
Recognition and Orientation Algorithms

for P4-Comparability Graphs

Stavros D. Nikolopoulos and Leonidas Palios

Department of Computer Science, University of Ioannina
GR-45110 Ioannina, Greece

{stavros,palios}@cs.uoi.gr

Abstract. We consider two problems pertaining to P4-comparability
graphs, namely, the problem of recognizing whether a simple undirected
graph is a P4-comparability graph and the problem of producing an
acyclic P4-transitive orientation of a P4-comparability graph. These prob-
lems have been considered by Hoàng and Reed who described O(n4) and
O(n5)-time algorithms for their solution respectively, where n is the num-
ber of vertices of the given graph. Recently, Raschle and Simon described
O(n + m2)-time algorithms for these problems, where m is the number
of edges of the graph.
In this paper, we describe different O(n + m2)-time algorithms for the
recognition and the acyclic P4-transitive orientation problems on P4-
comparability graphs. Instrumental in these algorithms are structural
relationships of the P4-components of a graph, which we establish and
which are interesting in their own right. Our algorithms are simple, use
simple data structures, and have the advantage over those of Raschle
and Simon in that they are non-recursive, require linear space and admit
efficient parallelization.

1 Introduction

Let G = (V,E) be a simple non-trivial undirected graph. An orientation of
the graph G is an antisymmetric directed graph obtained from G by assigning
a direction to each edge of G. An orientation (V, F) of G is called transitive
if it satisfies the following condition: if abc is a chordless path on 3 vertices
in G, then F contains the directed edges −→ab and ←−bc, or ←−ab and −→bc, where −→uv
or
←−
vu denotes an edge directed from u to v [4]. An orientation of a graph G is

called P4-transitive if the orientation of every chordless path on 4 vertices of G
is transitive; an orientation of such a path abcd is transitive if and only if the
path’s edges are oriented in one of the following two ways: −→ab, ←−bc and −→cd, or ←−ab,−→
bc and ←−cd. The term borrows from the fact that a chordless path on 4 vertices
is denoted by P4.

A graph which admits an acyclic transitive orientation is called a com-
parability graph [3,4]; A graph is a P4-comparability graph if it admits an
acyclic P4-transitive orientation [5,6]. In light of these definitions, every compara-
bility graph is a P4-comparability graph. Moreover, there exist P4-comparability

P. Eades and T. Takaoka (Eds.): ISAAC 2001, LNCS 2223, pp. 320–331, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Recognition and Orientation Algorithms for P4-Comparability Graphs 321

graphs which are not comparability. The class of the P4-comparability graphs
(along with the P4-indifference, the P4-simplicial and the Raspail graphs) was
introduced by Hoàng and Reed [6].

Algorithms for many different problems (such as, recognition, coloring, max-
imum clique, maximum independent set, hamiltonian paths and cycles) on sub-
classes of perfectly orderable graphs are available in the literature. The compara-
bility graphs in particular have been the focus of much research which culminated
into efficient recognition and orientation algorithms [4,7,8,12]. On the other hand,
the P4-comparability graphs have not received as much attention, despite the
fact that the definitions of the comparability and the P4-comparability graphs
rely on the same principles [1,2,5,6,11].

Our main objective is to study the recognition and acyclic P4-transitive ori-
entation problems on the class of P4-comparability graphs. These problems have
been addressed by Hoàng and Reed who described O(n4) and O(n5)-time algo-
rithms respectively [5,6], where n is the number of vertices of G. Recently, newer
results on these problems were provided by Raschle and Simon [11]. Their algo-
rithms work along the same lines, but they focus on the P4-components of the
graph. The time complexity of their algorithms for either problem is O(n+m2),
where m is the number of edges of G, as it is dominated by the time to compute
the P4-components of G. Raschle and Simon also described recognition and ori-
entation algorithms for P4-indifference graphs [11]; their algorithms run within
the same time complexity, i.e., O(n +m2). We note that Hoàng and Reed [5,6]
also presented algorithms which solve the recognition problem for P4-indifference
graphs in O(n6) time.

In this paper, we present different O(n+m2)-time recognition and acyclic P4-
transitive orientation algorithms for P4-comparability graphs of n vertices andm
edges. Our technique relies on the computation of the P4-components of the input
graph and takes advantage of structural relationships of these components. Our
algorithms are simple, use simple data structures, and have the advantage over
those of Raschle and Simon in that they are non-recursive, require linear space
and admit efficient parallelization [10].

2 Theoretical Framework

Let abcd be a P4 of a graph G. The vertices b and c are called midpoints and the
vertices a and d endpoints of the P4 abcd. The edge connecting the midpoints of
a P4 is called the rib; the other two edges (which are incident to the endpoints)
are called the wings. For example, the edge bc is the rib and the edges ab and
cd are the wings of the P4 abcd. Two P4s are called adjacent if they have an
edge in common. The transitive closure of the adjacency relation is an equiva-
lence relation on the set of P4s of a graph G; the subgraphs of G spanned by
the edges of the P4s in the equivalence classes are the P4-components of G.
With slight abuse of terminology, we consider that an edge which does not be-
long to any P4 belongs to a P4-component by itself; such a component is called
trivial. A P4-component which is not trivial is called non-trivial; clearly a non-

322 Stavros D. Nikolopoulos and Leonidas Palios

trivial P4-component contains at least one P4. If the set of midpoints and the set
of endpoints of the P4s of a non-trivial P4-component C define a partition of the
vertex set V (C), then the P4-component C is called separable. We can show [9]:

Lemma 1. Let G = (V,E) be a graph and let C be a non-trivial P4-component
of G. Then,

(i) If ρ and ρ′ are two P4s which both belong to C, then there exists a sequence
ρ, ρ1, . . . , ρk, ρ

′ of adjacent P4s in C;
(ii) C is connected;

The definition of a P4-comparability graph requires that such a graph admit
an acyclic P4-transitive orientation. However, Hoàng and Reed [6] showed that
in order to determine whether a graph is P4-comparability one can restrict one’s
attention to the P4-components of the graph. In particular, what they proved
([6], Theorem 3.1) can be paraphrased in terms of the P4-components as follows:

Lemma 2. [6] Let G be a graph such that each of its P4-components admits
an acyclic P4-transitive orientation. Then G is a P4-comparability graph.

Although determining that each of the P4-components of a graph admits
an acyclic P4-transitive orientation suffices to establish that the graph is P4-
comparability, the directed graph produced by placing the oriented P4-compo-
nents together may contain cycles. However, an acyclic P4-transitive orientation
of the entire graph can be obtained by inversion of the orientation of some of
the P4-components. Therefore, if one wishes to compute an acyclic P4-transitive
orientation of a P4-comparability graph, one needs to detect directed cycles (if
they exist) formed by edges belonging to more than one P4-component and
appropriately invert the orientation of one or more of these P4-components.
Fortunately, one does not need to consider arbitrarily long cycles as shown in
the following lemma [6].

Lemma 3. ([6], Lemma 3.5) If a proper orientation of an interesting graph
is cyclic, then it contains a directed triangle.1

Given a non-trivial P4-component C of a graph G = (V,E), the set of vertices
V − V (C) can be partitioned into three sets:

(i) R contains the vertices of V − V (C) which are adjacent to some (but not
all) of the vertices in V (C),

(ii) P contains the vertices of V − V (C) which are adjacent to all the vertices
in V (C), and

(iii) Q contains the vertices of V − V (C) which are not adjacent to any of the
vertices in V (C).

The adjacency relation is considered in terms of the given graph G.
1 An orientation is proper if the orientation of every P4 is transitive. A graph is
interesting if the orientation of every P4-component is acyclic.

Recognition and Orientation Algorithms for P4-Comparability Graphs 323

V1

V2

R P

Q

C

Fig. 1. Partition of the vertex set with respect to a separable P4-component C

In [11], Raschle and Simon showed that, given a non-trivial P4-component C
and a vertex v /∈ V (C), if v is adjacent to the midpoints of a P4 of C and is not
adjacent to its endpoints, then v does so with respect to every P4 in C (that is, v
is adjacent to the midpoints and not adjacent to the endpoints of every P4 in C).
This implies that any vertex of G, which does not belong to C and is adjacent
to at least one but not all the vertices in V (C), is adjacent to the midpoints of
all the P4s in C. Based on that, Raschle and Simon showed that:

Lemma 4. ([11], Corollary 3.3) Let C be a non-trivial P4-component and
R �= ∅. Then, C is separable and every vertex in R is V1-universal and V2-null 2.
Moreover, no edge between R and Q exists.

The set V1 is the set of the midpoints of all the P4s in C, whereas the set V2 is
the set of endpoints. Figure 1 shows the partition of the vertices of a graph with
respect to a separable P4-component C; the dashed segments between R and P
and P and Q indicate that there may be edges between pairs of vertices in the
corresponding sets. Then, a P4 with at least one but not all its vertices in V (C)
must be a P4 of one of the following types:

type (1) vpq1q2 where v ∈ V (C), p ∈ P , q1, q2 ∈ Q
type (2) p1vp2q where p1 ∈ P , v ∈ V (C), p2 ∈ P , q ∈ Q
type (3) p1v2p2r where p1 ∈ P , v2 ∈ V2, p2 ∈ P , r ∈ R
type (4) v2pr1r2 where v2 ∈ V2, p ∈ P , r1, r2 ∈ R
type (5) rv1pq where r ∈ R, v1 ∈ V1, p ∈ P , q ∈ Q
type (6) rv1pv2 where r ∈ R, v1 ∈ V1, p ∈ P , v2 ∈ V2

type (7) rv1v2v
′
2 where r ∈ R, v1 ∈ V1, v2, v

′
2 ∈ V2

type (8) v′1rv1v2 where r ∈ R, v1, v
′
1 ∈ V1, v2 ∈ V2

Raschle and Simon proved that neither a P3 abc with a ∈ V1 and b, c ∈ V2 nor
a P3 abc with a, b ∈ V1 and c ∈ V2 exists ([11], Lemma 3.4), which implies that:
2 For a set A of vertices, we say that a vertex v is A-universal if v is adjacent to every
element of A; a vertex v is A-null if v is adjacent to no element of A.

324 Stavros D. Nikolopoulos and Leonidas Palios

Lemma 5. Let C be a non-trivial P4-component of a graph G = (V,E). Then,
no P4s of type (7) or (8) with respect to C exist.

Additionally, Raschle and Simon proved the following interesting result re-
garding the P4-components.

Lemma 6. ([11], Theorem 3.6) Two different P4-components have different
vertex sets.

Moreover, we can show the following [9]:

Lemma 7. Let A and B be two non-trivial P4-components of the graph G. If
the component A contains an edge e both endpoints of which belong to the vertex
set V (B) of B, then V (A) ⊆ V (B).

Let us consider a non-trivial P4-component C of the graphG such that V (C) ⊂
V , and let SC be the set of non-trivial P4-components of G which have a vertex
in V (C) and a vertex in V − V (C). Then, each component in SC contains a P4

of type (1)-(8), and thus, by taking Lemma 5 into account, we can partition the
elements of SC into two sets as follows:

• P4-components of type A: the P4 components, each of which contains at
least one P4 of type (1)-(5) with respect to C;
• P4-components of type B: the P4-components which contain only P4s of
type (6) with respect to C.
The following lemmata establish properties of P4-components of type A and

of type B (the proofs are omitted due to lack of space but can be found in [9]).

Lemma 8. Let C be a non-trivial P4-component of a P4-comparability graph
G = (V,E) and suppose that the vertices in V −V (C) have been partitioned into
sets R, P , and Q as described earlier in this section. Then, if there exists an
edge xv (where x ∈ R ∪ P and v ∈ V (C)) that belongs to a P4-component A of
type A, then all the edges, which connect the vertex x to a vertex in V (C), belong
to A. Moreover, these edges are all oriented towards x or they are all oriented
away from x.

Lemma 9. Let B and C be two non-trivial P4-components of the graph G such
that B is of type B with respect to C. Then,
(i) every edge of B has exactly one endpoint in V (C);
(ii) if an edge of B is oriented towards its endpoint that belongs to V (C), then

so do all the edges of B;
(iii) the edges of B incident upon the same vertex v are all oriented either to-

wards v or away from it.

Lemma 10. Let B and C be two non-trivial P4-components of the graph G
such that |V (B)| ≥ |V (C)| and let β =

∑
v∈V (C) dB(v), where dB(v) denotes the

number of edges of B which are incident upon v. Then, B is of type B with respect
to C if and only if β = |E(B)|.

Recognition and Orientation Algorithms for P4-Comparability Graphs 325

x0

x1

x2

y0 y1

y2

z0

z1

z2

x0

x1

x2

x3

y0 y1

y2y3

z0

z1

z2

z3

(a) (b)

Fig. 2. Graphs that have P4-components with cyclic P4-transitive orientation

Lemma 11. Let A, B, and C be three distinct separable P4-components such
that A is of type B with respect to B, B is of type B with respect to C, and
|V (A)| ≥ |V (C)|. Then, if there exists a vertex which is a midpoint of all three
components A, B, and C, the P4-component A is of type B with respect to C.

We close this section by showing that the assignment of compatible directions
in all the P4s of a P4-component does not imply that the component is necessarily
acyclic. Let k be an integer at least equal to 3, and let Xk = {xi | 0 ≤ i < k},
Yk = {yi | 0 ≤ i < k}, and Zk = {zi | 0 ≤ i < k} be three sets of distinct vertices.
We consider the graph Gk = (Vk, Ek) where

Vk = Xk ∪ Yk ∪ Zk

and Ek = Vk × Vk

−
(
{xiyi+1 | 0 ≤ i < k} ∪ {xizi | 0 ≤ i < k} ∪ {yizi | 0 ≤ i < k}

)
.

(The addition in the subscripts is assumed to be done mod k.) Figures 2(a) and
2(b) depict G3 and G4 respectively. The graph Gk has the following properties:

$ the only P4s of Gk are the paths xiyiyi+1zi, yi+1zizi+1xi, and yi+1xi+1xizi+1

for 0 ≤ i < k;
$ Gk has a single non-trivial P4-component;
$ the directed edges yiyi+1 (0 ≤ i < k) form a directed cycle of length k in the
non-trivial P4-component of Gk;

$ no directed cycle of length less than k exists in the non-trivial P4-component
of Gk.

3 Recognition of P4-Comparability Graphs

The main idea of the algorithm is to build the P4-components of the given
graph G by considering all the P4s of G; this is achieved by unioning in a sin-
gle P4-component the P4-components of the edges of each such path, while it is

326 Stavros D. Nikolopoulos and Leonidas Palios

made sure that the edges are compatibly oriented. It is important to note that
the orientation of two edges in the same P4-component is not free to change
relative to each other; either the orientation of all the edges in the component
stays the same or it is inverted for all the edges. If no compatible orientation
can be found or if the resulting P4-components contain directed cycles, then
the graph is not a P4-comparability graph. The P4s are produced by means of
BFS-traversals of the graph G starting from each of G’s vertices.

The algorithm is described in more detail below. Initially, each edge of G
belongs to a P4-component by itself.

Recognition Algorithm.

1. For each vertex v of the graph, we construct the BFS-tree Tv rooted at v and
we update the level level(x)3 and the parent px of each vertex x in Tv; before
the construction of each of the BFS-trees, level(x) = −1 for each vertex x
of the graph. Then, we process the edges of the graph as follows:
(i) for each edge e = uw where level(u) = 1 and level(w) = 2, we check

whether there exist edges from w to a vertex in the 3rd level of Tv. If
not, then we do nothing. Otherwise, we orient the edges vu, uw, vpw,
and pww in a compatible fashion; for example, we orient vu and vpw

away from v, and uw and pww away from w (note that if u = pw, we end
up processing the edges vu and uw only). If any two of these edges belong
to the same P4-component and have incompatible orientations, then we
conclude that the graph G is not a P4-comparability graph. If any two
of these edges belong to different P4-components, then we union these
components into a single component; if the edges do not have compatible
orientations, then we invert (during the unioning) the orientation of all
the edges of one of the unioned P4-components.

(ii) for each edge e = uw where level(u) = i and level(w) = i + 1 for
i ≥ 2, we consider the edges puu and uw. As in the previous case, if
the two edges belong to the same P4-component and they are not both
oriented towards u or away from u, then there is no compatible orien-
tation assignment and the graph is not a P4-comparability graph. If the
two edges belong to different P4-components, we union the correspond-
ing P4-components in a single component, while making sure that the
edges are oriented in a compatible fashion.

(iii) for each edge e = uw where level(u) = level(w) = 2, we go through
all the vertices of the 1st level of Tv. For each such vertex x, we check
whether x is adjacent to u or w. If x is adjacent to u but not to w, then the
edges vx, xu, and uw form a P4; we therefore union the corresponding P4-
components while orienting their edges compatibly. We work similarly
for the case where x is adjacent to w but not to u, since the edges vx,
xw, and wu form a P4.

2. After all the vertices have been processed, we check whether the resulting
non-trivial P4-components contain directed cycles. This is done by apply-
ing topological sorting independently in each of the P4components; if the

3 The level of the root of a tree is equal to 0.

Recognition and Orientation Algorithms for P4-Comparability Graphs 327

topological sorting succeeds then the corresponding component is acyclic,
otherwise there is a directed cycle. If any of the P4-components contains a
cycle, then the graph is not a P4-comparability graph.

For each P4-component, we maintain a linked list of the records of the edges in
the component, and the total number of these edges. Each edge record contains a
pointer to the header record of the component to which the edge belongs; in this
way, we can determine in constant time the component to which an edge belongs
and the component’s size. Unioning two P4-components is done by updating the
edge records of the smallest component and by linking them to the edge list of
the largest one, which implies that the union operation takes time linear in the
size of the smallest component. As mentioned above, in the process of unioning,
we may have to invert the orientation in the edge records that we link, if the
current orientations are not compatible.

The correctness of the algorithm follows from the fact that all the P4s of the
given graph are taken into account (see [9], Lemma 3.1), from the correct orien-
tation assignment on the edges of these paths, and from Lemma 2 in conjunction
with Step 2 of the algorithm.

Time and Space Complexity. Computing the BFS-tree Tv of the vertex v
ofG takesO(1+m(v)) = O(1+m) time, wherem(v) is the number of edges in the
connected component of G to which v belongs. Processing the tree Tv includes
processing the edges and checking for compatible orientation, and unioning P4-
components. If we ignore P4-component unioning, then, each of the Steps 1(i)
and 1(ii) takes constant time per processed edge; the parent of a vertex in the tree
can be determined in constant time with the use of an auxiliary array, and the P4-
component of an edge is determined in constant time by means of the pointer to
the component head record (these pointers are updated during unioning). The
Step 1(iii) of the algorithm takes time O(deg(v)) for each edge in the 2nd level
of the tree, where by deg(v) we denote the degree of the vertex v; this implies
a total of O(m deg(v)) time for the Step 1(iii) for the tree Tv. Now, the time
required for all the P4-component union operations during the processing of all
the BFS-trees is O(m logm); there cannot be more than m− 1 such operations
(we start with m P4-components and we may end up with only one), and each
one of them takes time linear in the size of the smallest of the two components
that are unioned. Finally, checking whether a non-trivial P4-component is acyclic
takes O(1 + mi), where mi is the number of edges of the component. Thus,
the total time taken by Step 2 is O

(∑
i(1 + mi)

)
= O(m), since there are at

most m P4-components and
∑

i mi = m. Thus, the overall time complexity is

O
(∑

v

(
1+m+m deg(v)

)
+m logm+m) = O

(
n+m2

)
, since

∑
v deg(v) = 2m.

The space complexity is linear in the size of the graph G; the information
stored in order to help processing each BFS-tree is constant per vertex, and the
handling of the P4-components requires one record per edge and one record per
component. Thus, the space required is O(n+m).

Theorem 1. It can be decided whether a simple graph on n vertices and m edges
is a P4-comparability graph in O

(
n+m2

)
time and O(n +m) space.

328 Stavros D. Nikolopoulos and Leonidas Palios

Remark. It must be noted that there are simpler ways of producing the P4s
of a graph in O(n +m2) time. However, such approaches require Θ(n2) space.
For example, Raschle and Simon note that a P4 is uniquely determined by its
wings [11]; this implies that the P4s can be determined by considering all Θ(m2)
pairs of edges and by checking if the edges in each such pair are the wings of a P4.
In order not to exceed the O(m2) time complexity, the information on whether
two vertices are adjacent should be available in constant time, something that
necessitates a Θ(n2)-space adjacency matrix.

4 Acyclic P4-Transitive Orientation

Although each of the P4-components of the given graph G which is produced by
the recognition algorithm is acyclic, directed cycles may arise when all the P4-
components are placed together; obviously, these cycles will include edges from
more than one P4-component. Appropriate inversion of the orientation of some
of the components will yield the desired acyclic P4-transitive orientation.

Our algorithm to compute the acyclic P4-transitive orientation of a P4-
comparability graph relies on the processing of the P4-components of the given
graph G and focuses on edges incident upon the vertices of the non-trivial P4-
component which is currently being processed. It assigns orientations in a greedy
fashion, and avoids both the contraction step and the recursive call of the ori-
entation algorithms of Hoàng and Reed [6], and Raschle and Simon [11]. More
specifically, the algorithm works as follows:

Orientation Algorithm.

1. We apply the recognition algorithm of the previous section on the given
graphG, which produces the P4-components ofG and an acyclic P4-transitive
orientation of each component.

2. We sort the non-trivial P4-components ofG by increasing number of vertices;
let C1, C2, . . . , Ch be the resulting ordered sequence. We associate with each
Ci a mark and a counter field which are initialized to 0.

3. For each P4-component Ci (1 ≤ i < h) in order, we do:
By going through the vertices in V (Ci), we collect the edges which are inci-
dent upon a vertex in V (Ci) and belong to a P4-component Cj where j > i.
Then, for each such edge e, we increment the counter field associated with
the P4-component to which e belongs. Next, we go through the collected
edges once more. This time, for such an edge e, we check whether the P4-
component to which e belongs has its mark field equal to 0 and its counter
field equal to the total number of edges of the component; if yes, then we set
the mark field of the component to 1, and, in case e is not oriented towards
its endpoint in V (Ci), we flip the component’s orientation (by updating a
corresponding boolean variable). After that, we set the counter field of the
component to which e belongs to 0; in this way, the counter fields of all the
non-trivial P4-components are equal to 0 every time a P4-component starts
getting processed in Step 3.

Recognition and Orientation Algorithms for P4-Comparability Graphs 329

4. We orient the edges which belong to the trivial P4-components: this can be
easily done by topologically sorting the vertices of G using only the oriented
edges of the non-trivial components, and orienting the remaining edges in
accordance with the topological order of their incident vertices.

Note that in Step 3 we process all the non-trivial P4-components of the given
graph G except for the largest one. This implies that the vertex set V (Ci) of
each P4-component Ci (1 ≤ i < h) that we process is a proper subset of the
vertex set V of G; if V (Ci) = V , then V (Ch) = V as well, which implies that
Ci = Ch (Lemma 6), a contradiction. Thus, the discussion in Section 2 regarding
the P4-components of type A and type B applies to each such Ci. Moreover,
according to Lemma 10, the P4-components whose mark field is set to 1 in Step 3
are components which are of type B with respect to the currently processed
component Ci. Each edge of these components has exactly one endpoint in V (Ci)
(see Lemma 9, statement (i)), so that it is valid to try to orient such an edge
towards that endpoint. Furthermore, Lemma 9 (statement (ii)) implies that if
such an edge gets oriented towards its endpoint which belongs to V (Ci), then so
do all the edges of the same P4-component. In the case that the set R in the
partition of the vertices in V − V (Ci) (as described in Section 2) is empty, there
are no P4-components of type B with respect to Ci. While processing Ci, our
algorithm updates the counter fields of the components that contain an edge
incident upon a vertex in V (Ci), finds that none of these components ends up
having its counter field equal to the number of its edges, and thus does nothing
further.

The orientation algorithm does not compute the sets R, P , and Q with
respect to the currently processed P4-component Ci. These sets can be computed
in O(n) time for each Ci as follows. We use an array with one entry per vertex of
the graph G; we initialize the array entries corresponding to vertices in V (Ci) to
0 and all the remaining ones to -1. Let v1 and v2 be an arbitrary midpoint and
an arbitrary endpoint of a P4 in Ci. We go through the vertices adjacent to v1
and if the vertex does not belong to V (Ci), we set the corresponding entry to
1. Next, we go through the vertices adjacent to v2; this time, if the vertex does
not belong to V (Ci), we increment the corresponding entry. Then, the vertices
in Ci, R, and Q are the vertices whose corresponding array entries are equal
to 0, 1, and -1 respectively, while the remaining vertices belong to P and their
corresponding entries are larger than 1; recall that every vertex in V − V (Ci)
which is adjacent to an endpoint of a P4 of Ci is also adjacent to any midpoint.

Correctness of the Algorithm. The acyclicity of the directed graph pro-
duced by our orientation algorithm relies on the following two lemmata (proofs
can be found in [9]).

Lemma 12. Let C1, C2, . . ., Ch be the sequence of the non-trivial P4-components
of the given graph G ordered by increasing vertex number. Consider the set Si =
{Cj | j < i and Ci is of type B with respect to Cj} and suppose that Si �= ∅. If
ı̂ = min{j | Cj ∈ Si}, then our algorithm orients the edges of the component Ci
towards their endpoint which belongs to V (Cı̂).

330 Stavros D. Nikolopoulos and Leonidas Palios

Lemma 13. Let C1, C2, . . ., Ch be the non-trivial P4-components of a graph G
ordered by increasing vertex number and suppose that each component has re-
ceived an acyclic P4-transitive orientation. Consider the set Si = {Cj | j < i and
Ci is of type B with respect to Cj}. If the edges of each P4-component Ci such
that Si �= ∅ get oriented towards their endpoint which belongs to V (Cı̂), where
ı̂ = min{j | Cj ∈ Si}, then the resulting directed subgraph of G spanned by the
edges of the Cis (1 ≤ i ≤ h) does not contain a directed cycle.

Theorem 2. When applied to a P4-comparability graph, our orientation algo-
rithm produces an acyclic P4-transitive orientation.

Proof: The application of the recognition algorithm in Step 1 of the orientation
algorithm and the fact that thereafter the inversion of the orientation of an edge
causes the inversion of the orientation of all the edges in the same P4-component
imply that the resulting orientation is P4-transitive. The proof of the theorem
will be complete if we show that it is also acyclic. Since the edges of the trivial P4-
components do not introduce cycles given that they are oriented according to
a topological sorting of the vertices of the graph, it suffices to show that the
directed subgraph of G spanned by the edges of the non-trivial P4-components
of G, which results after the last execution of Step 3, is acyclic. This follows
directly from Lemmata 12 and 13. ✷

Time and Space Complexity. As described in the previous section, Step 1
of the algorithm can be completed in O(n+m2) time. Step 2 takes O(m logm)
time, since there are O(m) non-trivial P4-components. Since the degree of a
vertex of the graph does not exceed n− 1, the total number of edges processed
while processing the P4-component Ci in Step 3 is O(n |V (Ci)|), where |V (Ci)| is
the cardinality of the vertex set of Ci. This upper bound is O

(
n (|E(Ci)|+1)

)
=

O(n |E(Ci)|), because the component Ci is connected (Lemma 1, statement (ii))
and hence |V (Ci)| ≤ |E(Ci)| + 1. The time to process each such edge is O(1),
thus implying a total of O(n |E(Ci)|) time for the execution of Step 3 for the
component Ci; since an edge of the graph belongs to one P4-component and
a component is processed only once, the overall time for all the executions of
Step 3 is O(nm). Finally, Step 4 takes O(n+m) time.

Summarizing, the time complexity of the orientation algorithm is O(n+m2).
It is interesting to note that the time complexity is dominated by the time to
execute Step 1; the remaining steps take a total of O(nm) time. Therefore, an
o(n+m2)-time algorithm to recognize a P4-comparability graph and to compute
its P4-components will imply an o(n + m2)-time algorithm for the acyclic P4-
transitive orientation of a P4-comparability graph. The space complexity is linear
in the size of the given graph G.

From the above discussion, we obtain the following theorem.

Theorem 3. Let G be a P4-comparability graph on n vertices and m edges.
Then, an acyclic P4-transitive orientation of G can be computed in O(n +m2)
time and O(n+m) space.

Recognition and Orientation Algorithms for P4-Comparability Graphs 331

5 Concluding Remarks

In this paper, we presented an O(n + m2)-time and linear space algorithm to
recognize whether a graph of n vertices andm edges is a P4-comparability graph.
We also described an algorithm to compute an acyclic P4-transitive orientation
of a P4-comparability graph which runs in O(n +m2) time and linear space as
well. Both algorithms exhibit the currently best time and space complexities to
the best of our knowledge, are simple enough to be easily used in practice, are
non-recursive, and admit efficient parallelization.

The obvious open question is whether the P4-comparability graphs can be
recognized and oriented in o(n+m2) time. Note that a better time complexity
for the recognition problem —assuming that the recognition process determines
the P4-components as well— will imply a better time complexity for our orien-
tation algorithm.

References

1. L. Babel and S. Olariu, A new characterization of P4-connected graphs, Proc. 22nd
International Workshop on Graph-theoretic concepts in Computer Science (WG
’96) (F. d’Amore, P. G. Franciosa, and A. Marchetti-Spaccamela, eds.), LNCS
1197, 1996, 17–30. 321

2. C. M. H. de Figueiredo, J. Gimbel, C. P. Mello, and J. L. Szwarcfiter, Even and
odd pairs in comparability and in P4-comparability graphs, Discrete Appl. Math.
91 (1999), 293–297. 321

3. P. C. Gilmore and A. J. Hoffman, A characterization of comparability graphs and
of interval graphs, Canad. J. Math. 16 (1964), 539–548. 320

4. M. C. Golumbic, Algorithmic graph theory and perfect graphs, Academic Press,
Inc., New York, 1980. 320, 321

5. C. T. Hoàng and B. A. Reed, Some classes of perfectly orderable graphs, J. Graph
Theory 13 (1989), 445–463. 320, 321

6. C. T. Hoàng and B. A. Reed, P4-comparability graphs, Discrete Math. 74 (1989),
173–200. 320, 321, 322, 328

7. R. M. McConnell and J. Spinrad, Linear-time modular decomposition and effi-
cient transitive orientation of comparability graphs, Proc. 5th Annual ACM-SIAM
Symposium on Discrete Algorithms (1994), 536–545. 321

8. R. M. McConnell and J. Spinrad, Linear-time transitive orientation, Proc. 8th
Annual ACM-SIAM Symposium on Discrete Algorithms (1997), 19–25. 321

9. S. D. Nikolopoulos and L. Palios, Recognition and orientation algorithms for P4-
comparability graphs, Technical Report 23-00, 2000, University of Ioannina, Ioan-
nina, Greece. 322, 324, 327, 329

10. S. D. Nikolopoulos and L. Palios, Parallel algorithms for P4-comparability graphs,
Technical Report 20-01, 2001, University of Ioannina, Ioannina, Greece. 321

11. T. Raschle and K. Simon, On the P4-components of graphs, Discrete Appl. Math.
100 (2000), 215–235. 321, 323, 324, 328

12. J. P. Spinrad, On comparability and permutation graphs, SIAM J. on Comput. 14
(1985), 658–670. 321

	Recognition and Orientation Algorithms for P-4-Comparability Graphs
	Introduction
	Theoretical Framework
	Recognition of P4-Comparability Graphs
	Acyclic P4-Transitive Orientation
	Concluding Remarks

