although this is not true in the most general case. Moreover, as mentioned earlier,
the point h lies on the line supporting the polygon edge that just became visible
at h; let lh be that line. Then, lh is a right-bounding line of the free polygon
at h. Similarly, the ending point t lies on the line lt supporting the edge that
became visible last, and lt is a left-bounding line of the free polygon at t.

We define the l-path as the path that the robot would follow if it only applied
cases 1 and 2 of Section 3.1 from its starting position s until it either saw all
the left caves or reached the line sx, whichever came first; in the former case, we
extend the l-path by adding a line segment along the left-bounding line of the
free polygon from the l-path’s final point to the point of intersection with sx.
Because clipping is ignored, this left-bounding line supports a polygon edge next
to a maximal left constraint vertex; this edge is not necessarily the edge that
became visible last. As a summary, the l-path consists of a sequence of circular
arcs (arcs sa, bc of Figure 3) occasionally separated by a line segment along a
line supporting an initially invisible polygon edge (segment bc of Figure 3). We
define the r-path similarly: this is the path that the robot would follow if it only
applied cases 1 and 2 of Section 3.1 starting from s until it either saw all the
right caves or reached the line sy; again, if the robot has seen all the right caves
before it reached the line sy, we extend the r-path accordingly. We finally define
the l-region as the closed region bounded by the l-path and the line sx; similarly,
the r-region is the closed region bounded by the r-path and the line sy. We note
that:
Observation 1. The point h from which all the left caves are finally visible does
not belong to the interior of the l-region. Similarly, the final point t from which
the entire polygon is visible does not belong to the interior of the r-region.
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The robot tries to follow the l-path and the r-path if possible, or otherwise
stay as close to them as possible. On its course from the starting point s to h (the
case is similar for the part from h to the ending point t), it follows (parts of) the
l-path, may move outside the l-region due to clipping about a left-bounding line
(when the l-path leads farther left than the left boundary of the free polygon), or
may move inside the l-region due to clipping about a right-bounding line (when
the l-path leads farther right than the right boundary of the free polygon). In
general, the robot may move in and out of the l-region several times; after it
has moved in, it may walk along several different right-bounding lines (tracing a
convex curve inside the l-region), whereas after it has moved out, it may follow
several different left-bounding lines (tracing a concave curve outside the l-region).
It is important to observe:

Observation 2. The robot never follows a left-bounding line right after a right-
bounding line (or vice versa) except at the point h where it sees all the left caves.

The observation follows from the fact that the robot tries to stay as close to the
corresponding semicircle as it can and if this is farther left (right, respectively)
than the left (right, respectively) boundary of the free polygon, the robot will
keep following the left (right, respectively) boundary of the free polygon until it
reaches it, if ever.

4.1 Augmenting the Robot’s Path

Now we are ready to see how the actual robot’s path is being augmented; we
will also define the points x′ and y′ which will be crucial in partitioning the
augmented path into curves with increasing chords. We concentrate on the most
general case in which x 6= s (i.e., the angle p̂sv0 starts by decreasing) and x 6= t;
the special cases where x = s or x = t yield smaller competitive factors (see
[11]). Note that y may or may not coincide with t.

1. the part of the robot’s path from s to x: We recall that x may be either
on the l-path or outside the l-region; in the latter case and if additionally
h coincides with or is reached after x, then the robot has been walking
along left-bounding lines from the last point of its course on the l-path
up to x. Recall also that h is either on the l-path or outside the l-region
(Observation 1); if it is outside the l-region, then again the robot has been
walking along left-bounding lines. In all cases where the robot walks along
left-bounding lines after it leaves the l-region (no matter whether h is reached
before or after x), the sub-path from s to x is augmented by considering the
entire l-path, followed by a line segment from the final point of the l-path to
x along sx (Figure 5); this includes as a special case the case where x belongs
to the l-path. It remains to consider the cases where the robot walks along
right-bounding lines. There are two cases to consider: first, h belongs to the
l-path, x is reached after h, and the robot walks along a right-bounding line
past h towards x, and second, h is outside the l-region, x is reached after
h, and the robot walks along a right-bounding line past h towards x; both
cases imply x = t and yield smaller competitive factors (see [11]).
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2. the part of the robot’s path from x to y: We distinguish two cases depending
on whether the robot walks along left- or right-bounding lines past x.
(i) the robot walks along a left-bounding line past x. If the point h is before
x or coincides with x, then x must belong to the r-region for the robot to
follow a left-bounding line past x. We let x′ be the point of intersection of
sx with the r-path, and we augment the sub-path from x to y by consider-
ing the line segment xx′, followed by the r-path up to its intersection with
the line sy, followed by the line segment from that point to y (Figure 6).
If the point h is after x, then past h the robot may walk along a left- or a
right-bounding line depending on whether h belongs to the r-region or not.
Let q be the point of intersection of the lines sx and lh. If h is outside the
r-region, or if h belongs to the r-region but q does not, we set x′ = q and we
augment the path by considering the line segment xx′ (along sx), followed by
a line segment along lh from x′ to the point of intersection with the r-path,
followed by a line segment from that point to y along sy (Figure 7). If both
q and h belong to the r-region, then we let x′ be the point of intersection of
the line sx with the r-path, and the sub-path from x to y is augmented by
considering the line segment xx′ (along sx), followed by the r-path from x′

to its final point on the line sy, followed by the line segment from that point
to y (along sy); the situation is similar to the one depicted in Figure 6.
(ii) the robot walks along a right-bounding line past x. Then, h cannot be
before x, for, if h were reached before x, the robot must have been walking
along right-bounding lines from h to x; this implies that x = t, a contradic-
tion to the continuation of the path past x. Moreover, h cannot be after x
either; if h were reached after x, then h would be outside the l-region and
the robot would be walking along left-bounding lines from x to h. Therefore,
h = x, and we set x′ = h. Additionally, h lies outside the r-region (otherwise,
the robot would not be following a right-bounding line past x). Let q be the
point of intersection of lh with the r-path (if lh intersects a line segment of
the r-path, then q is the point of intersection of lh with the immediately
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following semicircle); if the line lh does not intersect the r-path, we let q be
the point of intersection of lh and sy. Then, the sub-path from x to y is
augmented by considering the line segment xq along lh, potentially followed
by the r-path from q to its intersection with the line sy (if q does not belong
to the line sy), followed by the line segment from that point to y.

3. the part of the robot’s path from y to the final point t: If y = t, then we set
y′ = y = t. If y 6= t, then the path past y lies outside the corresponding semi-
circles (Lemma 4) and the robot on its way to t walks along right-bounding
lines only. So, this part of the actual path is augmented by considering the
polygonal line formed by the segments yy′ and y′t, where y′ is the point of
intersection of the lines sy and lt (Figure 6).

It is important to observe that the augmented path does not cross itself. More-
over, the augmented path proceeds along or to the left of the left-bounding lines
that the robot follows, and along or to the right of the right-bounding lines, thus
enclosing the actual robot’s path. Therefore, we have:

Observation 3. The path traveled by the robot and the augmented path have the
same endpoints.

Observation 4. The path traveled by the robot can be produced by clipping the
augmented path about the edges of a (shrinking) convex polygon.

4.2 The Competitive Factor

With respect to the points x′ and y′, the augmented path can be seen as the
concatenation of three sub-paths, one from s to x′, one from x′ to y′, and one
from y′ to the final point t. The sub-path from s to x′ consists of circular arcs
occasionally separated by a line segment along a line supporting an initially
invisible polygon edge (cases 1 and 2 of Section 3.1), potentially ending with a
line segment along the line sx. The sub-path from x′ to y′ consists mainly of arcs
and line segments (in accordance with cases 1 and 2 of Section 3.1) as well, but
may begin with a line segment along lh, and may end with a line segment along
the line sy; the sub-path may degenerate into a two-segment polygonal line, one
along lh and the other along sy. Finally, the sub-path from y′ to t is simply a
line segment. See Figures 6-7. More importantly, the following lemmata hold.

Lemma 7. The (counterclockwise) angle ŝx′y′ is at least equal to π/2.

Proof. The definition of the point x′ in the case 2 of the preceding section sug-
gests that we need to consider two cases. First, suppose x′ is the point of inter-
section of sx with the r-path (if x is inside or on the boundary of the r-region).
Then, x′ lies on the semicircle of the currently maximal right constraint ver-
tex (case 1 of Section 3.1), or on the line supporting an edge incident upon a
right-constraint vertex which was initially invisible and became visible (case 2
of Section 3.1); in the latter case, x′ lies inside the semicircle associated with the
right constraint vertex. In either case, if w is the right constraint vertex, then
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the angle ŝx′w is at least equal to π/2. Moreover, the point y and (a fortiori) the
point y′ lie on or to the left of the directed line

−−→
x′w (see Figure 6). Therefore,

ŝx′y′ ≥ ŝx′w, and the lemma follows.
Suppose now that x′ is the point of intersection of sx with lh: this case occurs

if h is reached after x, or x′ = h and h lies outside the r-region. In either case,
x′ coincides with or is farther away from s than x; since x is on the boundary
or outside the l-region (Lemma 4), x′ lies on or outside the semicircle of the last
maximal left-constraint vertex, say, v. Then, ŝx′v ≤ π/2 (Fact 1). The lemma
follows from the fact that y and (a fortiori) y′ belong to the inner halfplane of
lh and thus the angle ŝx′y′ is at least equal to π − ŝx′v (see Figure 7).

Similarly,

Lemma 8. If y 6= t, the (clockwise) angle ŝy′t is at least equal to π/2.

Lemma 9. The sub-path of the augmented path from s to x′ is a curve with
increasing chords.

Proof. For any point p (other than s), we define the quadrants Ap, Bp, Cp

and Dp at p as the four closed quadrants determined by the line sp and its
perpendicular at p: the quadrant Ap is the quadrant that contains s and lies to
the right of the directed line −→sp, while the other quadrants Bp, Cp and Dp follow
quadrant Ap in counterclockwise order around p. We first prove that for any
point p of this sub-path, the part of the augmented path from s to p belongs to
the closed quadrant Ap of p, while the part of the path from p to x′ belongs to
the closed quadrant Cp of p. One needs to consider the different cases for p: on
a circular arc, at the intersection of two arcs, at the intersection of an arc and
a line segment, on a line segment. This follows from the fact that for any point
q of a semicircle with diameter ab, the angle âqb is equal to π/2 (see Fact 1).
(Figure 8 gives some examples for illustration purposes; the crosses indicate the
lines delimiting the quadrants.) Next, we consider 4 points a, b, c and d in that
order along the augmented path. We draw the corresponding quadrants for the
points b and c and draw the two lines lb and lc perpendicular to bc that pass by
b and c respectively (Figure 9). Since c belongs to the quadrant Cb of b, lb lies in
the closure of the wedge defined by the quadrants Bb and Db of b. Similarly, since
b belongs to the quadrant Ac of c, lc lies in the closure of the wedge defined by
the quadrants Bc and Dc of c. Moreover, the point a lies in the quadrant Ab of
b, that is, to the left of lb. Similarly, the point d lies in the quadrant Cc of c, that
is, to the right of lc. Therefore, the length of ad is no less than the perpendicular
distance of lb and lc, which by construction is equal to bc.

In a similar fashion, although with a little more effort because the sub-path
of the augmented path between x′ and y′ may begin with a line segment, we can
prove:

Lemma 10. The sub-path of the augmented path from x′ to y′ is a curve with
increasing chords.
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From the above, we conclude

Theorem 1. Our strategy has a competitive factor of
√

2(2π/3)2 + 1 ' 3.126.

Proof. Clearly, the length of the actual path traveled by the robot is no more
than the length of the augmented path, as clipping with convex polygonal lines
or curves leads to reduced path length (Observation 4 and
Lemma 3). So, an upper bound on the ratio of the length
of the augmented path over the length of the line segment
st readily implies an upper bound on the competitive factor
that we seek. Figure 10 shows the skeleton of the augmented
path in the worst case; the angles α = ŝx′y′ and β = ŝy′t
are at least equal to π/2 (Lemmata 7 and 8). Let us denote
by |p̃q| the length of the path from p to q as opposed to |pq|
which denotes the length of the line segment pq. Then the
competitive factor r is

r =
|s̃x′| + |x̃′y′| + |y′t|

|st| ≤
2π
3 |sx′| + 2π

3 |x′y′| + |y′t|
|st| ,

s

x’

y’
t

α

β
γ

δ

Figure 10

since the augmented sub-paths from s to x′ and from x′ to y′ are curves with
increasing chords (Lemmata 9 and 10) and therefore their lengths are not more
than 2π/3 times the lengths of the line segments sx′ and x′y′ respectively
(Lemma 2). If we apply the law of sines in the triangles sx′y′ and sy′t, fac-
tor out the length |sy′|, and maximize using partial derivatives, we find

r ≤
2π
3

sinγ + sin(α+γ)
sinα

+ sin(β+δ)
sinδ

sinβ

sinδ

≤
2π
3

√
2 + sin(β+δ)

sinδ

sinβ

sinδ

≤
√

2(2π/3)2 + 1.

where π/2 ≤ α < π, π/2 ≤ β < π, 0 < γ < π − α and 0 < δ < π − β: the term
sinγ+sin(α+γ)

sinα
is decreasing as α increases and is thus maximized for α = π/2

and γ = π/4; similarly, the overall fraction is maximized for β = π/2.

5 Concluding Remarks – Open Problems

We presented a strategy which enables a point robot to reach the point t of the
kernel that is closest to the starting point s, and guarantees that the length of
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the path traveled is not longer than 3.126 times the length of the line segment
st (that is, 3.126 times the shortest possible off-line path). Our strategy has
the interesting feature that the robot reaches the kernel at precisely the closest
point t. We note that the above competitive factor cannot be guaranteed when
the polygon has empty kernel (in such cases, the competitive factor is defined
as the ratio of the length of the path that a strategy imposes over the length of
the shortest path which establishes that the kernel is empty), and this holds for
all strategies where a point of the polygon seen by the robot never ceases to be
in the robot’s visible region thereafter (enforced by means of the free polygon in
this work, and by means of the gaining and keeping wedges in [5] and [9]).

Experimental results seem to suggest that the actual competitive factor is
smaller than the theoretical competitive factor of 3.126. If true, it would be
interesting to come up with tighter theoretical bounds on the competitive factor
of our strategy. Of course, the ultimate open question is to invent strategies with
smaller competitive factors which will close the gap between the current upper
bound of ∼3.126 and the lower bound of ∼1.48. To this effect, perhaps ideas like
the ones in [6] may be of help.

Finally, better competitive solutions are needed for other motion planning
problems in unknown environments. López-Ortiz and Schuierer [10] have ad-
dressed two interesting problems in this class: finding out whether a given poly-
gon is star-shaped (i.e., it has non-empty kernel), and locating a target (to be
recognized when seen) in a polygon with non-empty kernel. The currently best
competitive factor for the first problem is 46.35. The currently best competitive
factor for the second problem is 12.72 and is coupled with a lower bound of 9.
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