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Algorithms for P4-Comparability Graph Recognition
and Acyclic P4-Transitive Orientation

Stavros D. Nikolopoulos1 and Leonidas Palios1

Abstract. We consider two problems pertaining to P4-comparability graphs, namely, the problem of recog-
nizing whether a simple undirected graph is a P4-comparability graph and the problem of producing an acyclic
P4-transitive orientation of a P4-comparability graph. These problems have been considered by Hoàng and
Reed who described O(n4)- and O(n5)-time algorithms for their solution, respectively, where n is the number
of vertices of the input graph. Faster algorithms have recently been presented by Raschle and Simon, and by
Nikolopoulos and Palios; the time complexity of these algorithms for either problem is O(n + m2), where m
is the number of edges of the graph.

In this paper we describe O(nm)-time and O(n+m)-space algorithms for the recognition and the acyclic
P4-transitive orientation problems on P4-comparability graphs. The algorithms rely on properties of the P4-
components of a graph, which we establish, and on the efficient construction of the P4-components by means
of the BFS-trees of the complement of the graph rooted at each of its vertices, without however explicitly
computing the complement. Both algorithms are simple and use simple data structures.

Key Words. Perfectly orderable graph, Comparability graph, P4-comparability graph, P4-component, Recog-
nition, P4-transitive orientation.

1. Introduction. We consider simple non-trivial undirected graphs. Let G be such a
graph. An orientation of the graph G is an antisymmetric directed graph obtained from
G by assigning a direction to each of its edges. An orientation F of G is called transitive

if it satisfies the following condition: if
−→
ab ∈ F and

−→
bc ∈ F , then

−→
ac ∈ F [9], where by

−→
uv or

←−
vu we denote an edge directed from u to v. The transitivity of F implies directly

that F does not contain a directed triangle; moreover, F does not contain any directed
cycle, as can be shown by induction on the length of the cycle. The transitivity of F also
implies that if abc is a chordless path on three vertices in G, then F contains the directed
edges

−→
ab and

←−
bc , or

←−
ab and

−→
bc . An orientation of a graph G is called P4-transitive if

the orientation of every chordless path on four vertices of G is transitive, i.e., for such
a path abcd, the path’s edges are oriented in one of the following two ways:

−→
ab ,
←−
bc ,

and
−→
cd or

←−
ab ,
−→
bc , and

←−
cd . It must be noted that, unlike transitivity, the P4-transitivity

does not imply acyclicity. The term borrows from the fact that a chordless path on four
vertices is denoted by P4.

A graph which admits a transitive orientation is called a comparability graph [8]–
[10]; Figure 1(a) depicts a comparability graph. A graph is a P4-comparability graph if it
admits an acyclic P4-transitive orientation [13], [14]. In light of these definitions, every
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(a) (b) (c)

Fig. 1. (a) A comparability graph; (b) a P4-comparability graph (which is not comparability); (c) a graph
which is not P4-comparability.

comparability graph is a P4-comparability graph. In fact, the class of comparability
graphs is a proper subset of the class of P4-comparability graphs, as there exist P4-
comparability graphs which are not comparability; Figure 1(b) depicts such a graph,
which is often referred to as the pyramid. The graph shown in Figure 1(c) is not a P4-
comparability graph. The class of P4-comparability graphs was introduced by Hoáng
and Reed, along with the classes of P4-indifference, P4-simplicial, and Raspail graphs,
and all four classes were shown to be perfectly orderable [14].

The class of perfectly orderable graphs was introduced by Chvátal in the early 1980s
[4]. These are the graphs for which there exists a perfect order on the set of their
vertices. An order on the vertex set of a graph G is called perfect if for each subgraph H
of G, the greedy algorithm (also known as the first-fit algorithm) computes an optimal
coloring of H when processing the vertices of G in that order; see [4]. In the same paper,
Chvátal showed that a graph is perfectly orderable if and only if there exists an acyclic
orientation such that no P4 abcd of the graph has

−→
ab and

←−
cd (called obstruction). This

directly implies that the P4-comparability graphs are perfectly orderable, as they are
defined to admit acyclic orientations that do not contain obstructions.

The class of perfectly orderable graphs is very important since a number of problems
which are NP-complete in general can be solved in polynomial time on its members [2],
[9], [12]; unfortunately, it is NP-complete to decide whether a graph admits a perfect order
or, equivalently, an acyclic obstruction-free orientation [17]. Chvátal showed that the
class of perfectly orderable graphs contains the comparability and the triangulated graphs
[4]. It also contains a number of other classes of perfect graphs which are characterized by
important algorithmic and structural properties; we mention the classes of 2-threshold,
brittle, co-chordal, weak bipolarizable, distance hereditary, Meyniel ∩ co-Meyniel, P4-
sparse, etc. [3], [9]. Finally, since every perfectly orderable graph is strongly perfect [4],
the class of perfectly orderable graphs is a subclass of the well-known class of perfect
graphs.

Algorithms for many different problems on all the above-mentioned subclasses of
perfectly orderable graphs are available in the literature. The comparability graphs in
particular have been the focus of much research which culminated into efficient recog-
nition and orientation algorithms [3], [9], [16]. On the other hand, the P4-comparability
graphs have not received as much attention, despite the fact that the definitions of the
comparability and the P4-comparability graphs rely on the same principles [7], [13],
[14], [18], [19].

Our main objective is to study the recognition and acyclic P4-transitive orientation
problems on the class of P4-comparability graphs. These problems have been addressed
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by Hoàng and Reed who described polynomial time algorithms for their solution [13],
[14]. The algorithms are based on detecting whether the input graph G contains a “ho-
mogeneous set” or a “good partition” and recursively solve the same problem on the
graph that results from the input graph after contraction of one or two vertex sets into
a single vertex each. The recognition and the orientation algorithms require O(n4) and
O(n5) time, respectively, where n is the number of vertices of G. Recently, newer results
on these problems were provided by Raschle and Simon [19]. Their algorithms work
along the same lines, but they focus on the P4-components of the graph. In particular, for
a non-trivial P4-component C of the input graph G, they compute the set R of vertices
adjacent to some but not all the vertices of C; depending on whether R is empty or
not, they contract C into one or two (non-adjacent) vertices and they recursively solve
the problem on the resulting graph. The time complexity of their algorithms for either
problem is O(n + m2), where m is the number of edges of G, as it is dominated by the
time to compute the P4-components of G. Recently, Nikolopoulos and Palios described
different O(n+m2)-time algorithms for these problems [18]; their algorithms construct
the P4-components of the input graph G by means of the BFS-trees of G rooted at each
of G’s vertices.

In this paper we present O(nm)-time and O(n +m)-space algorithms for the recog-
nition and the acyclic P4-transitive orientation problems on P4-comparability graphs.
The stated time complexity may seem surprising in light of the fact that a graph on m
edges may have as many as �(m2) P4s and that these algorithms, like previous ones,
rely on the construction of the P4-components of the input graph. Our approach avoids
the computation of all the P4s of the input graph G; instead, it computes all the P3s that
participate in P4s of G. The computation takes advantage of the fact that the complement
of a P4 is also a P4 and constructs these P3s by means of the BFS-trees of the complement
of G rooted at each of its vertices (without however explicitly computing the comple-
ment of G). The P4-transitive orientation algorithm exploits structural relationships of
the P4-components of a graph, which we establish and which are interesting in their own
right. Both algorithms are simple and use simple data structures, and can thus be easily
used in practice.

The paper is structured as follows. In Section 2 we review the terminology that
we use throughout the paper and we establish the theoretical framework on which our
algorithms are based. We describe and analyze the recognition and orientation algorithms
in Sections 3 and 4, respectively. We conclude with Section 5 which summarizes our
results and addresses extensions and open problems.

2. Theoretical Framework. Let G be a simple non-trivial undirected graph; its vertex
and edge sets are denoted by V (G) and E(G), respectively. A path in G is a sequence
of vertices v0v1 · · · vk such that vi−1vi ∈ E(G) for i = 1, 2, . . . , k; we say that this is
a path from v0 to vk and that its length is k. A path is undirected or directed depending
on whether G is an undirected or a directed graph. A path is called simple if none of
its vertices occurs more than once; it is called trivial if its length is equal to 0. A path
(simple path) v0v1 · · · vk is called a cycle (simple cycle ) of length k+1 if v0vk ∈ E(G). A
simple path (cycle) v0v1 · · · vk is chordless if vivj /∈ E(G) for any two non-consecutive
vertices vi , vj in the path (cycle). Throughout the paper the chordless path (chordless
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cycle, respectively) on n vertices is denoted by Pn (Cn , respectively). In particular, a
chordless path on four vertices is denoted by P4.

Let abcd be a P4. The vertices b and c are called the midpoints and the vertices a and
d the endpoints of the P4 abcd . The edge connecting the midpoints of a P4 is called the
rib; the other two edges (which are incident on the endpoints) are called the wings. For
example, the edge bc is the rib and the edges ab and cd are the wings of the P4 abcd .
Two P4s are called adjacent if they have an edge in common. The transitive closure of the
adjacency relation is an equivalence relation on the set of P4s of a graph G; the subgraphs
of G spanned by the edges of the P4s in the equivalence classes are the P4-components
of G. With slight abuse of terminology, we consider that an edge which does not belong
to any P4 belongs to a P4-component by itself; such a component is called trivial. A P4-
component which is not trivial is called non-trivial; clearly a non-trivial P4-component
contains at least one P4. For example, the graph of Figure 1(a) has one non-trivial P4-
component containing one P4, and two trivial ones; the graph of Figure 1(b) has three
non-trivial P4-components containing one P4 each; the graph of Figure 1(c) has one
non-trivial P4-component containing three P4s which are pairwise adjacent. These and
other simple examples may lead one to conjecture that the P4-components of a P4-
comparability graph are comparability graphs. This is not true however, as indicated by
the graph of Figure 2. The graph shown is a P4-comparability graph and consists of
two P4-components: one contains the P4s a1bc1d1, a1bc2d1, a1bc2d2, a2bc2d1, a2bc2d2,
and a2c1c2d2, and thus is the subgraph induced by {a1, a2, b, c1, c2, d1, d2}; the other
contains the P4s rbpd1, rbpd2, rc1 pa1, rc1 pd2, rc2 pa1, and rc2 pa2, and hence includes
all the remaining edges. Note that the former component is not a comparability graph.

The definition of the P4-components of a graph implies the following lemma.

LEMMA 2.1. Let G be a graph and let C be a non-trivial P4-component of G. Then:

(i) If ρ and ρ ′ are two P4s which both belong to C, then there exists a sequence ρ, ρ1,

. . . , ρk, ρ
′ of adjacent P4s in C.

(ii) C is connected.
(iii) In any P4-transitive orientation of C, assigning an orientation on an edge of C forces

the orientation on any other edge of C.

a1 a2

b

c1

c2

d1 d2

r p

Fig. 2
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Statement (iii) of Lemma 2.1 implies that if a P4-component admits a P4-transitive
orientation F , then there exist precisely two possible orientations that may be assigned
to it, namely, F and the orientation obtained from F after inversion of the direction of
every edge in F .

The definition of a P4-comparability graph requires that such a graph admits an acyclic
P4-transitive orientation. Interestingly, Hoàng and Reed [14] showed that in order to
determine whether a graph is a P4-comparability graph one can restrict one’s attention
to the P4-components of the graph. In particular, what they proved [14, Theorem 3.1]
can be paraphrased in terms of the P4-components as follows:

LEMMA 2.2 [14]. Let G be a graph such that each of its P4-components admits an
acyclic P4-transitive orientation. Then G is a P4-comparability graph.

Although determining that each of the P4-components of a graph admits an acyclic P4-
transitive orientation suffices to establish that the graph is P4-comparability, the directed
graph produced by placing the oriented P4-components together may contain cycles.
However, an acyclic P4-transitive orientation of the entire graph can be obtained by
inversion of the orientations of some of the P4-components. Therefore, if one wishes
to compute an acyclic P4-transitive orientation of a P4-comparability graph, one needs
to detect directed cycles (if they exist) formed by edges belonging to more than one
P4-component and appropriately invert the orientation of one or more of these P4-
components. Fortunately, one does not need to consider arbitrarily long cycles as shown
in the following lemma [14].

LEMMA 2.3 [14, Lemma 3.5]. If a proper orientation of an interesting graph is cyclic,
then it contains a directed triangle.2

Given a non-trivial P4-component C of a graph G, the set of vertices V (G) − V (C)
can be partitioned into three sets:

(i) R contains the vertices of V (G)− V (C) which are adjacent to some (but not all) of
the vertices in V (C),

(ii) P contains the vertices of V (G) − V (C) which are adjacent to all the vertices in
V (C), and

(iii) Q contains the vertices of V (G)−V (C)which are not adjacent to any of the vertices
in V (C).

The adjacency relation is considered in terms of the input graph G.
In [19] Raschle and Simon showed that, given a non-trivial P4-component C and a

vertex v /∈ V (C), if v is adjacent to the midpoints of a P4 of C and is not adjacent to
its endpoints, then v does so with respect to every P4 in C (that is, v is adjacent to the
midpoints and not adjacent to the endpoints of every P4 in C). This implies that any vertex
of G, which does not belong to C and is adjacent to at least one but not all the vertices in
V (C), is adjacent to the midpoints of all the P4s in C. Based on that, Raschle and Simon

2 An orientation is proper if the orientation of every P4 is transitive. A graph is interesting if the orientation of
every P4-component is acyclic.
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C

R P

Q

V1

V2

Fig. 3. Partition of the vertex set with respect to a separable P4-component C.

introduced the notion of a separable P4-component—a non-trivial P4-component C is
separable if the set of midpoints and the set of endpoints of the P4s of C define a partition
of its vertex set V (C)—and showed that:

LEMMA 2.4 [19, Corollary 3.3]. Let C be a non-trivial P4-component and R �= ∅. Then
C is separable and every vertex in R is V1-universal and V2-null.3 Moreover, no edge
between R and Q exists.

The set V1 is the set of the midpoints of all the P4s in C, whereas the set V2 is the set
of endpoints. Figure 3 shows the partition of the vertices of a graph with respect to a
separable P4-component C; the dashed segments between R and P and P and Q indicate
that there may exist edges between pairs of vertices in the corresponding sets. Then a
P4 with at least one but not all its vertices in V (C) must be a P4 of one of the following
types:

type (1) vpq1q2 where v ∈ V (C), p ∈ P , q1, q2 ∈ Q;
type (2) p1vp2q where p1 ∈ P , v ∈ V (C), p2 ∈ P , q ∈ Q;
type (3) p1v2 p2r where p1 ∈ P , v2 ∈ V2, p2 ∈ P , r ∈ R;
type (4) v2 pr1r2 where v2 ∈ V2, p ∈ P , r1, r2 ∈ R;
type (5) rv1 pq where r ∈ R, v1 ∈ V1, p ∈ P , q ∈ Q;
type (6) rv1 pv2 where r ∈ R, v1 ∈ V1, p ∈ P , v2 ∈ V2;
type (7) rv1v2v

′
2 where r ∈ R, v1 ∈ V1, v2, v

′
2 ∈ V2;

type (8) v′1rv1v2 where r ∈ R, v1, v
′
1 ∈ V1, v2 ∈ V2.

Raschle and Simon proved that neither a P3 abc with a ∈ V1 and b, c ∈ V2 nor a P3

abc with a, b ∈ V1 and c ∈ V2 exists [19, Lemma 3.4], which implies that:

LEMMA 2.5. Let C be a non-trivial P4-component of a graph G. Then no P4s of type (7)
or (8) with respect to C exist.

3 For a set A of vertices, we say that a vertex v is A-universal if v is adjacent to every element of A; a vertex v
is A-null if v is adjacent to no element of A.
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Note that if the P4-component C is not separable, then any P4 with at least one but not
all its vertices in V (C) must be of type (1) or (2) only.

Raschle and Simon also proved the following interesting result regarding the P4-
components of a graph.

LEMMA 2.6 [19, Theorem 3.6]. Two different P4-components have different vertex sets.

Additionally, we can show the following:

LEMMA 2.7. Let A and B be two non-trivial P4-components of a graph. If the compo-
nent A contains an edge e both endpoints of which belong to the vertex set V (B) of B,
then V (A) ⊆ V (B).

PROOF. Suppose for contradiction that there exists a vertex v ∈ V (A) − V (B). We
show that this implies that the P4-component A contains a P4 ρ̂ with a vertex not in
V (B) and an edge whose endpoints both belong to V (B). Let ρ be the P4 of A which
contains the edge e. If ρ has a vertex which does not belong to V (B), then ρ̂ = ρ.
Suppose now that all the vertices of ρ belong to V (B). Since v ∈ V (A), there exists
a P4 ρ

′ of A with v as a vertex. As both ρ and ρ ′ belong to A, there is a sequence
ρ = ρ0, ρ1, . . . , ρk = ρ ′ of adjacent P4’s in A (Lemma 2.1, statement (i)). Let ρi be
the minimum-index P4 in that sequence that has a vertex not in V (B); clearly, ρi is well
defined (because ρ ′ contains v /∈ V (B)), and i > 0. By definition, ρi has a vertex not in
V (B); moreover, it is adjacent to ρi−1, all of whose vertices belong to V (B), and it thus
contains an edge whose endpoints both belong to V (B). Then ρ̂ = ρi .

Therefore, no matter whether the P4 ρ contains a vertex not in V (B) or not, we
concluded that the P4-component A indeed contains a P4 ρ̂ as described. This however
leads to a contradiction, since the P4 ρ̂ would be of type (1)–(6) with respect to B
(according to Lemma 2.5, no P4s of type (7) or (8) exist), and yet no such P4 has an edge
whose endpoints both belong to V (B).

We consider a non-trivial P4-component C of a graph G such that V (C) ⊂ V (G), and
we let SC be the set of non-trivial P4-components of G which have a vertex in V (C) and
a vertex in V (G)−V (C). Then, in light of Lemma 2.5, each component in SC contains a
P4 of type (1)–(6), and thus we can partition the elements of SC into two sets as follows:

• P4-components of type A: the P4 components, each of which contains at least one P4

of type (1)–(5) with respect to C;
• P4-components of type B: the P4-components which contain only P4s of type (6) with

respect to C.

The following lemma establishes properties of P4-components of type A.

LEMMA 2.8. Let C be a non-trivial P4-component of a graph G and suppose that the
vertices in V (G) − V (C) have been partitioned into sets R, P , and Q as described
earlier in this section. If there exists an edge xv, where x ∈ R ∪ P and v ∈ V (C),
belonging to a P4-component A of type A, then all the edges, which connect vertex x to
a vertex in V (C) and participate in a P4 of G, belong toA. Moreover, in a P4-transitive
orientation ofA (assuming thatA admits such an orientation), all these edges have the
same orientation, i.e., they are all oriented either towards x or away from x .
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PROOF. Let xu be an edge of G connecting vertex x to a vertex u in V (C). We show
below that xu belongs to A and has the same orientation as xv.

If C is not separable, then R = ∅ (Lemma 2.4). Then the edge xv participates in P4s
of type (1) or (2) only. If it participates in a P4 of type (1), say, in vxq1q2 (q1, q2 ∈ Q),
then the path uxq1q2 is also a P4 and therefore the edge xu belongs to A as well and
has the same orientation as xv. Similarly, if xv participates in a P4 of type (2), say, in
p1vp2q (x is either p1 or p2, where p1, p2 ∈ P and q ∈ Q), then the path p1up2q is
also a P4; again, the edge xu belongs to A and has the same orientation as xv.

We now consider the case that the P4-component C is separable; let V1 and V2 be
the sets of midpoints and of endpoints of the P4s in C. Since u ∈ V (C), there exists a
vertex w in V (C) such that u and w are not adjacent and they do not both belong to V1

or V2; w is the vertex at distance 2 from v at a P4 of C with v as a vertex. We distinguish
the following cases:

Case (a): x ∈ R. Then u ∈ V1, w ∈ V2, and the edge xv participates in P4s of type (5)
or (6). If it participates in a P4 of type (5), say, in xvpq (p ∈ P , q ∈ Q), then the
path xupq is also a P4 and therefore the edge xu belongs toA as well and has the same
orientation as xv. Suppose now that xv participates in a P4 of type (6), say, in xvpv′,
where p ∈ P and v′ ∈ V2 (Figure 4). Then, since xv belongs to the P4-component A,
which is of type A and thus contains a P4 of type (1)–(5), there exists a sequence S
of adjacent P4s from the P4 xvpv′ to a P4 of type (1)–(5) (Lemma 2.1, statement (i)).
Without loss of generality, we may assume that all the P4s in the sequence S except for
the last one are P4s of type (6); otherwise, we consider the prefix of the sequence up to
the first P4 of type (1)–(5). Let the sequence S be

xvpv′ = r1v1 p1v
′
1, r2v2 p2v

′
2, . . . , rkvk pkv

′
k, ρ,

where ri ∈ R, vi ∈ V1, pi ∈ P , v′i ∈ V2, and ρ is a P4 of type (1)–(5) adjacent to
rkvk pkv

′
k . Clearly, all these P4s belong to the component A. Because each P4 rivi piv

′
i

has one vertex from each one of four disjoint sets, the P4s rivi piv
′
i and ri+1vi+1 pi+1v

′
i+1,

which are adjacent, share an edge which is either a rib or a wing to both of them. So,
the adjacency of rivi piv

′
i and ri+1vi+1 pi+1v

′
i+1 implies that ri = ri+1 and vi = vi+1, or

vi = vi+1 and pi = pi+1, or pi = pi+1 and v′i = v′i+1. We now consider the sequence S′

C

R P

Q

v u

w v’

x p

V1

V2

Fig. 4



Algorithms for P4-Comparability Graph Recognition 103

of paths

xupw = r1up1w, r2up2w, . . . , rkupkw.

It is not difficult to see that each of these paths is a P4: ri u ∈ E(G), pi u ∈ E(G),
piw ∈ E(G), uw /∈ E(G), riw /∈ E(G), and, from the sequence S, ri pi /∈ E(G).
Moreover, any two consecutive paths in S′ are adjacent; note that the adjacency of
rivi piv

′
i and ri+1vi+1 pi+1v

′
i+1 in S implies that ri = ri+1 or pi = pi+1 or both, which

in turn implies that the P4s ri upiw and ri+1upi+1w are adjacent. Finally, because every
element of P is (V1 ∪ V2)-universal and every element of R is V1-universal and V2-null,
the path ρ ′, which results from ρ after replacing vk by u or v′k byw (note that the general
form of the P4s of type (1)–(5) implies that ρ contains exactly one of vk , v′k), is a P4

as well. Moreover, ρ ′ is adjacent to rkupkw (since ρ is adjacent to rkvk pkv
′
k), and ρ

and ρ ′ are P4s of the same type and have three vertices in common. Therefore, ρ and
ρ ′ are adjacent, they belong to the same P4-component A and they have corresponding
orientations; then the edges rkvk and rku of their adjacent P4s rkvk pkv

′
k and rkupkw are

oriented either both towards rk or both away from it. In turn, the sequences S and S′

of P4s imply that the edges xv and xu belong to the same P4-component and they are
oriented either both towards x or both away from it, as desired.

Case (b): x ∈ P and v, u both belong to V1 or both belong to V2. Then xv partici-
pates in P4s of type (1)–(6). If it participates in a P4, say, ρ, of type (1)-(5), then the
path which results from ρ after replacing v by u is a P4, is of the same type as ρ, and is
adjacent to ρ. Therefore, the edges xv and xu belong to the same componentA and have
the same orientation. Suppose now that xv participates in a P4 of type (6). We consider
first the case where v, u ∈ V1. Let v′ be the vertex at distance 2 from v in any P4 of C
which has v as a vertex; clearly, v′ ∈ V2 and vv′ /∈ E(G). Then the path rvxv′ is a P4

and belongs toA (edge xv). Case (a) applies for the edges rv and ru, implying that they
belong to A and they are oriented either both towards r or both away from it. Then so
do the edges xv and xu because of the P4s rvxv′ and ruxw. We work similarly in the
second case, where v, u ∈ V2; this time we consider the P4s rv′xv and rwxu.

Case (c): x ∈ P , v ∈ V1, and u ∈ V2. Then xv participates in a P4, say, ρ, of type (1),
(2), (5), or (6). If ρ is of type (1) or (2), then we work as in the first subcase of Case (b):
replacing v by u in ρ yields a P4, which together with ρ ensures that the edges xv and
xu belong to the same P4-componentA and have the same orientation. If ρ is of type (5)
or (6), i.e., of the form rvxq or rvxv′, respectively (r ∈ R, q ∈ Q, v′ ∈ V2), then we
consider the path rwxu which is a P4; note thatw ∈ V1 since u ∈ V2. The lemma follows
if we show that the edges rv and rw belong to the same P4-component A and have the
same orientation; this is established in Case (a) above.

Case (d): x ∈ P , v ∈ V2, and u ∈ V1. Since xu belongs to a P4 then, according to
Case (c), the edge xv belongs to the P4-component to which xu belongs and has the
same orientation as xu; thus, xv and xu belong to the P4-component A and have the
same orientation.

The P4-components of type B turn out to be really critical in the computation of
a P4-transitive orientation of a P4-comparability graph. Indeed, as will be shown in
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Section 4, if a directed triangle is formed when placing together the P4-transitively
oriented P4-components of a P4-comparability graph, then the triangle consists of three
edges belonging to three P4-components which are of type B with respect to one another.
Lemma 2.9 suggests a test by means of which we can determine whether a P4-component
is of type B with respect to another P4-component, Lemma 2.10 gives some general
properties of a P4-component of type B, and Lemmata 2.11 and 2.12 present cases
where the “being of type B” relationship is symmetric and transitive, respectively; these
lemmata will be useful in our orientation algorithm.

LEMMA 2.9. Let B, C be two non-trivial P4-components of a graph such that |V (B)| ≥
|V (C)|, and letβ =∑v∈V (C) dB(v), where dB(v) denotes the number of edges ofBwhich
are incident upon v. Then B is of type B with respect to C if and only if β = |E(B)|.

PROOF. Clearly, ifB is of type B with respect to C, then β = |E(B)|; note that each edge
of a P4 of type (6) with respect to C has exactly one of its endpoints in V (C). Suppose
now that β = |E(B)|; we will show that B is of type B with respect to C. First, note that
it is not possible that V (B)∩V (C) = ∅; if this were the case, then β = 0 in contradiction
to β = |E(B)| in light of the fact that every non-trivial P4-component contains at least
one P4 and thus contains at least three edges. Therefore, V (B)∩V (C) �= ∅. Additionally,
it is impossible that V (B) ⊆ V (C); if so, then the inequality |V (B)| ≥ |V (C)| would
imply that V (B) = V (C) and β would be equal to 2 |E(B)| in contradiction to the
fact that β = |E(B)|. Therefore, V (B) − V (C) �= ∅. Since V (B) ∩ V (C) �= ∅ and
V (B)− V (C) �= ∅, B contains P4s of type (1)–(6) (recall that Lemma 2.5 excludes P4s
of type (7) and (8)) and may contain P4s none of whose vertices is a vertex in V (C). The
edges of the latter set of P4s contribute nothing to the quantity β. On the other hand,
the general form of the P4s of type (1)–(6) indicates that the edges of such P4s have at
most one of their endpoints in V (C), and thus contribute at most 1 to β each. Therefore,
each edge of B contributes at most 1 to β. In order that β = |E(B)|, it is required that
each edge contributes exactly 1. This is possible only if the edges participate in P4s of
type (6) with respect to C; note that each P4 of type (1)–(5) with respect to C contains
at least one edge which is not incident upon any vertex of C. Therefore, B is of type B
with respect to C.

LEMMA 2.10. Let C be a non-trivial P4-component of a graph G, and let R, P , and Q
be the partition sets of the vertices in V (G)− V (C) as described earlier in this section.
If B is a non-trivial P4-component which is of type B with respect to C, then

(i) both B and C are separable;
(ii) every edge of B has exactly one endpoint in V (C);

(iii) for every P4 xyzw of C, x ∈ V (B) iff z ∈ V (B);
(iv) at least one of the midpoints and at least one of the endpoints of every P4 of C

belongs to V (B);
(v) for every vertex r ∈ R ∩ V (B) and for every vertex u ∈ V1(C) ∩ V (B), the

edge ru belongs to B; additionally, for every vertex p ∈ P ∩ V (B) and for every
vertex u ∈ V (C) ∩ V (B), the edge pu belongs to B.
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PROOF. (i) Since B is of type B with respect to C, then R �= ∅; thus, C is separable in
accordance with Lemma 2.4. Additionally, since all the P4s of B are of type (6) with
respect to C, then the midpoints of all these P4s are either midpoints of C or belong to
P , whereas the endpoints are either endpoints of C or belong to R; thus, B is separable
as well.

Since C is separable, in the rest of the proof we use V1(C) and V2(C) to denote the
sets of midpoints and endpoints of the P4s in C, respectively.

(ii) Clearly true, because of the general form of the P4s of type (6).
(iii) Clearly, x ∈ V2(C) and z ∈ V1(C). Suppose that x ∈ V (B). Then there exists a

P4 of type (6) in B with x as a vertex; let it be r x ′ px , where r ∈ R and p ∈ P . Then the
path r zpx is a P4 and belongs to B; thus, z ∈ V (B). In a similar fashion, we can show
that z ∈ V (B) implies that x ∈ V (B).

(iv) Let ρ be a P4 of B; obviously, ρ is of type (6) with respect to C and thus contains
a vertex, say, v, which is a midpoint of a P4 of C. Then v belongs to a P4 of C; let it be
uvwz. Clearly, the proposition holds for the P4 uvwz: by definition v ∈ V (B), which
implies that z ∈ V (B) in accordance with statement (iii). We will show that if it holds
for the P4 abcd of C, then it also holds for any P4 a′b′c′d ′ adjacent to abcd. Because
C is separable (statement (i)), the two P4s abcd and a′b′c′d ′ share an edge which is a
rib or a wing to both of them; hence, without loss of generality, a = a′ and b = b′, or
b = b′ and c = c′, or c = c′ and d = d ′. Let b be the midpoint of the P4 abcd which
belongs to V (B); we will show that b′, d ′ ∈ V (B). We distinguish the following cases:

a′ = a and b′ = b, or b′ = b and c′ = c. Trivially, b′ ∈ V (B). Moreover, statement
(iii) implies that d ′ ∈ V (B).
c′ = c and d ′ = d. Trivially, d ′ ∈ V (B); then, statement (iii) implies that b′ ∈ V (B).

Since for every P4 ρ
′ of C, there exists a sequence of adjacent P4s from the P4 uvwz

to ρ ′ (Lemma 2.1, statement (i)), the lemma follows.
(v) Because r ∈ R ∩ V (B) and the P4-component B is of type B with respect to C,

B contains a P4 rvpv′, where v ∈ V1(C), p ∈ P , and v′ ∈ V2(C). Additionally, the fact
that u ∈ V1(C) ∩ V (B) implies that B contains a P4 r ′up′u′, where r ′ ∈ R, p′ ∈ P , and
u′ ∈ V2(C). Since both these P4s belong to B, there exists a sequence of adjacent P4s
(all of which are of type (6) with respect to C) from r ′up′u′ to rvpv′; let this sequence
be

r ′up′u′ = r1v1 p1v
′
1, r2v2 p2v

′
2, . . . , rk−1vk−1 pk−1v

′
k−1, rkvk pkv

′
k = rvpv′.

The adjacency of these P4s implies that not both ri �= ri+1 and pi �= pi+1. Then the
sequence

r ′up′u′, r2up2u′, . . . , rk−1upk−1u′, rupu′

is a sequence of adjacent P4s which belong to the P4-componentB. Therefore, the edge ru
belongs to B. The proof for the edges pu, where p ∈ P ∩ V (B) and u ∈ V (C) ∩ V (B),
is similar.

LEMMA 2.11. LetA,B, and C be three distinct non-trivial P4-components of a graph G
such that A and B are of type B with respect to C and (V (A) ∩ V (B)) − V (C) �= ∅.
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Then

(i) V (A)− V (C) = V (B)− V (C);
(ii) the sets V (A) ∩ V (C) and V (B) ∩ V (C) partition V (C); in particular, the sets

V1(A) ∩ V1(C) and V1(B) ∩ V1(C) partition V1(C), where by V1(A), V1(B), and
V1(C) we denote the sets of midpoints of the P4s in the P4-components A, B, and
C, respectively;

(iii) C is of type B with respect to A and with respect to B;
(iv) A is of type B with respect to B and vice versa.

PROOF. Note that since the P4-components A and B are of type B with respect to
C, Lemma 2.10 (statement (i)) implies that all three P4-components A, B, and C are
separable, and therefore the sets of their midpoints and endpoints are well defined.
Below, for a separable P4-component K, the sets V1(K) and V2(K) denote the sets of
midpoints and endpoints of the P4s of K, and the sets R(K) and P(K) the partition sets
of the vertices of V (G)− V (K) as described earlier.

(i) In order to prove that V (A) − V (C) = V (B) − V (C), it suffices to show that
V (B) − V (C) ⊆ V (A) − V (C); then, by symmetry of the P4-components A and B
with respect to C, V (A) − V (C) ⊆ V (B) − V (C) which implies the desired equality.
Because (V (A) ∩ V (B)) − V (C) �= ∅, there exist vertices in R(C) ∪ P(C) belonging
to V (A) ∩ V (B); let r ∈ R(C) be such a vertex (the case for a vertex in P(C) is
similar). Then, since the P4-components A and B are of type B with respect to C, there
exist P4s rupw and ru′ p′w′ belonging to A and B, respectively, where u, u′ ∈ V1(C),
p, p′ ∈ P(C), andw,w′ ∈ V2(C); then the path ru′ pw′ is a P4 and belongs to B as well.

Let x ∈ R(C)∩ V (B) and let xvyv′ be a P4 in B with x as a vertex. Then there exists
a sequence of adjacent P4s from ru′ pw′ to xvyv′:

ru′ pw′ = r1v1 p1v
′
1, r2v2 p2v

′
2, . . . , r�v� p�v

′
� = xvyv′.

Then the sequence

rupw = r1up1w, r2up2w, . . . , r�−1up�−1w, xuyw

is a sequence of adjacent P4s (probably with duplicates) belonging toA. Thus, x ∈ V (A).
A similar approach establishes that if x ∈ P(C) ∩ V (B), then x ∈ V (A), which yields
that V (B)− V (C) ⊆ V (A)− V (C).

(ii) We first show that the sets V (A)∩ V (C) and V (B)∩ V (C) are disjoint. Indeed, if
there existed a vertex x in the intersection of these two sets, then the edge xy for any y in
V (A)− V (C), which is not empty and is equal to V (B)− V (C) by statement (i), would
belong to both A and B in accordance with Lemma 2.10 (statement (v)); however, this
contradicts the fact thatA �= B. Proving that the union of V (A)∩V (C) and V (B)∩V (C)
is equal to V (C) follows from Lemma 2.10 (statement (iv)) and the fact that the two sets
are disjoint.

The above property of the sets V (A) ∩ V (C) and V (B) ∩ V (C) implies that the
sets V (A) ∩ V1(C) and V (B) ∩ V1(C) partition V1(C). To show that V1(A) ∩ V1(C) and
V1(B)∩V1(C) partition V1(C), it suffices to observe that V (A)∩V1(C) = V1(A)∩V1(C)
and similarly for B: note that V (A) = V1(A)∪V2(A) and that V2(A)∩V1(C) = ∅ since
V2(A) ⊆ R(C) ∪ V2(C).
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(iii) Let abcd be a P4 of C. According to Lemma 2.10 (statement (iv)), one of the
midpoints b, c belongs to V (A); we suppose without loss of generality that b ∈ V (A).
Then the general form of the P4s of type (6) implies that b is a midpoint of A, i.e.,
b ∈ V1(A). Moreover, according to Lemma 2.10 (statement (iii)), b ∈ V (A) implies that
d ∈ V (A); in particular, d ∈ V2(A). On the other hand, a, c /∈ V (A), for otherwise no
midpoint or no endpoint of the P4 abcd would belong to V (B) given that the sets V (A)∩
V (C) and V (B) ∩ V (C) are disjoint, in contradiction to Lemma 2.10 (statement (iv)).
Since a /∈ V (A) and a is adjacent to the vertex b and not adjacent to the vertex d of
A, then a ∈ R(A). On the other hand, since c /∈ V (A) and c is adjacent to both the
midpoint b and the endpoint d ofA, then c ∈ P(A). Therefore, the P4 abcd is of type (6)
with respect to the P4-componentA. Since this holds for any P4 of C, the P4-component C
is of type B with respect to A. By symmetry, C is of type B with respect to B.

(iv) Let xyzw be a P4 of A and suppose without loss of generality that y ∈ V (C);
then x ∈ R(C), y ∈ V1(C), z ∈ P(C), and w ∈ V2(C). Thus, y, w ∈ V (A) ∩ V (C).
Then statement (ii) implies that y, w /∈ V (B). On the other hand, since y is a midpoint
of C, there exists a P4, say, aycd , of C, where c ∈ V1(C) and a, d ∈ V2(C). Then the
path xcza is a P4 and belongs toB (note that the edge xc belongs toB), which implies that
x ∈ V2(B) and z ∈ V1(B). Since y /∈ V (B), and y is adjacent to both the endpoint x and
the midpoint z of B, then y ∈ P(B). Moreover, since w /∈ V (B), and w is adjacent to z
and not adjacent to x , thenw ∈ R(B). Therefore, the P4 xyzw is of type (6) with respect
to the P4-component B. Since the P4 xyzw is an arbitrary P4 of the P4-component A,
A is of type B with respect to B. By symmetry, B is of type B with respect to A.

Note that statement (ii) of Lemma 2.11 implies that, for a P4-component C meeting
the conditions of the lemma, the subgraph spanned by the ribs of the P4s in C is bipartite.
It is worth mentioning here that the subgraph spanned by the ribs of the P4s in a separable
P4-component may very well not be bipartite. For example, the ribs of the P4s in the
P4-component of the graph of Figure 2 induced by the vertex set {a1, a2, b, c1, c2, d1, d2}
span a triangle, i.e., a graph which is not bipartite. If C is such a P4-component (i.e.,
C is a separable P4-component such that the subgraph spanned by the ribs of its P4s
is not bipartite) and if B is a P4-component which is of type B with respect to C, then
V (C) ⊂ V (B); see Figure 2 for an example and the Appendix for a proof.

LEMMA 2.12. LetA,B, and C be three distinct non-trivial P4-components of a graph G
such thatA is of type B with respect to B, B is of type B with respect to C and |V (A)| ≥
|V (C)|. Then, if there exists a vertex which is a midpoint of all three components A, B,
and C, the P4-component A is of type B with respect to C.

PROOF. The conditions in the statement of the lemma and Lemma 2.10 (statement (i))
imply that all three P4-componentsA, B, and C are separable, and therefore their sets of
midpoints and endpoints are well defined. Below, for a separable P4-component K, the
sets V1(K) and V2(K) denote the sets of midpoints and endpoints of the P4s of K, and
the sets R(K) and P(K) the partition sets of the vertices of V (G)− V (K) as described
earlier.

Let b be the vertex which is a midpoint of all three components. Since b is a midpoint
of A, there exists a P4, say, abcd, of A with b as a midpoint. Because A is of type B
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with respect to B, the P4 abcd is of type (6) with respect to B; in particular, a ∈ R(B),
b ∈ V1(B), c ∈ P(B), and d ∈ V2(B). Since d ∈ V2(B) and given that B is of type B
with respect to C, then either d ∈ R(C) or d ∈ V2(C). The former is not possible, since
b ∈ V1(C) and b and d are not adjacent in G (recall that the path abcd is a P4). Therefore,
d ∈ V2(C). On the other hand, a /∈ V (C). Otherwise, both endpoints of the edge ab, which
belongs to A, would belong to V (C); then, according to Lemma 2.7, V (A) ⊆ V (C).
Since |V (A)| ≥ |V (C)|, we have that V (A) = V (C), and then Lemma 2.6 would imply
that A = C, a contradiction, as the three P4-components are distinct. Since a /∈ V (C)
and given that a is adjacent to the midpoint b and not adjacent to the endpoint d of C, we
conclude that a ∈ R(C). Finally, in a fashion similar to the one that we used for a, we
can show that c /∈ V (C). Since c is adjacent to both the midpoint b and the endpoint d of
C, we conclude that c ∈ P(C). Therefore, the P4 abcd of A is of type (6) with respect
to C.

In light of what we showed for the P4 abcd of the P4-component A and due to
Lemma 2.1 (statement (i)), establishing that all the P4s ofA are of type (6) with respect
to C follows from proving that if ρ is a P4 ofA such that ρ is of type (6) with respect to
C and one of ρ’s midpoints is a midpoint of all three components A, B, and C, then any
P4 adjacent to ρ also satisfies these conditions, that is, it is of type (6) with respect to C
and it has a midpoint which is a midpoint of all three components A, B, and C.

We consider a P4 xyzw of A which is of type (6) with respect to C and suppose that
its midpoint y is a midpoint of all three components A, B, and C. Let x ′y′z′w′ be a P4

adjacent to xyzw; then x ′ = x and y′ = y, or y′ = y and z′ = z, or z′ = z and w′ = w.
We consider these three cases separately:

Case (a): x ′ = x and y′ = y. Because xyzw is a P4 of type (6) with respect to C, and
y is a midpoint of C, then x ∈ R(C) and y ∈ V1(C), or, equivalently, x ′ ∈ R(C) and
y′ ∈ V1(C) since x ′ = x and y′ = y. Moreover, since the P4-component A is of type B
with respect to B, the P4 x ′y′z′w′ ofA is of type (6) with respect to B; then w′ ∈ V2(B)
due to the form of a P4 of type (6) and the fact that y′ (which coincides with y) is a
midpoint ofB. Additionally, the fact that the P4-componentB is of type B with respect to
C implies that the endpointw′ is an endpoint of a P4 of type (6) with respect to C and thus
belongs either to R(C) or to V2(C). The former is not possible, since y′ is a midpoint of
C andw′ is not adjacent to it; recall the P4 x ′y′z′w′. Therefore,w′ ∈ V2(C). On the other
hand, z′ /∈ V (C). Otherwise, both endpoints of the edge y′z′ (which belongs toA) would
belong to C, and then, according to Lemma 2.7, V (A) ⊆ V (C); since |V (A)| ≥ |V (C)|,
we would have that V (A) = V (C), which leads to a contradiction since Lemma 2.6
would imply that A = C. Because z′ /∈ V (C), and z′ is adjacent to both the midpoint y′

and the endpoint w′ of C, we conclude that z′ ∈ P(C).

Case (b): y′ = y and z′ = z. We work in a fashion similar to the one used in the pre-
vious case. Clearly, y′ ∈ V1(C) and z′ ∈ P(C). As in the previous case, w′ ∈ V2(C).
On the other hand, x ′ /∈ V (C), which implies that x ′ ∈ R(C), since x ′ is adjacent to the
midpoint y′ and not adjacent to the endpoint w′ of C.

Case (c): z′ = z and w′ = w. From z′ = z and w′ = w, and from the fact that the
P4 xyzw of A is of type (6) with respect to C, where y is a midpoint of C, we conclude
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that z′ ∈ P(C) and w′ ∈ V2(C). Moreover, since A is of type B with respect to B,
and since the P4 xyzw belongs to A, where y is a midpoint of B, we conclude that
w ∈ V2(B). Since w′ = w, we have that w′ ∈ V2(B), which along with the fact that
the P4 x ′y′z′w′ belongs to A too and thus is of type (6) with respect to B implies that
y′ ∈ V1(B). In turn, because the P4-component B is of type B with respect to C, the
midpoint y′ is a midpoint of a P4 of type (6) with respect to C and thus belongs either to
V1(C) or to P(C). The latter is not possible, since y′ is not adjacent to the endpoint w′

of C. Therefore, y′ ∈ V1(C). Finally, as in the previous case, x ′ ∈ R(C).

In all three cases we conclude that the P4 x ′y′z′w′ is of type (6) with respect to C and
that its midpoint y′ is a midpoint of all three components A, B, and C, as desired.

We close this section by showing that the assignment of compatible directions in all
the P4s of a P4-component does not imply that the component is necessarily acyclic.
We first give an example of a graph that has a P4-component with a directed cycle of
length 3, and then we generalize it to P4-components with directed cycles of arbitrary
length. Consider the graph of Figure 5(a); each vertex is adjacent to all but two other
vertices so that the paths x0 y0 y1z0, x1 y1 y2z1, and x2 y2 y0z2 are all P4s. Additionally,
the paths y1z0z1x0 and z1x0x1 y1 are P4s, are adjacent since they share the edge z1x0,
and belong to the same P4-component as x0 y0 y1z0 and x1 y1 y2z1 because they form the
following sequence of adjacent P4s: x0 y0 y1z0, y1z0z1x0, z1x0x1 y1, x1 y1 y2z1. Assuming
(without loss of generality) that the edge y0 y1 is oriented towards y1, this sequence of P4s
implies that the edge y1 y2 is oriented towards y2. In a similar fashion, the P4 x2 y2 y0z2

belongs to the same P4-component and the edge y2 y0 is oriented towards y0. Thus, a
directed cycle of length 3 is formed. In fact, this is not the only directed cycle of length 3
in the P4-component; two more are formed by the directed edges in x0x1x2 and in z0z1z2.

The previous example can be easily generalized to yield a graph with a P4-component
exhibiting an arbitrarily long directed cycle. Let k be an integer at least equal to 3, and
let Xk = {xi | 0 ≤ i < k}, Yk = {yi | 0 ≤ i < k}, and Zk = {zi | 0 ≤ i < k} be three sets

x0

x1

x2

y0 y1

y2

z0

z1

z2

x0

x1

x2

x3

y0 y1

y2y3

z0

z1

z2

z3

(a) (b)

Fig. 5. Graphs that have P4-components with cyclic P4-transitive orientation.
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of distinct vertices. We consider the graph Gk = (Vk, Ek) where

Vk = Xk ∪ Yk ∪ Zk

and

Ek = Vk × Vk − ( {xi yi+1 | 0 ≤ i < k} ∪ {xi zi | 0 ≤ i < k} ∪ {yi zi | 0 ≤ i < k}).
The addition in the subscripts is assumed to be done mod k. Figure 5(a), (b) depicts G3

and G4, respectively. Then the following lemma holds.

LEMMA 2.13. The graph Gk has the following properties:

(i) The only P4s of Gk are the paths xi yi yi+1zi , yi+1zi zi+1xi , and yi+1xi+1xi zi+1 for
0 ≤ i < k.

(ii) The graph Gk has a single non-trivial P4-component.
(iii) The directed edges yi yi+1 (0 ≤ i < k) form a directed cycle of length k in the

non-trivial P4-component of Gk .
(iv) No directed cycle of length less than k exists in the non-trivial P4-component

of Gk .

PROOF. (i) Let abcd be a P4 of the graph Gk . First, suppose that the vertex a is yi+1

(for some value of i + 1 in {0, . . . , k − 1}). Then the vertices c and d can only be xi and
zi+1, since these are the only vertices of Gk not adjacent to yi+1: if d = xi , then b = zi ,
and the P4 is yi+1zi zi+1xi ; if d = zi+1, then b = xi+1, and the P4 is yi+1xi+1xi zi+1. These
are the last two P4s in the statement of the lemma. Now, suppose that a /∈ Yk ; we may
also assume without loss of generality that d /∈ Yk , thus avoiding getting the P4s of the
previous case again (traversed from back to front). However, then a, d ∈ Xk ∪ Zk ; since
a and d are not adjacent, they can only be xi and zi for some i = 0, . . . , k−1. Moreover,
the remaining two vertices b and c, which are not adjacent to d and a, respectively, can
only be yi and yi+1. Therefore the P4s in this case are the paths xi yi yi+1zi .

(ii) This property follows from the fact that the P4s xi yi yi+1zi , yi+1zi zi+1xi ,
zi+1xi xi+1 yi+1, and xi+1 yi+1 yi+2zi+1 are adjacent and therefore belong to the same
P4-component for all i such that 0 ≤ i < k.

(iii) The sequence of P4s in the proof of property (ii) implies that if the edge yi yi+1 is
oriented towards yi+1, then the edge yi+1 yi+2 will be oriented towards yi+2. The property
follows.

(iv) From the P4s of the graph Gk (see property (i)), we note that all their edges connect
vertices whose subscripts differ by at most 1. We assume without loss of generality that
the edges yi yi+1 are oriented towards yi+1. Then, from the P4 xi yi yi+1zi , the edge xi yi

is oriented towards xi and the edge yi+1zi towards yi+1. Since the edge yi+1zi is oriented
towards yi+1, the edges zi zi+1 and zi+1xi of the P4 yi+1zi zi+1xi are both oriented towards
zi+1. Finally, since the edge xi zi+1 is oriented towards zi+1, the edges yi+1xi+1 and xi+1xi

of the P4 yi+1xi+1xi zi+1 are both oriented towards xi+1. In other words, all the edges of
the form ai bi+1 are oriented from ai to bi+1, whereas the only edges connecting vertices
with the same subscript are the edges xi yi which are oriented towards xi ; this implies
that the length of a directed cycle of the P4-component cannot be less than k.
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3. Recognition of P4-Comparability Graphs. Our recognition algorithm works by
constructing and orienting the P4-components of the input graph, say, G, and then by
checking whether they are acyclic (Lemma 2.2). The P4-components are constructed as
follows: the algorithm considers initially m (partial) P4-components, one for each edge
of G; then it locates the P3s in all the P4s of G, and whenever the edges of such a P3

belong to different (partial) P4-components it unions and appropriately orients these P4-
components. Since we are interested in a P4-transitive orientation of each P4-component,
the edges of such a P3 need to be oriented either towards their common endpoint or away
from it. It is important to note that the orientation of any two edges belonging to the same
P4-component is not free to change relative to each other (Lemma 2.1, statement (iii));
either the orientation of all the edges in the component stays the same or is inverted for
all the edges. If no compatible orientation can be found (in which case the P4-component
does not admit a P4-transitive orientation) or if the resulting orientation contains directed
cycles, then the input graph G is not a P4-comparability graph.

As stated earlier, the P4s of the graph G are computed by means of processing the
BFS-trees of the complement G of G rooted at each of its vertices. It is important to
observe that if abcd is a P4 of G, then its complement is the P4 bdac and it belongs to
the complement G of G. We consider the BFS-tree TG(b) of G rooted at b. Since bdac
is a P4 of G, the vertices b, d , and a have to belong to the zeroth, first, and second level
of TG(b), respectively; the vertex c may belong to the second or third level, but not to
the first level since c is not adjacent to b in G. These two cases are shown in Figure 6.

Our algorithm also takes advantage of the following result in order to achieve its
stated time complexity.

LEMMA 3.1. Let G be a graph and let TG(v) be the BFS-tree of the complement G
rooted at a vertex v. Then the number of vertices in all the levels of TG(v), except for the
zeroth and the first, does not exceed the degree of v in G.

PROOF. Clearly true, since the vertices in all the levels of TG(v), except for the zeroth
and the first, are vertices which are not adjacent to v in G.

The algorithm is described in more detail below. We assume that the input graph is
connected; the case of disconnected graphs is addressed in Section 3.3.

Leveld d

a a

c

c

b

1

2

3

Fig. 6. The two positions of the P4 bdac in the BFS-tree T
G
(b).
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Recognition Algorithm

Input: a connected graph G on n vertices and m edges.
Output: yes, if G is a P4-comparability graph; otherwise, no.

1. Initialize to 0 all the entries of an array M[ ] which is of size n;
for each edge e of the graph G, do

assign to e an arbitrary orientation;
construct a P4-component containing only the edge e;

2. For each vertex v of the graph G, do
2.1. compute the sets L1, L2, and L3 of vertices in the first, second, and

third level, respectively of the BFS-tree of the complement G rooted
at v;

2.2. partition the set L2 into subsets of vertices so that two vertices belong
to the same subset iff they have (in G) the same neighbors in L1;

2.3. for each vertex x in L2, do
2.3.1. for each vertex w adjacent to x in G, do

M[w]← 1; {mark in M[ ] the neighbors of x in G}
2.3.2. for each vertex y in L3 do

if M[y] = 0
then {xvy is a P3 in a P4 of G}

If the edges xv and vy belong to the same P4-component and
do not both point towards v or away from it, then the P4-
component cannot admit a P4-transitive orientation and we
conclude that the graph G is not a P4-comparability graph.
If the edges xv and vy belong to different P4-components,
then we union these components into a single component and
if the edges do not both point towards v or away from it, we
invert (during the unioning) the orientation of all the edges
of the unioned P4-component with the fewest edges.

2.3.3. for each vertex y in L2 do
if M[y] = 0 and the vertices x and y belong to different partition
sets of L2 (produced in Step 2.2)
then {xvy is a P3 in a P4 of G}

process the edges xv and vy as in Step 2.3.2;
2.3.4. for each vertex w adjacent to x in G, do

M[w]← 0; {clear M[ ]}
3. After all the vertices have been processed, we apply topological sorting

on the directed graph spanned by the directed edges associated with
each of the resulting non-trivial P4-components; if the topological sorting
succeeds, then the component is acyclic, otherwise there is a directed
cycle. If any of the P4-components contains a directed cycle, then the
graph is not a P4-comparability graph.

For each P4-component we maintain a linked list of the records of the edges in the
component, and the total number of these edges. Each edge record contains a pointer
to the header record of the component to which the edge belongs; in this way, we can
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determine in constant time the component to which an edge belongs and the component’s
size. Unioning two P4-components is done by updating the edge records of the smallest
component and by linking them to the edge list of the largest one, which implies that the
union operation takes time linear in the size of the smallest component. As mentioned
above, in the process of unioning, we may have to invert the orientation in the edge
records that we link, if the current orientations are not compatible.

Correctness of the Recognition Algorithm. The correctness of the algorithm follows
(i) from the fact that in Steps 2.3.2 and 2.3.3 it processes the P3s in all the P4s of the
input graph G (Lemmata 3.2 and 3.3) and that it assigns correct orientations on the edges
of these P3s, (ii) from the correct construction of the P4-components by unioning partial
P4-components whenever a P3 is processed whose edges belong to more than one such
partial component, and (iii) from Lemma 2.2 in conjunction with Step 3 of the algorithm.

Note that the initial assignment of 0 to all the entries of the array M[ ] and the clearing
of all the set entries at Step 2.3.4 of the algorithm guarantee that the only entries of the
array which are equal to 1 at any iteration are precisely those corresponding to the vertices
adjacent in G to the vertex processed at Step 2.3.

LEMMA 3.2. Every P3 in a P4 of the input graph G is considered at Steps 2.3.2 or 2.3.3
of the recognition algorithm.

PROOF. Let abcd be a P4 of the graph G; we will show that the P3 abc is considered
at Step 2.3.2 or 2.3.3 of the recognition algorithm. Since the algorithm processes each
vertex v of G in Step 2 and considers the BFS-tree of G rooted at v, it will process b, it
will consider the BFS-tree TG(b) of G rooted at b, and it will compute the sets L1, L2,
and L3 of vertices in the first, second, and third level of TG(b), respectively. We consider
the two cases of Figure 6. In the first case the vertices a and c belong to the second and
third level of TG(b), respectively, and they are adjacent in G. Thus, a ∈ L2 and c ∈ L3.
Moreover, since a and c are adjacent in G, then a and c are not adjacent in G. Hence,
M[c] = 0 when x = a in Step 2.3. Therefore, the P3 abc is considered in Step 2.3.2
when x = a and y = c. In the second case of Figure 6, the vertices a and c belong to the
second level of TG(b), they are adjacent in G, and a is adjacent to d ∈ L1 in G whereas
c is not. Thus, a ∈ L2, c ∈ L2, M[c] = 0 when x = a in Step 2.3, and the vertices a and
c belong to different sets in the partition of the vertices in L2 depending on the vertices
in L1 to which they are adjacent in G. Therefore, the P3 abc is considered in Step 2.3.3
when x = a and y = c.

LEMMA 3.3. The vertices x, v, y considered at Steps 2.3.2 and 2.3.3 of the recognition
algorithm induce the P3 xvy of the input graph G which participates in a P4 of G.

PROOF. We first consider Step 2.3.2; in this case the vertices x and y are in the second
and third level of TG(v), respectively. Then the path vpx xy is a P4 in G, where px is the
parent of x in TG(v). This implies that xvypx is a P4 in G and xvy is a P3 in a P4 of G.

We now consider Step 2.3.3. Then the vertices x and y are in the second level of the
BFS-tree TG(v) of G rooted at v. Moreover, since M[y] = 0, x and y are not adjacent
in G, that is, they are adjacent in G. Finally, the fact that x and y do not belong to the
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same partition set of L2, implies that there is a vertex in the first level of TG(v) which is
adjacent to one of them in G and not to the other one. Suppose that this vertex is z and
that it is adjacent to x ; the case where z is adjacent to y and not to x is similar. Then the
path vzxy is a P4 in G, which implies that xvyz is a P4 in G. Clearly, xvy is a P3 in a
P4 of G.

Before analyzing the complexity of the recognition algorithm, we explain in more
detail how Steps 2.1 and 2.2 are carried out.

3.1. Computing the Vertex Sets L1, L2, and L3. The computation of these sets can be
done by means of the algorithms of Dahlhaus et al. [5] and Ito and Yokoyama [15] for
computing the BFS-tree of the complement of a graph in time linear in the size of the
input graph; both algorithms require the construction of a special representation of the
graph and rely on special cases of the disjoint-set union problem. Instead, we use another
algorithm which computes the vertices in each level of the BFS-tree of the complement
of a graph—i.e., it effectively implements breadth-first search on the complement—in
the above stated time complexity (a similar approach is described in [6]). The algorithm
is very simple and uses the standard adjacency list representation of a graph. It works by
constructing each level Li+1 from the previous one, Li , based on the following lemma.

LEMMA 3.4. Let G be a graph and let Li be the set of vertices in the i th level of a
BFS-tree of G. Consider a vertex w which does not appear in any of the levels from the
0th up to the kth. Then w is a vertex of the (k + 1)st level if and only if there exists at
least one vertex of Lk which is not adjacent to w in G.

PROOF. The vertex w is a vertex of the (k + 1)st level if and only if it is adjacent in G
to at least one vertex in Lk . The lemma follows.

We give below the description of the algorithm.

Algorithm for computing the BFS-tree of the complement of a graph G rooted
at a vertex v

1. Initialize to 0 all the entries of the array Ad j[ ] which is of size n;
2. Construct a list L0 containing a single record associated with the vertex v

and a list S containing a record for each of the vertices of G except for v;
3. i ← 0;

while the list Li is not empty, do
3.1. initialize the list Li+1 to the empty list;
3.2. for each vertex u in Li do

for each vertex w adjacent to u in G do
increment Ad j[w] by 1;

3.3. for each vertex s in S do
if Ad j[s] < |Li |
then remove s from S and add it to the list Li+1

else Ad j[s]← 0;
3.4. increment i by 1;
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The correctness of the algorithm follows from Lemma 3.4. Note that the set S contains
the vertices which, until the current iteration, have not appeared in any of the computed
levels. Moreover, because of Steps 1 and 3.3, the entries of the array Ad j[ ] corresponding
to the vertices in S are equal to 0 at the beginning of each iteration of the while loop in
Step 3. In this way the test “Ad j[s] < |Li |” correctly tests the number of vertices of Li

which are adjacent to the vertex s in G against the size of Li . Finally, it must be noted
that when the while loop of Step 3 terminates, the list S may very well be non-empty;
this happens when the graph G is disconnected.

Suppose that the input graph G has n vertices and m edges. Clearly, Steps 1 and 2 take
O(n) time. In each iteration of the while loop of Step 3, Steps 3.1 and 3.4 take constant
time, while Step 3.2 takes O(

∑
u∈Li

dG(u)) time, where dG(u) denotes the degree of the
vertex u in G. Step 3.3 takes time linear in the current size of the list S; the elements of
S can be partitioned into two sets: (i) the vertices which end up belonging to Li+1, and
(ii) the vertices for which the corresponding entries of the array Ad j[ ] are equal to |Li |.
The number of elements of S in the former set is equal to |Li+1|, while the number of
elements in the latter set does not exceed the sum of the degrees (in G) of the vertices in
Li . Thus, Step 3.3 takes O

(|Li+1| +
∑

u∈Li
dG(u)

)
time.

Therefore, the time taken by the algorithm is

O(n)+
∑

i

(
O(1)+ O

(
|Li+1| +

∑
u∈Li

dG(u)

))

= O(n)+ O

(∑
i

(1+ |Li+1|)
)
+ O

(∑
i

∑
u∈Li

dG(u)

)
= O(n)+ O(n)+ O(m).

The inequalities
∑

i |Li | ≤ n and
∑

i

∑
u∈Li

dG(u) ≤
∑

u dG(u) = 2m hold because
each vertex belongs to at most one level of the BFS-tree. Moreover, the space needed is
O(n + m). Consequently, we have:

THEOREM 3.1. Let G be a graph on n vertices and m edges, and let v be a vertex of
G. Then the above algorithm computes the vertices in the levels of the BFS-tree of the
complement G of G rooted at v in O(n + m) time and O(n + m) space.

3.2. Partitioning the Vertices in L2. It is not difficult to see that the partition of the
vertices in L2 depending on their neighbors in G which are in L1 is identical to the
partition of the vertices in L2 depending on their neighbors in G which are in L1. This is
indeed so, because the subset of vertices in L1 which are adjacent (in G) to a vertex x ∈ L2

is L1−Nx , where Nx is the subset of L1 containing vertices which are adjacent (in G) to
x . If for two vertices x and y the sets Nx and Ny are equal, then so are the sets L1 − Nx

and L1− Ny , whereas if Nx �= Ny then L1− Nx �= L1− Ny . Therefore, in the algorithm
we work with neighbors in G, instead of working with neighbors in G.

The algorithm initially considers a single set (list) which contains all the vertices of
the set L2. It then processes each vertex, say, u, of the set L1 as follows: For each set of
the current partition, we check if none, all, or only some of its elements are neighbors
of u in G; in the first and second case the set is not modified, in the third case, it is split
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into the subset of neighbors of u in G and the subset of non-neighbors of u in G. After
all the vertices of L1 have been processed, the resulting partition is the desired partition.
The partition is stored in an array Set[ ] of size equal to the number of vertices of G.

Algorithm for partitioning the set L2 in terms of adjacency to elements of
the set L1

1. Initialize to 0 the entries of the arrays M[ ] and size[ ] which are of size n;
insert all the vertices in L2 in the list LSet[1] and assign size[1]← |L2|;
k ← 1; {k holds the number of sets in the partition}

2. For each vertex u in L1 do
2.1. for each vertex w adjacent to u in G do

M[w]← 1; {mark in M[ ] the neighbors of u in G}
2.2. k0 ← k;

for each list LSet[i], i = 1, 2, . . . , k0, do
2.2.1. traverse the list LSet[i] and count the number of its vertices

which are neighbors of u in G (use the array M[ ]); let � be
the number of these vertices;

2.2.2. if � > 0 and � < size[i]
then {split LSet[i]; create a new set}

increment k by 1;
traverse the list LSet[i] and for each of its vertices w
which is a neighbor of u in G (use M[ ]), delete w from
LSet[i] and insert it in LSet[k];
size[k]← �;
decrease size[i] by �;

2.3. for each vertex w adjacent to u in G do
M[w]← 0; {clear M[ ]}

3. For each list LSet[i], i = 1, 2, . . . , k, do
traverse the list LSet[i] and for each of its vertices w set the entry
Set[w] equal to i ;

Note that, thanks to the array Set[ ], checking whether two vertices x and y belong to
the same partition set of L2 reduces to testing whether the entries Set[x] and Set[y] are
equal.

The correctness of the algorithm follows from induction on the number of the pro-
cessed vertices in L1. At the basis step, when no vertices from the set L1 have been
processed, all the elements of the set L2 belong to the same set, as desired. Suppose
that after processing i ≥ 0 vertices from L1, the resulting partition of L2 is correct with
respect to the processed vertices. We consider the processing of the next vertex, say, u,
from L1: then only the sets which contain at least one vertex which is adjacent (in G) to
u and at least one vertex which is not adjacent (in G) to u should be split, and indeed
these are the only ones that are split; the splitting produces a subset of neighbors of u in
G and a subset of non-neighbors of u (Step 2.2.2). Note that because of Steps 1, 2.1, and
2.3, the array M[ ] is clear at the beginning of each iteration of the for loop in Step 2, so
that in Step 2.2 the marked entries are precisely those corresponding to the neighbors of
the current vertex u in G.
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Step 1 of the algorithm clearly takes O(n) time. Steps 2.1 and 2.3 take O(dG(u))
time, where dG(u) is equal to the degree of u in G. Step 2.2.1 takes O(|LSet(i)|) time
and so does Step 2.2.2, since deleting an entry from and inserting an entry in a list can
be done in constant time, and the remaining operations take constant time. Therefore,
Step 2.2 takes time linear in the total size of lists LSet[i] which existed when u started
being processed; since the lists contained the vertices in L2 and none of these lists was
empty, we conclude that Step 2.2 takes O(|L2|) time. Then Step 2 can be executed
in O(

∑
u(dG(u) + |L2|)) = O(m + n|L2|) time. Step 3 takes time linear in the total

size of the final lists LSet[i], i.e., O(|L2|) time. Thus the entire partitioning algorithm
takes O(m + n|L2|) time. Since all the initialized lists LSet[i] contain at least one
vertex from L2 and since these lists do not share vertices, then the space complexity is
O(n + |L2|) = O(n).

The results of the paragraph are summarized in the following theorem.

THEOREM 3.2. Let G be a graph on n vertices and m edges, and let L1 and L2 be two
disjoint sets of vertices. Then the above algorithm partitions the vertices in L2 depending
on their neighbors in G which belong to L1 in O(m + n|L2|) time and O(n) space.

Time and Space Complexity of the Recognition Algorithm. Clearly, Step 1 of the
algorithm takes O(n + m) time. Steps 2.1 and 2.2 while processing each one of the
vertices of G take O(n+m) = O(m) and O(m+n|L2|) time, respectively (in accordance
with Theorems 3.1 and 3.2), and Steps 2.3.1 and 2.3.4 take O(dG(x)) time where dG(x)
denotes the degree of vertex x in G. If we ignore the cost of unioning P4-components,
then Steps 2.3.2 and 2.3.3 require O(1) time per vertex in L3 and L2, respectively; recall
that testing whether two vertices belong to the same partition set of L2 takes constant
time. If we take into account Lemma 3.1, we have that |L2| ≤ dG(v) and |L3| ≤ dG(v).
Therefore, provided that P4-component unioning is ignored, the time complexity of
Step 2 of the algorithm is

T2 =
∑
v

(
O(m + n dG(v))+

∑
x

O(dG(v)+ dG(x))

)
.

By observing that x belongs to L2, we conclude that x assumes at most dG(v) different
values. Thus,

T2 = O

(∑
v

m + n
∑
v

dG(v)

)
+ O

(∑
v

∑
x

(dG(v)+ dG(x))

)

= O(nm)+ O(nm)+ O

(∑
v

(
d2

G(v) +
∑

x

dG(x)

))

= O(nm)+ O

(∑
v

d2
G(v)

)
+ O

(∑
v

∑
x

dG(x)

)
= O(nm)

since
∑

v d2
G(v) ≤ n

∑
v dG(v) = O(nm) and

∑
v

∑
x dG(x) ≤

∑
v 2m = 2nm. Now,

the time required for all the P4-component union operations during the processing of all
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the vertices is O(m log m) [1]; there cannot be more than m − 1 such operations (we
start with m P4-components and we may end up with only one), and each one of them
takes time linear in the size of the smallest of the two components that are unioned.

Finally, constructing the directed graph from the edges associated with a non-trivial
P4-component and checking whether it is acyclic takes O(n+mi ), where mi is the number
of edges of the component. Thus, the total time taken by Step 2 is O

(∑
i (n + mi )

) =
O(nm), since there are at most m P4-components and

∑
i mi = m. Thus, the overall time

complexity is O(n+nm+m log m+nm) = O(nm); note that log m ≤ 2 log n = O(n).
The space complexity is linear in the size of the graph G: the arrays M[ ] and Set[ ]

take linear space, both Steps 2.1 and 2.2 require linear space (Theorems 3.1 and 3.2),
the set L1 is represented as a list of O(n) size, the sets L2 and L3 are represented as lists
having O(dG(v)) size each, and the handling of the P4-components requires one record
per edge and one record per component. Thus, the space required is O(n + m).

Therefore, we have the following result:

THEOREM 3.3. It can be decided whether a connected graph on n vertices and m edges
is a P4-comparability graph in O(nm) time and O(n + m) space.

3.3. The Case of Disconnected Input Graphs. If the input graph is disconnected, we
compute its connected components and work on each one of them as indicated above. In
light of Theorem 3.3 and since the connected components of a graph can be computed
in time and space linear in the size of the graph by means of depth-first search [1], we
conclude that the overall time complexity is O(n+m)+∑i O(ni mi ) = O(n

∑
mi ) =

O(nm) and the space is O(n+m)+∑i O(ni +mi ) = O(n+m) since
∑

i ni = n and∑
i mi = m.

THEOREM 3.4. It can be decided whether a graph on n vertices and m edges is a
P4-comparability graph in O(nm) time and O(n + m) space.

4. Acyclic P4-Transitive Orientation. Although each of the P4-components of the
input graph produced by the recognition algorithm is acyclic, directed cycles may arise
when all the P4-components are placed together; obviously, these cycles will include
edges from more than one P4-component. Inversion of the orientations of some of the
components will yield the desired acyclic P4-transitive orientation; Lemma 4.3 provides
the rule for fixing the P4-transitive orientations of the non-trivial P4-components, so that
the resulting overall orientation of the input graph is acyclic. Before that, we need two
additional useful results.

LEMMA 4.1. Let B, C be two non-trivial P4-components of a graph such that B is of
type B with respect to C. Then, in a P4-transitive orientation of C (assuming that C admits
such an orientation),

(i) if an edge of B is oriented towards its endpoint that belongs to V (C), then so do all
the edges of B;

(ii) the edges of B incident upon the same vertex v are all oriented either towards v or
away from it.
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PROOF. (i) Since B is of type B with respect to C, any P4 abcd of B is of type (6) with
respect to C. The general form of such P4s implies that a ∈ R(C), b ∈ V1(C), c ∈ P(C),
and d ∈ V2(C) (see Section 2). The truth of the statement follows from the fact that any
P4 of B has exactly two vertices belonging to V (C) which are at distance 2 apart, and
the fact that the sets R(C), V1(C), P(C), V2(C) are disjoint and hence two adjacent P4s
of B share an edge that is a rib or a wing to both of them.

(ii) Follows easily from statement (i): if v ∈ V (C), then all the edges of B incident
upon v are oriented towards v; otherwise, they are oriented away from v.

LEMMA 4.2. Suppose that the non-trivial P4-components of a graph G have received
acyclic P4-transitive orientations. If the directed subgraph of G spanned by the edges
of these P4-components contains a directed triangle, then the three edges of the tri-
angle belong to three different P4-components which are of type B with respect to one
another.

PROOF. Let a, b, c be the vertices of the directed triangle, and suppose that the edges
ab, ac, and bc belong to the P4-componentsA, B, and C, respectively; it is not assumed
that the three P4-components are distinct. We suppose without loss of generality that
|V (C)| ≤ |V (A)| and |V (C)| ≤ |V (B|. Then the vertex a does not belong to V (C).
If a ∈ V (C), then the edge ab which belongs to A would have both endpoints in
V (C). This would imply that V (A) ⊆ V (C), according to Lemma 2.7. Moreover, since
|V (C)| ≤ |V (A)|, we have that V (A) = V (C), which implies thatA = C (Lemma 2.6).
Similarly, if a ∈ V (C), then from the edge ac we conclude thatB = C. However, then all
three edges of the directed triangle belong to the same P4-component, in contradiction
to the fact that the P4-components of the graph G have received acyclic P4-transitive
orientations. Thus, a /∈ V (C).

Since the orientation of each P4-component is acyclic, at least two of the P4-compo-
nents A, B, and C must be different. In fact, they are all different. Note that if the three
edges of the triangle participated in two distinct P4-components, then A = B, since
C cannot be identical to either A or B because a /∈ V (C). Then the edges ab and ac
belong to the same P4-component which is of type A or of type B with respect to C,
since a /∈ V (C) and b, c ∈ V (C). In the former case, Lemma 2.8 would imply that the
edges ab and ac would be oriented either both towards a or both away from it, and
thus the triangle with vertices a, b, and c could not form a directed cycle. In the latter
case, the edges ab and ac would again be oriented either both towards a or both away
from it (Lemma 4.1, statement (ii)), and thus the triangle could not form a directed cycle
in this case either. Therefore, the three edges of the triangle belong to three distinct
P4-components.

We consider the P4-component C. Because a /∈ V (C) while b, c ∈ V (C), the other
two components A and B are of type A or of type B with respect to C. If any one of
them were of type A, then, according to Lemma 2.8, the edges ab and ac would belong
to the same P4-component, in contradiction to the fact that A �= B. Therefore, both
A and B are of type B with respect to C. Then, since a ∈ (V (A) ∩ V (B)) − V (C),
Lemma 2.11 applies implying that the three P4-components are of type B with respect to
one another.
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Lemma 4.2 identified how a directed triangle can occur when placing the P4-transi-
tively oriented P4-components together. The next lemma takes advantage of this result
to suggest a way to avoid directed cycles.

LEMMA 4.3. Let C1, C2, . . ., Ch be the non-trivial P4-components of a graph G ordered
by non-decreasing vertex number and suppose that each component has received an
acyclic P4-transitive orientation. Consider the sets Si = {Cj | j < i and Ci is of
type B with respect to Cj }, for i = 1, 2, . . . , h. If the edges of each P4-component Ci

for which Si �= ∅ get oriented towards their endpoint which belongs to V (Cı̂ ), where
ı̂ = min{ j | Cj ∈ Si }, then the directed subgraph of G spanned by the edges of the Ci s
(1 ≤ i ≤ h) does not contain a directed cycle.

PROOF. We suppose for contradiction that the described orientation scheme produces
a directed graph that has a directed cycle. Then, in light of Lemma 2.3, there will exist
an oriented triangle which forms a directed cycle. Then, by Lemma 4.2, the edges of
the triangle belong to three distinct non-trivial P4-components which are of type B with
respect to one another. Let the triangle have vertices v, u, and w, and suppose that the
edges uw,vw, and uv belong to the P4-componentsCj ,Ck , andC�, respectively; moreover,
we assume without loss of generality that � = min{ j, k, �}. Let ̂ = min{i | i < j and Cj

is of type B with respect to Ci } and k̂ = min{i | i < k and Ck is of type B with respect to
Ci }; note that ̂ and k̂ are well defined and do not exceed �, since � < j , � < k and both
Cj and Ck are of type B with respect to C�. Then, according to the statement of the lemma,
the orientation convention implies that the edges of the P4-components Cj and Ck are
oriented towards their endpoint which belongs to V (Ĉ ) and V (Ck̂), respectively. Then
̂ �= k̂; if ̂ = k̂, the triangle with vertices u, v, and w could not form a directed cycle,
since, according to the orientation convention, the edges uw and vw, which belong to Cj

and Ck , respectively, would be oriented both towardsw ifw ∈ V (Ĉ ), or both away from
w if w /∈ V (Ĉ ). Since ̂ �= k̂, we may assume without loss of generality that ̂ < k̂.
Then ̂ < �, since ̂ < k̂ and k̂ ≤ �. We distinguish two cases:

Case (a): the P4-component C� is not of type B with respect to any component Ci for
1 ≤ i < �. If the P4-components C�, Cj , and Ĉ have a common midpoint, then
Lemma 2.12 applies: note thatC� is of type B with respect toCj ,Cj is of type B with respect
to Ĉ , and |V (C�)| ≥ |V (Ĉ )| since � > ̂ . Lemma 2.12 implies that the component C�
is of type B with respect to Ĉ , which contradicts the fact that C� is not of type B with
respect to any component Ci (1 ≤ i < �). If the P4-components C�, Cj , and Ĉ do
not have a common midpoint, then the P4-components Ck , Cj , and Ĉ do. Suppose for
contradiction that they do not, i.e., V1(Ck) ∩ V1(Cj ) ∩ V1(Ĉ ) = ∅, where by V1(K)
we denote the set of midpoints of a separable P4-component K. Moreover, from the
assumption that the P4-components C�, Cj , and Ĉ do not have a common midpoint, we
have that V1(C�)∩ V1(Cj )∩ V1(Ĉ ) = ∅. Therefore, by taking the union of these two set
intersections, we find that

(V1(Ck) ∩ V1(Cj ) ∩ V1(Ĉ )) ∪ (V1(C�) ∩ V1(Cj ) ∩ V1(Ĉ )) = ∅
⇐⇒ ((V1(Ck) ∩ V1(Cj )) ∪ (V1(C�) ∩ V1(Cj ))) ∩ V1(Ĉ ) = ∅.
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Since the P4-components Cj , Ck , and C� are of type B with respect to one another
and v ∈ (V (Ck) ∩ V (C�)) − V (Cj ), Lemma 2.11 (statement (ii)) implies that the sets
V1(Ck) ∩ V1(Cj ) and V1(C�) ∩ V1(Cj ) partition the set V1(Cj ) of midpoints of Cj ; that is,

(V1(Ck) ∩ V1(Cj )) ∪ (V1(C�) ∩ V1(Cj )) = V1(Cj ).

Thus, the previous equality is equivalent to V1(Cj ) ∩ V1(Ĉ ) = ∅. However, this comes
into contradiction with the fact that Cj is of type B with respect to Ĉ ; therefore, the P4-
components Ck , Cj , and Ĉ have a common midpoint. Then Lemma 2.12 applies again,
for the P4-components Ck , Cj , and Ĉ this time (Ck is of type B with respect to Cj , Cj is
of type B with respect to Ĉ , and |V (Ck)| ≥ |V (Ĉ )| since k > k̂ > ̂ ), and implies that
the component Ck is of type B with respect to Ĉ , which contradicts the minimality of k̂,
since ̂ < k̂.

Case (b): the P4-component C� is of type B with respect to a component Ci , where 1 ≤
i < �. Let �̂ = min{i | i < � and C� is of type B with respect to Ci }. If ̂ < �̂, then we
reach a contradiction as in Case (a); note that ̂ < �̂ and recall that the P4-component C�
cannot be of type B with respect to Ĉ as this would contradict the minimality of �̂. If
̂ = �̂, then the triangle with vertices u, v, and w cannot form a directed cycle; the
edges uw and uv, which belong to Cj and C�, respectively, get oriented both towards u if
u ∈ V (Ĉ ), or both away from u if u /∈ V (Ĉ ), according to the orientation convention
in the statement of the lemma. Suppose now that �̂ < ̂ . If the P4-components Cj , C�,
and C�̂ have a common midpoint, then Lemma 2.12 applies: note that Cj is of type B
with respect to C�, C� is of type B with respect to C�̂, and |V (Cj )| ≥ |V (C�̂)| since
j > ̂ > �̂. Lemma 2.12 implies that the component Cj is of type B with respect to C�̂,
which contradicts the minimality of ̂ , since �̂ < ̂ . If the P4-components Cj , C�, and C�̂
do not have a common midpoint, then, as in Case (a), the P4-components Ck , C�, and C�̂
do. Then again Lemma 2.12 applies, implying that the component Ck is of type B with
respect to C�̂, which contradicts the minimality of k̂, since �̂ < ̂ < k̂.

In either case we reached a contradiction, which proves that if the orientation convention
described in the statement of the lemma is followed, then no directed cycle exists in the
directed subgraph of G spanned by the edges of the non-trivial P4-components of G.

Our algorithm for computing an acyclic P4-transitive orientation of a P4-comparability
graph employs Lemma 4.3; it processes the P4-components of the input graph and as-
signs orientations in a greedy fashion by focusing on the graph edges incident upon
the vertices of the non-trivial P4-component that is currently being processed. More
specifically, the algorithm works as follows:

Orientation Algorithm

1. We apply the recognition algorithm of the previous section on the input
graph G, which produces the P4-components of G and an acyclic P4-
transitive orientation of each component.

2. We sort the non-trivial P4-components of G by (non-decreasing) num-
ber of vertices; let C1, C2, . . . , Ch be the resulting ordered sequence. We
associate with each Ci a mark and a counter field which are initialized
to 0.
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3. For each P4-component Ci (1 ≤ i < h) in order, we do:
By going through the vertices in V (Ci ), we collect the edges which are
incident upon a vertex in V (Ci ) and belong to a P4-component Cj where
j > i . Then, for each such edge e, we increment the counter field as-
sociated with the P4-component to which e belongs. Next, we go through
the collected edges once more. This time, for each such edge e, we check
whether the P4-component to which e belongs has its mark field equal
to 0 and its counter field equal to the total number of edges of the
component; if yes, then this P4-component is of type B with respect to Ci

whereas it is not of type B with respect to any Ck for k < i , and its edges
should get oriented towards their endpoint belonging to V (Ci ); thus, in
case e is not oriented towards its endpoint in V (Ci ), we flip the compo-
nent’s orientation (by updating a corresponding boolean variable), and we
set the mark field of the component to 1 to indicate that the component
has received its final orientation. Finally, we set the counter field of
the component to 0; in this way, the counter fields of all the non-trivial
P4-components are equal to 0 every time a P4-component starts getting
processed in Step 3.

4. We orient the edges which belong to the trivial P4-components: this can
be easily done by topologically sorting the vertices of G using only the
oriented edges of the non-trivial components, and orienting the remaining
edges in accordance with the topological order of their incident vertices.

Note that in Step 3 we process all the non-trivial P4-components of the input graph G
except for the largest one. This implies that the vertex set V (Ci ) of each P4-component Ci

(1 ≤ i < h) that we process is a proper subset of the vertex set V (G) of G; if
V (Ci ) = V (G), then V (Ch) = V (G) as well, which implies that Ci = Ch (Lemma 2.6),
a contradiction. Thus, the discussion in Section 2 regarding the P4-components of
type A and type B applies to each such Ci . Moreover, according to Lemma 2.9, the
P4-components whose mark field is set to 1 in Step 3 are components which are of
type B with respect to the currently processed component Ci . Each edge of these com-
ponents has exactly one endpoint in V (Ci ) (see Lemma 2.10, statement (ii)), so that it
is valid to try to orient such an edge towards that endpoint. Furthermore, Lemma 4.1
(statement (i)) implies that if such an edge gets oriented towards its endpoint which
belongs to V (Ci ), then so do all the edges of the same P4-component. In the case that
the set R in the partition of the vertices in V (G) − V (Ci ) (as described in Section 2)
is empty, there are no P4-components of type B with respect to Ci . While processing
Ci , our algorithm updates the counter fields of the components that contain an edge
incident upon a vertex in V (Ci ), finds that none of these components ends up having its
counter field equal to the number of its edges, and thus does nothing further.

The orientation algorithm does not compute the sets R, P , and Q with respect to
the currently processed P4-component Ci . Yet, these sets can be computed in O(n) time
for each Ci as follows. We use an array with one entry per vertex of the graph G; we
initialize the array entries corresponding to vertices in V (Ci ) to 0 and all the remaining
ones to −1. Let v1 and v2 be an arbitrary midpoint and an arbitrary endpoint of a P4 in
Ci . We go through the vertices adjacent to v1 and if the vertex does not belong to V (Ci ),
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we set the corresponding entry to 1. Next, we go through the vertices adjacent to v2; this
time if the vertex does not belong to V (Ci ), we set the corresponding entry to 2. Then
the vertices in Ci , R, P , and Q are the vertices whose corresponding array entries are
equal to 0, 1, 2, and −1, respectively.

Correctness of the Orientation Algorithm. The acyclicity of the directed graph pro-
duced by our orientation algorithm relies on the following lemma.

LEMMA 4.4. Let C1, C2, . . ., Ch be the sequence of the non-trivial P4-components of the
input graph ordered by non-decreasing vertex number. Consider the set Si = {Cj | j < i
and Ci is of type B with respect to Cj } and suppose that Si �= ∅. If ı̂ = min{ j | Cj ∈ Si },
then our algorithm orients the edges of the component Ci towards their endpoint which
belongs to V (Cı̂ ).

PROOF. The P4-component Ci receives an arbitrary P4-transitive orientation in Step 1
of the orientation algorithm. Since ı̂ = min{ j | Cj ∈ Si }, then the P4-component Ci is
not of type B with respect to any of the components C1, C2, . . ., Cı̂−1; thus, its mark field
retains its 0 value in the first ı̂ − 1 iterations of the for-loop in Step 3, since the value
of the counter field of Ci will not be equal to the number of its edges for any of C1,
C2, . . ., Cı̂−1 (Lemma 2.9). Then, in the ı̂ th iteration (during which the component Cı̂ is
processed), the mark field of Ci is set to 1 and Ci is oriented so that one of its edges points
towards its endpoint which belongs to V (Cı̂ ). According to Lemma 4.1 (statement (i)),
the latter implies that all the edges of Ci are oriented towards their endpoint which belongs
to V (Cı̂ ). This orientation will not change in subsequent iterations of the for-loop of
Step 3, since the mark field of Ci has been set to 1; nor will it change in Step 4.

Then we can show the following result.

LEMMA 4.5. When applied to a P4-comparability graph, our orientation algorithm
produces an acyclic P4-transitive orientation.

PROOF. The application of the recognition algorithm in Step 1 of the orientation algo-
rithm and the fact that thereafter the inversion of the orientation of an edge causes the
inversion of the orientation of all the edges in the same P4-component imply that the
resulting orientation is P4-transitive. The proof will be complete if we show that it is
also acyclic. Since the edges of the trivial P4-components do not introduce cycles given
that they are oriented according to a topological sorting of the vertices of the graph, it
suffices to show that at the completion of Step 3 the directed subgraph spanned by the
edges of the non-trivial P4-components of the input graph G is acyclic. This follows
directly from Lemmata 4.3 and 4.4.

Time and Space Complexity. As described in the previous section, Step 1 of the
algorithm can be completed in O(nm) time. Step 2 takes O(m) time by using bucket
sorting, since there are O(m) non-trivial P4-components. Since the degree of a vertex of
the graph does not exceed n−1, the total number of edges processed while processing the
P4-component Ci in Step 3 is O(n |V (Ci )|), which is O(n (|E(Ci )|+1)) = O(n |E(Ci )|),
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because the component Ci is connected (Lemma 2.1, statement (ii)) and hence |E(Ci )| ≥
|V (Ci )| − 1. The time to process each such edge is O(1), thus implying a total of
O(n |E(Ci )|) time for the execution of Step 3 for the component Ci ; since an edge of the
graph belongs to one P4-component and a component is processed only once, the overall
time for all the executions of Step 3 is O(nm). Finally, Step 4 takes O(n + m) time.

Summarizing, the time complexity of the orientation algorithm is O(nm). The space
complexity is linear in the size of the input graph.

From the above discussion, we obtain the following theorem.

THEOREM 4.1. Let G be a P4-comparability graph on n vertices and m edges. Then an
acyclic P4-transitive orientation of G can be computed in O(nm) time and O(n + m)
space.

Note that the input to our orientation algorithm does not need to be a P4-comparability
graph. If it is not, this will be detected in Step 1, and the algorithm will stop and will
report it; otherwise, it will proceed, eventually computing the desired acyclic P4-transitive
orientation.

5. Concluding Remarks. In this paper we presented an O(nm)-time and linear-space
algorithm for recognizing whether a graph of n vertices and m edges is a P4-comparability
graph, and an algorithm for computing an acyclic P4-transitive orientation of a P4-
comparability graph which also requires O(nm) time and linear space. Both algorithms
exhibit the currently best time and space complexities to the best of our knowledge, and
are simple enough to be easily used in practice. We also described a simple algorithm
for computing the levels of the BFS-tree of the complement G of a graph G in time and
space linear in the size of G, which we used in our P4-comparability graph recognition
algorithm.

The obvious open question is whether the P4-comparability graphs can be recognized
and/or oriented in o(nm) time. It is worth mentioning that the P4-indifference graphs
can be recognized in linear time [11]. On the other hand, the currently best recognition
algorithms for P4-simplicial and Raspail graphs require O(n5) and O(n4) time, respec-
tively [13]; a tighter analysis results in an O(m2)-time algorithm in either case. So, it
would be interesting to obtain O(nm)-time recognition algorithms for these two classes
of graphs.

Moreover, it is worth investigating whether taking advantage of properties of the
complement of the input graph can help establish improved algorithmic solutions for
other problems as well; note that breadth-first and depth-first search on the complement
of a graph can be executed in time linear in the size of the graph.
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Appendix

LEMMA. Let B and C be two non-trivial P4-components of a graph G such that B is of
type B with respect to C. If the subgraph of G spanned by the ribs of the P4s in C is not
bipartite, then V (C) ⊂ V (B).
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PROOF. First, we show that there exists a P4 of C whose midpoints both belong to V (B).
Since the subgraph spanned by the ribs of the P4s in C is not bipartite, there exists an odd
cycle; let it be v1v2 · · · v2k+1, for k ≥ 1. Each edge of the cycle is the rib of a P4 in C. In
particular, v1v2 is a rib. Then Lemma 2.10 (statement (iv)) implies that at least one of v1,
v2 belongs to V (B); suppose without loss of generality that v1 ∈ V (B). If v2 ∈ V (B),
then any P4 with v1v2 as its rib has both midpoints in V (B), as desired. If v2 /∈ V (B),
then v3 ∈ V (B) since at least one of the vertices of the rib v2v3 has to belong to V (B).
Repeating this argument over and over along the cycle, we either find a rib vivi+1 such
that vi , vi+1 ∈ V (B), or we have that v2k+1 ∈ V (B), in which case the rib v2k+1v1 is such
that v1, v2k+1 ∈ V (B). Therefore, there exists a P4 of C whose midpoints both belong
to V (B); let this P4 be abcd . In fact, a and d belong to V (B) as well, as implied by
Lemma 2.10 (statement (iii)) and by the fact that c ∈ V (B) and b ∈ V (B), respectively.

Next, we show that any P4 ρ of C has all its vertices in V (B); we apply induction on
the length of the sequence of adjacent P4s from abcd to ρ. In the basis step we have a
sequence of length 1; this is a sequence from the P4 abcd to abcd , and the proposition
trivially holds. Suppose, for the induction hypothesis, that all the P4s such that there
exists a sequence of adjacent P4s from abcd to them of length i have all their vertices
in V (B). We will show that the same holds for any P4 a′b′c′d ′ such that there exists a
sequence of adjacent P4s from abcd to a′b′c′d ′ of length i + 1. Let

abcd, a2b2c2d2, . . . , ai bi ci di , a′b′c′d ′

be the corresponding sequence. By the inductive hypothesis, ai , bi , ci , di ∈ V (B). Be-
cause C is separable (Lemma 2.10, statement (i)), the adjacency of the P4s ai bi ci di and
a′b′c′d ′ implies that a′ = ai and b′ = bi , or b′ = bi and c′ = ci , or c′ = ci and d ′ = di .
We examine each case separately.

Case (a): a′ = ai and b′ = bi . Trivially, a′, b′ ∈ V (B). Moreover, Lemma 2.10 (state-
ment (iii)) implies that c′ ∈ V (B) (since a′ ∈ V (B)) and that d ′ ∈ V (B) (since
b′ ∈ V (B)).
Case (b): b′ = bi and c′ = ci . Trivially, b′, c′ ∈ V (B). Moreover, c′ ∈ V (B) implies
that a′ ∈ V (B), and b′ ∈ V (B) implies that d ′ ∈ V (B).
Case (c): c′ = ci and d ′ = di . The case is similar to case (a).

Therefore, all vertices of the P4 a′b′c′d ′ belong to V (B). Thus, the vertices of all the
P4s of C such that there exists a sequence of adjacent P4s from abcd to them have all
four of their vertices in V (B). Since every P4 in C is such (Lemma 2.1, statement (i)),
then V (C) ⊆ V (B). To show that V (C) ⊂ V (B), one need only observe that any P4 of
type (6) with respect to C contains two vertices of the graph G which do not belong to
V (C).
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