
REVIEW
published: 16 November 2015
doi: 10.3389/frobt.2015.00028

Edited by:
Venkatesh Babu Radhakrishnan,
Indian Institute of Science, India

Reviewed by:
Stefano Berretti,

University of Florence, Italy
Xinlei Chen,

Carnegie Mellon University, USA

*Correspondence:
Christophoros Nikou

cnikou@cs.uoi.gr

Specialty section:
This article was submitted to Vision

Systems Theory, Tools and
Applications, a section of the

journal Frontiers in Robotics and AI

Received: 09 July 2015
Accepted: 29 October 2015

Published: 16 November 2015

Citation:
Vrigkas M, Nikou C and Kakadiaris IA

(2015) A Review of Human Activity
Recognition Methods.
Front. Robot. AI 2:28.

doi: 10.3389/frobt.2015.00028

A Review of Human Activity
Recognition Methods
Michalis Vrigkas1, Christophoros Nikou1* and Ioannis A. Kakadiaris2

1 Department of Computer Science and Engineering, University of Ioannina, Ioannina, Greece, 2 Computational Biomedicine
Laboratory, Department of Computer Science, University of Houston, Houston, TX, USA

Recognizing human activities from video sequences or still images is a challenging task
due to problems, such as background clutter, partial occlusion, changes in scale, view-
point, lighting, and appearance. Many applications, including video surveillance systems,
human-computer interaction, and robotics for human behavior characterization, require
a multiple activity recognition system. In this work, we provide a detailed review of recent
and state-of-the-art research advances in the field of human activity classification. We
propose a categorization of human activity methodologies and discuss their advantages
and limitations. In particular, we divide human activity classification methods into two large
categories according to whether they use data from different modalities or not. Then, each
of these categories is further analyzed into sub-categories, which reflect how they model
human activities and what type of activities they are interested in. Moreover, we provide
a comprehensive analysis of the existing, publicly available human activity classification
datasets and examine the requirements for an ideal human activity recognition dataset.
Finally, we report the characteristics of future research directions and present some open
issues on human activity recognition.

Keywords: human activity recognition, activity categorization, activity datasets, action representation,
review, survey

1. INTRODUCTION

Human activity recognition plays a significant role in human-to-human interaction and interper-
sonal relations. Because it provides information about the identity of a person, their personality,
and psychological state, it is difficult to extract. The human ability to recognize another person’s
activities is one of the main subjects of study of the scientific areas of computer vision and machine
learning. As a result of this research, many applications, including video surveillance systems,
human-computer interaction, and robotics for human behavior characterization, require a multiple
activity recognition system.

Among various classification techniques two main questions arise: “What action?” (i.e., the
recognition problem) and “Where in the video?” (i.e., the localization problem).When attempting to
recognize human activities, one must determine the kinetic states of a person, so that the computer
can efficiently recognize this activity. Human activities, such as “walking” and “running,” arise very
naturally in daily life and are relatively easy to recognize. On the other hand,more complex activities,
such as “peeling an apple,” are more difficult to identify. Complex activities may be decomposed into
other simpler activities, which are generally easier to recognize. Usually, the detection of objects in
a scene may help to better understand human activities as it may provide useful information about
the ongoing event (Gupta and Davis, 2007).
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Most of the work in human activity recognition assumes a
figure-centric scene of uncluttered background, where the actor
is free to perform an activity. The development of a fully auto-
mated human activity recognition system, capable of classifying
a person’s activities with low error, is a challenging task due to
problems, such as background clutter, partial occlusion, changes
in scale, viewpoint, lighting and appearance, and frame resolution.
In addition, annotating behavioral roles is time consuming and
requires knowledge of the specific event. Moreover, intra- and
interclass similarities make the problem amply challenging. That
is, actionswithin the same classmay be expressed by different peo-
ple with different body movements, and actions between different
classes may be difficult to distinguish as they may be represented
by similar information. The way that humans perform an activity
depends on their habits, and thismakes the problem of identifying
the underlying activity quite difficult to determine. Also, the
construction of a visual model for learning and analyzing human
movements in real time with inadequate benchmark datasets for
evaluation is challenging tasks.

To overcome these problems, a task is required that consists of
three components, namely: (i) background subtraction (Elgam-
mal et al., 2002;Mumtaz et al., 2014), in which the system attempts
to separate the parts of the image that are invariant over time
(background) from the objects that are moving or changing (fore-
ground); (ii) human tracking, in which the system locates human
motion over time (Liu et al., 2010; Wang et al., 2013; Yan et al.,
2014); and (iii) human action and object detection (Pirsiavash and
Ramanan, 2012; Gan et al., 2015; Jainy et al., 2015), in which the
system is able to localize a human activity in an image.

The goal of human activity recognition is to examine activities
from video sequences or still images. Motivated by this fact,
human activity recognition systems aim to correctly classify input
data into its underlying activity category. Depending on their
complexity, human activities are categorized into: (i) gestures; (ii)
atomic actions; (iii) human-to-object or human-to-human inter-
actions; (iv) group actions; (v) behaviors; and (vi) events. Figure 1
visualizes the decomposition of human activities according to
their complexity.

Gestures are considered as primitive movements of the body
parts of a person that may correspond to a particular action of
this person (Yang et al., 2013). Atomic actions are movements of
a person describing a certain motion that may be part of more
complex activities (Ni et al., 2015). Human-to-object or human-
to-human interactions are human activities that involve two or
more persons or objects (Patron-Perez et al., 2012). Group actions
are activities performed by a group or persons (Tran et al., 2014b).
Human behaviors refer to physical actions that are associated with
the emotions, personality, and psychological state of the individ-
ual (Martinez et al., 2014). Finally, events are high-level activities
that describe social actions between individuals and indicate the
intention or the social role of a person (Lan et al., 2012a).

The rest of the paper is organized as follows: in Section 2, a
brief review of previous surveys is presented. Section 3 presents
the proposed categorization of human activities. In Sections 4
and 5, we review various human activity recognition methods
and analyze the strengths and weaknesses of each category sepa-
rately. In Section 6, we provide a categorization of human activity

FIGURE 1 | Decomposition of human activities.

classification datasets and discuss some future research directions.
Finally, conclusions are drawn in Section 7.

2. PREVIOUS SURVEYS AND
TAXONOMIES

There are several surveys in the human activity recognition lit-
erature. Gavrila (1999) separated the research in 2D (with and
without explicit shape models) and 3D approaches. In Aggar-
wal and Cai (1999), a new taxonomy was presented focusing on
human motion analysis, tracking from single view and multiview
cameras, and recognition of human activities. Similar in spirit to
the previous taxonomy,Wang et al. (2003) proposed a hierarchical
action categorization hierarchy. The survey of Moeslund et al.
(2006) mainly focused on pose-based action recognition meth-
ods and proposed a fourfold taxonomy, including initialization
of human motion, tracking, pose estimation, and recognition
methods.

A fine separation between the meanings of “action” and “activ-
ity” was proposed by Turaga et al. (2008), where the activity
recognition methods were categorized according to their degree
of activity complexity. Poppe (2010) characterized human activity
recognition methods into two main categories, describing them
as “top-down” and “bottom-up.” On the other hand, Aggarwal
and Ryoo (2011) presented a tree-structured taxonomy, where
the human activity recognition methods were categorized into
two big sub-categories, the “single layer” approaches and the
“hierarchical” approaches, each of which have several layers of
categorization.

Modeling 3D data is also a new trend, and it was extensively
studied by Chen et al. (2013b) and Ye et al. (2013). As the human
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body consists of limbs connected with joints, one can model
these parts using stronger features, which are obtained from depth
cameras, and create a 3D representation of the human body, which
is more informative than the analysis of 2D activities carried out
in the image plane. Aggarwal and Xia (2014) recently presented
a categorization of human activity recognition methods from
3D stereo and motion capture systems with the main focus on
methods that exploit 3D depth data. To this end, Microsoft Kinect
has played a significant role in motion capture of articulated body
skeletons using depth sensors.

Although much research has been focused on human activity
recognition systems from video sequences, human activity recog-
nition from static images remains an open and very challenging
task. Most of the studies of human activity recognition are asso-
ciated with facial expression recognition and/or pose estimation
techniques. Guo and Lai (2014) summarized all the methods for
human activity recognition from still images and categorized them
into two big categories according to the level of abstraction and the
type of features each method uses.

Jaimes and Sebe (2007) proposed a survey for multimodal
human computer interaction focusing on affective interaction
methods from poses, facial expressions, and speech. Pantic and
Rothkrantz (2003) performed a complete study in human affec-
tive state recognition methods that incorporate non-verbal mul-
timodal cues, such as facial and vocal expressions. Pantic et al.
(2006) studied several state-of-the-art methods of human behav-
ior recognition including affective and social cues and covered
many open computational problems and how they can be effi-
ciently incorporated into a human-computer interaction system.
Zeng et al. (2009) presented a review of state-of-the-art affective
recognition methods that use visual and audio cues for recog-
nizing spontaneous affective states and provided a list of related
datasets for human affective expression recognition. Bousmalis
et al. (2013a) proposed an analysis of non-verbal multimodal
(i.e., visual and auditory cues) behavior recognition methods and
datasets for spontaneous agreements and disagreements. Such
social attributes may play an important role in analyzing social
behaviors, which are the key to social engagement. Finally, a thor-
ough analysis of the ontologies for human behavior recognition
from the viewpoint of data and knowledge representation was
presented by Rodríguez et al. (2014).

Table 1 summarizes the previous surveys on human activity
and behavior recognition methods sorted by chronological order.
Most of these reviews summarize human activity recognition
methods, without providing the strengths and the weaknesses
of each category in a concise and informative way. Our goal is
not only to present a new classification for the human activity
recognition methods but also to compare different state-of-the-
art studies and understand the advantages and disadvantages of
each method.

3. HUMAN ACTIVITY CATEGORIZATION

The human activity categorization problem has remained a chal-
lenging task in computer vision for more than two decades.
Previous works on characterizing human behavior have shown
great potential in this area. First, we categorize the human activity

TABLE 1 | Summary of previous surveys.

Authors and year Area of interest

Aggarwal and Cai
(1999)

Human motion analysis and tracking from single and
multiview data

Gavrila (1999) Shape model analysis from 2D and 3D data

Pantic and
Rothkrantz (2003)

Multimodal human affective state recognition

Wang et al. (2003) Human detection, tracking, and activity recognition

Moeslund et al.
(2006)

Motion initialization, tracking, pose estimation, and
recognition

Pantic et al. (2006) Investigation of affective and social behaviors for
human-computer interactions

Jaimes and Sebe
(2007)

Multimodal affective interaction analysis for
human-computer interactions

Turaga et al. (2008) Categorization of actions and activities according to their
complexity

Zeng et al. (2009) Audio-visual affective recognition analysis

Poppe (2010) Action classification according to global or local
representation of data

Aggarwal and Ryoo
(2011)

Gestures, human activities, actions, and interactions
analysis

Bousmalis et al.
(2013a)

Audio-visual behavior analysis of spontaneous agreements
and disagreements

Chen et al. (2013b) Human body part motion analysis from depth image data

Ye et al. (2013) Human activity analysis from skeletal poses using depth
data

Aggarwal and Xia
(2014)

Human activity analysis from stereo, motion capture, and
depth sensors 3D data

Guo and Lai (2014) Understanding human activities from still images

Rodríguez et al.
(2014)

Representation of human behavior ontologies from
knowledge-based techniques

recognition methods into two main categories: (i) unimodal and
(ii) multimodal activity recognition methods according to the
nature of sensor data they employ. Then, each of these two cat-
egories is further analyzed into sub-categories depending on how
they model human activities. Thus, we propose a hierarchical
classification of the human activity recognition methods, which
is depicted in Figure 2.

Unimodal methods represent human activities from data of a
single modality, such as images, and they are further categorized
as: (i) space-time, (ii) stochastic, (iii) rule-based, and (iv) shape-
based methods.

Space-time methods involve activity recognition methods,
which represent human activities as a set of spatiotemporal fea-
tures (Shabani et al., 2011; Li and Zickler, 2012) or trajectories
(Li et al., 2012; Vrigkas et al., 2013). Stochastic methods recog-
nize activities by applying statistical models to represent human
actions (e.g., hidden Markov models) (Lan et al., 2011; Iosifidis
et al., 2012a). Rule-based methods use a set of rules to describe
human activities (Morariu and Davis, 2011; Chen and Grauman,
2012). Shape-based methods efficiently represent activities with
high-level reasoning bymodeling themotion of human body parts
(Sigal et al., 2012b; Tran et al., 2012).

Multimodal methods combine features collected from different
sources (Wu et al., 2013) and are classified into three categories: (i)
affective, (ii) behavioral, and (iii) social networking methods.

Affective methods represent human activities according to
emotional communications and the affective state of a person
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FIGURE 2 | Proposed hierarchical categorization of human activity recognition methods.

(Liu et al., 2011b; Martinez et al., 2014). Behavioral methods
aim to recognize behavioral attributes, non-verbal multimodal
cues, such as gestures, facial expressions, and auditory cues (Song
et al., 2012a; Vrigkas et al., 2014b). Finally, social networking
methods model the characteristics and the behavior of humans
in several layers of human-to-human interactions in social events
from gestures, bodymotion, and speech (Patron-Perez et al., 2012;
Marín-Jiménez et al., 2014).

Usually, the terms “activity” and “behavior” are used inter-
changeably in the literature (Castellano et al., 2007; Song et al.,
2012a). In this survey, we differentiate between these two terms
in the sense that the term “activity” is used to describe a sequence
of actions that correspond to specific body motion. On the other
hand, the term “behavior” is used to characterize both activities
and events that are associated with gestures, emotional states,
facial expressions, and auditory cues of a single person. Some
representative frames that summarize the main human action
classes are depicted in Figure 3.

4. UNIMODAL METHODS

Unimodal human activity recognition methods identify human
activities from data of one modality. Most of the existing
approaches represent human activities as a set of visual features
extracted from video sequences or still images and recognize
the underlying activity label using several classification models
(Kong et al., 2014a; Wang et al., 2014). Unimodal approaches are
appropriate for recognizing human activities based onmotion fea-
tures. However, the ability to recognize the underlying class only
from motion is on its own a challenging task. The main problem
is how we can ensure the continuity of the motion along time
as an action occurs uniformly or non-uniformly within a video
sequence. Some approaches use snippets of motion trajectories
(Matikainen et al., 2009; Raptis et al., 2012), while others use the
full length of motion curves by tracking the optical flow features
(Vrigkas et al., 2014a).

We classify unimodal methods into four broad categories:
(i) space-time, (ii) stochastic, (iii) rule-based, and (iv) shape-
based approaches. Each of these sub-categories describes specific
attributes of human activity recognitionmethods according to the
type of representation each method uses.

4.1. Space-Time Methods
Space-time approaches focus on recognizing activities based on
space-time features or on trajectory matching. They consider an
activity in the 3D space-time volume, consisting of concatenation
of 2D spaces in time. An activity is represented by a set of space-
time features or trajectories extracted from a video sequence.

Figure 4 depicts an example of a space-time approach based on
dense trajectories and motion descriptors (Wang et al., 2013).

A plethora of human activity recognition methods based on
space-time representation have been proposed in the literature
(Efros et al., 2003; Schuldt et al., 2004; Jhuang et al., 2007; Fathi
and Mori, 2008; Niebles et al., 2008). A major family of methods
relies on optical flow, which has proven to be an important cue.
Efros et al. (2003) recognized human actions from low-resolution
sports’ video sequences using the nearest neighbor classifier,
where humans are represented by windows of height of 30 pixels.
The approach of Fathi and Mori (2008) was based on mid-level
motion features, which are also constructed directly from optical
flow features. Moreover, Wang and Mori (2011) employed motion
features as input to hidden conditional random fields (HCRFs)
(Quattoni et al., 2007) and support vector machine (SVM) clas-
sifiers (Bishop, 2006). Real time classification and prediction of
future actions was proposed by Morris and Trivedi (2011), where
an activity vocabulary is learned through a three-step procedure.
Other optical flow-based methods which gained popularity were
presented by Dalal et al. (2006), Chaudhry et al. (2009), and Lin
et al. (2009). An invariant in translation and scaling descriptor
was introduced by Oikonomopoulos et al. (2009). Spatiotemporal
features based on B-splines are extracted in the optical flow field.
To model this descriptor, a Bag-of-Words (BoW) technique is
employed, whereas, classification of activities is performed using
relevant vector machines (RVM) (Tipping, 2001).

The classification of a video sequence using local features in
a spatiotemporal environment has also been given much focus.
Schuldt et al. (2004) represented local events in a video using
space-time features, while an SVMclassifier was used to recognize
an action. Gorelick et al. (2007) considered actions as 3D space-
time silhouettes of moving humans. They took advantage of the
Poisson equation solution to efficiently describe an action by using
spectral clustering between sequences of features and applying
nearest neighbor classification to characterize an action. Niebles
et al. (2008) addressed the problem of action recognition by
creating a codebook of space-time interest points. A hierarchical
approach was followed by Jhuang et al. (2007), where an input
video was analyzed into several feature descriptors depending
on their complexity. The final classification was performed by a
multiclass SVM classifier. Dollár et al. (2005) proposed spatiotem-
poral features based on cuboid descriptors. Instead of encoding
human motion for action classification, Jainy et al. (2015) pro-
posed to incorporate information fromhuman-to-objects interac-
tions and combined several datasets to transfer information from
one dataset to another.

An action descriptor of histograms of interest points, relying
on the work of Schuldt et al. (2004), was presented by Yan and
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FIGURE 3 | Representative frames of the main human action classes for various datasets.

FIGURE 4 | Visualization of human actions with dense trajectories (top row). Example of a typical human space-time method based on dense
trajectories (bottom row). First, dense feature sampling is performed for capturing local motion. Then, features are tracked using dense optical flow, and feature
descriptors are computed (Wang et al., 2013).

Luo (2012). Random forests for action representation have also
attracted widespread interest for action recognition Mikolajczyk
and Uemura (2008) and Yao et al. (2010). Furthermore, the key
issue of how many frames are required to recognize an action was
addressed by Schindler and Gool (2008). Shabani et al. (2011)
proposed a temporally asymmetric filtering for feature detection
and activity recognition. The extracted features were more robust
under geometric transformations than the features described by a
Gabor filter (Fogel and Sagi, 1989). Sapienza et al. (2014) used a

bag of local spatiotemporal volume features approach to recognize
and localize human actions from weakly labeled video sequences
using multiple instance learning.

The problem of identifying multiple persons simultaneously
and performing action recognition was presented by Khamis
et al. (2012). The authors considered that a person could first
be detected by performing background subtraction techniques.
Based on the histograms of oriented Gaussians, Dalal and Triggs
(2005) were able to detect humans, whereas classification of
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actions was made by training an SVM classifier. Wang et al.
(2011b) performed human activity recognition by associating the
context between interest points based on the density of all features
observed. A multiview activity recognition method was presented
by Li and Zickler (2012), where descriptors from different views
were connected together to construct a new augmented feature
that contains the transition between the different views.Multiview
action recognition has also been studied by Rahmani and Mian
(2015). A non-linear knowledge transfer model based on deep
learning was proposed formapping action information frommul-
tiple camera views into one single view. However, their method
is computationally expensive as it requires a two-step sequential
learning phase prior to the recognition step for analyzing and
fusing the information of multiviews.

Tian et al. (2013) employed spatiotemporal volumes using a
deformable part model to train an SVM classifier for recog-
nizing sport activities. Similar in spirit, the work of Jain et al.
(2014) used a 3D space-time volume representation of human
actions obtained from super-voxels to understand sport activities.
They used an agglomerative approach to merge super-voxels that
share common attributes and localize human activities. Kulkarni
et al. (2015) used a dynamic programing approach to recognize
sequences of actions in untrimmed video sequences. A per-frame
time-series representation of each video and a template repre-
sentation of each action were proposed, whereas dynamic time
warping was used to sequence alignment.

Samanta andChanda (2014) proposed a novel representation of
human activities using a combination of spatiotemporal features
and a facet model (Haralick and Watson, 1981), while they used
a 3D Haar wavelet transform and higher order time derivatives
to describe each interest point. A vocabulary was learned from
these features and SVM was used for classification. Jiang et al.
(2013) used a mid-level feature representation of video sequences
using optical flow features. These features were clustered using
K-means to build a hierarchical template tree representation of
each action. A tree search algorithm was used to identify and
localize the corresponding activity in test videos. Roshtkhari and
Levine (2013) also proposed a hierarchical representation of video
sequences for recognizing atomic actions by building a codebook
of spatiotemporal volumes. A probe video sequence was classified
into its underlying activity according to its similarity with each
representation in the codebook.

Earlier approaches were based on describing actions by using
dense trajectories. The work of Le et al. (2011) discovered the
action label in an unsupervised manner by learning features
directly from video data. A high-level representation of video
sequences, called “action bank,” was presented by Sadanand and
Corso (2012). Each video was represented by a set of action
descriptors, which were put in correspondence. The final classi-
fication was performed by an SVM classifier. Yan and Luo (2012)
also proposed a novel action descriptor based on spatial temporal
interest points (STIP) (Laptev, 2005). To avoid overfitting, they
proposed a novel classification technique combining Adaboost
and sparse representation algorithms. Wu et al. (2011) used visual
features and Gaussian mixture models (GMM) (Bishop, 2006)
to efficiently represent the spatiotemporal context distributions
between the interest points at several space and time scales. The

underlying activity was represented by a set of features extracted
by the interest points over the video sequence. A new type of
feature called the “hankelet” was presented by Li et al. (2012). This
type of feature, which was formed by short tracklets, along with
a BoW approach, was able to recognize actions under different
viewpoints without requiring any camera calibration.

The work of Vrigkas et al. (2014a) focused on recognizing
human activities by representing a human action with a set of
clusteredmotion trajectories. AGaussianmixturemodel was used
to cluster the motion trajectories, and the action labeling was
performed using a nearest neighbor classification scheme. Yu et al.
(2012) proposed a propagative point-matching approach using
random projection trees, which can handle unlabeled data in an
unsupervised manner. Jain et al. (2013) used motion compensa-
tion techniques to recognize atomic actions. They also proposed a
new motion descriptor called “divergence-curl-shear descriptor,”
which is able to capture the hidden properties of flow patterns
in video sequences. Wang et al. (2013) used dense optical flow
trajectories to describe the kinematics of motion patterns in video
sequences. However, several intraclass variations caused by miss-
ing data, partial occlusion, and the sort duration of actions in time
may harm the recognition accuracy. Ni et al. (2015) discovered
the most discriminative groups of similar dense trajectories for
analyzing human actions. Each group was assigned a learned
weight according to its importance in motion representation.

An unsupervised method for learning human activities from
short tracklets was proposed by Gaidon et al. (2014). They used
a hierarchical clustering algorithm to represent videos with an
unordered tree structure and compared all tree-clusters to identity
the underlying activity. Raptis et al. (2012) proposed a mid-level
approach extracting spatiotemporal features and constructing
clusters of trajectories, which could be considered as candidates of
an action. Yu and Yuan (2015) extracted bounding box candidates
from video sequences, where each candidate may contain human
motion. The most significant action paths were estimated by
defining an action score. Due to the large spatiotemporal redun-
dancy in videos, many candidates may overlap. Thus, estimation
of themaximum set coverage was applied to address this problem.
However, the maximum set coverage problem is NP-hard, and
thus the estimation requires approximate solutions.

An approach that exploits the temporal information encoded in
video sequences was introduced by Li et al. (2011). The temporal
data were encoded into a trajectory system, which measures the
similarity between activities and computes the angle between the
associated subspaces. A method that tracks features and produces
a number of trajectory snippets was proposed by Matikainen
et al. (2009). The trajectories were clustered by an SVM classifier.
Motion features were extracted from a video sequence by Messing
et al. (2009). These features were tracked with respect to their
velocities, and a generative mixture model was employed to learn
the velocity history of these trajectories and classify each video
clip. Tran et al. (2014a) proposed a scale and shape invariant
method for localizing complex spatiotemporal events in video
sequences. Their method was able to relax the tight constraints
of bounding box tracking, while they used a sliding window tech-
nique to track spatiotemporal paths maximizing the summation
score.
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An algorithm that may recognize human actions in 3D space
by a multicamera system was introduced by Holte et al. (2012a).
It was based on the synergy of 3D space and time to construct
a 4D descriptor of spatial temporal interest points and a local
description of 3D motion features. The BoW technique was used
to form a vocabulary of human actions, whereas agglomerative
information bottleneck and SVM were used for action classifi-
cation. Zhou and Wang (2012) proposed a new representation
of local spatiotemporal cuboids for action recognition. Low-level
features were encoded and classified via a kernelized SVM clas-
sifier, whereas a classification score denoted the confidence that
a cuboid belongs to an atomic action. The new feature could act
as complementary material to the low-level feature. The work
of Sanchez-Riera et al. (2012) recognized human actions using
stereo cameras. Based on the technique of BoW, each action was
presented by a histogram of visual words, whereas their approach
was robust to background clutter.

The problem of temporal segmentation and event recognition
was examined by Hoai et al. (2011). Action recognition was per-
formed by a supervised learning algorithm. Satkin and Hebert
(2010) explored the effectiveness of video segmentation by discov-
ering the most significant portions of videos. In the sense of video
labeling, the study of Wang et al. (2012b) leveraged the shared
structural analysis for activity recognition. The correct annotation
was given in each video under a semisupervised scheme. Bag-
of-video words have become very popular. Chakraborty et al.
(2012) proposed a novel method applying surround suppression.
Human activities were represented by bag-of-video words con-
structed from spatial temporal interest points by suppressing the
background features and building a vocabulary of visual words.
Guha and Ward (2012) employed a technique of sparse represen-
tations for human activity recognition. An overcomplete dictio-
nary was constructed using a set of spatiotemporal descriptors.
Classification over three different dictionaries was performed.

Seo and Milanfar (2011) proposed a method based on space-
time locally adaptive regression kernels and the matrix cosine
measure. They extracted features from space-time descriptors and
compared them against features of the target video. A vocabu-
lary based approach has been proposed by Kovashka and Grau-
man (2010). The main idea is to find the neighboring features
around the detected interest points, quantize them, and form a
vocabulary. Ma et al. (2015) extracted spatiotemporal segments
from video sequences that correspond to whole or part human
motion and constructed a tree-structured vocabulary of similar
actions. Fernando et al. (2015) learned to arrange human actions
in chronological order in an unsupervised manner by exploiting
temporal ordering in video sequences. Relevant information was
summarized together through a ranking learning framework.

The main disadvantage of using a global representation, such
as optical flow, is the sensitivity to noise and partial occlusions.
Space-time approaches can hardly recognize actions when more
than one person is present in a scene. Nevertheless, space-time
features focus mainly on local spatiotemporal information. More-
over, the computation of these features produces sparse and
varying numbers of detected interest points, which may lead
to low repeatability. However, background subtraction can help
overcome this limitation.

Low-level features usually used with a fixed length feature
vector (e.g., Bag-of-Words) failed to be associated with high-level
events. Trajectory-based methods face the problem of human
body detection and tracking, as these are still open issues. Com-
plex activities are more difficult to recognize when space-time
feature based approaches are employed. Furthermore, viewpoint
invariance is another issue that these approaches have difficulty in
handling.

4.2. Stochastic Methods
In recent years, there has been a tremendous growth in the amount
of computer vision research aimed at understanding human activ-
ity. There has been an emphasis on activities, where the entity to
be recognized may be considered as a stochastically predictable
sequence of states. Researchers have conceived and used many
stochastic techniques, such as hidden Markov model (HMMs)
(Bishop, 2006) and hidden conditional random fields (HCRFs)
(Quattoni et al., 2007), to infer useful results for human activity
recognition.

Robertson and Reid (2006) modeled human behavior as a
stochastic sequence of actions. Each action was described by a
feature vector, which combines information about position, veloc-
ity, and local descriptors. An HMM was employed to encode
human actions, whereas recognition was performed by searching
for image features that represent an action. Pioneering this task,
Wang andMori (2008) were among the first to proposeHCRFs for
the problem of activity recognition. A human action was modeled
as a configuration of parts of image observations. Motion features
were extracted forming a BoW model. Activity recognition and
localization via a figure-centric model was presented by Lan et al.
(2011). Human location was treated as a latent variable, which
was extracted from a discriminative latent variable model by
simultaneous recognition of an action. A real-time algorithm that
models human interactions was proposed by Oliver et al. (2000).
The algorithm was able to detect and track a human movement,
forming a feature vector that describes themotion. This vectorwas
given as input to an HMM, which was used for action classifica-
tion. Song et al. (2013) considered that human action sequences
of various temporal resolutions. At each level of abstraction, they
learned a hierarchical model with latent variables to group similar
semantic attributes of each layer. Representative stochasticmodels
are presented in Figure 5.

A multiview person identification was presented by Iosifidis
et al. (2012a). Fuzzy vector quantization and linear discriminant
analysis were employed to recognize a human activity. Huang et al.
(2011) presented a boosting algorithm called LatentBoost. The
authors trained several models with latent variables to recognize
human actions. A stochastic modeling of human activities on
a shape manifold was introduced by Yi et al. (2012). A human
activity was extracted as a sequence of shapes, which is consid-
ered as one realization of a random process on a manifold. The
piecewise Brownian motion was used to model human activ-
ity on the respective manifold. Wang et al. (2014) proposed a
semisupervised framework for recognizing human actions com-
bining different visual features. All features were projected onto
a common subspace, and a boosting technique was employed
to recognize human actions from labeled and unlabeled data.
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FIGURE 5 | Representative stochastic approaches for action recognition. (A) Factorized HCRF model used by Wang and Mori (2008). Circle nodes
correspond to variables, and square nodes correspond to factors. (B) Hierarchical latent discriminative model proposed by Song et al. (2013).

Yang et al. (2013) proposed anunsupervisedmethod for recogniz-
ing motion primitives for human action classification from a set
of very few examples.

Sun and Nevatia (2013) treated video sequences as sets of short
clips rather than a whole representation of actions. Each clip cor-
responded to a latent variable in an HMM model, while a Fisher
kernel technique (Perronnin and Dance, 2007) was employed to
represent each clip with a fixed length feature vector. Ni et al.
(2014) decomposed the problem of complex activity recognition
into two sequential sub-tasks with increasing granularity levels.
First, the authors applied human-to-object interaction techniques
to identify the area of interest, then used this context-based
information to train a conditional random field (CRF) model
(Lafferty et al., 2001) and identify the underlying action. Lan
et al. (2014) proposed a hierarchical method for predicting future
human actions, which may be considered as a reaction to a previ-
ous performed action. They introduced a new representation of
human kinematic states, called “hierarchical movements,” com-
puted at different levels of coarse to fine-grained level granu-
larity. Predicting future events from partially unseen video clips
with incomplete action execution has also been studied by Kong
et al. (2014b). A sequence of previously observed features was
used as a global representation of actions and a CRF model was
employed to capture the evolution of actions across time in each
action class.

An approach for group activity classification was introduced by
Choi et al. (2011). The authors were able to recognize activities
such as a group of people talking or standing in a queue. The
proposed schemewas based on random forests, which could select
samples of spatiotemporal volumes in a video that characterize
an action. A probabilistic Markov random field (MRF) (Prince,
2012) framework was used to classify and localize the activities in
a scene. Lu et al. (2015) also employed a hierarchical MRF model
to represent segments of human actions by extracting super-voxels
from different scales and automatically estimated the foreground
motion using saliency features of neighboring super-voxels.

The work of Wang et al. (2011a) focused on tracking dense
sample points from video sequences using optical flow based

on HCRFs for object recognition. Wang et al. (2012c) proposed
a probabilistic model of two components. The first component
modeled the temporal transition between action primitives to
handle large variation in an action class, while the second com-
ponent located the transition boundaries between actions. A hier-
archical structure, which is called the sum-product network, was
used byAmer andTodorovic (2012). The BoW technique encoded
the terminal nodes, the sum nodes corresponded to mixtures of
different subsets of terminals, and the product nodes represented
mixtures of components.

Zhou and Zhang (2014) proposed a robust to background
clutter, camera motion, and occlusions’ method for recognizing
complex human activities. They used multiple-instance formula-
tion in conjunctionwith anMRFmodel andwere able to represent
human activities with a bag of Markov chains obtained from STIP
and salient region feature selection. Chen et al. (2014) addressed
the problem of identifying and localizing human actions using
CRFs. The authors were able to distinguish between intentional
actions and unknown motions that may happen in the surround-
ings by ordering video regions and detecting the actor of each
action. Kong and Fu (2014) addressed the problem of human
interaction classification from subjects that lie close to each other.
Such a representation may be erroneous to partial occlusions
and feature-to-object mismatching. To overcome this problem the
authors proposed a patch-aware model, which learned regions of
interacting subjects at different patch levels.

Shu et al. (2015) recognized complex video events and group
activities from aerial shoots captured from unmanned aerial vehi-
cles (UAVs). A preprocessing step prior to the recognition process
was adopted to address several limitations of frame capturing,
such as low resolution, camera motion, and occlusions. Complex
events were decomposed into simpler actions and modeled using
a spatiotemporal CRF graph. A video segmentation approach for
video activities and a decomposition into smaller clips task that
contained sub-actions was presented by Wu et al. (2015). The
authors modeled the relation of consecutive actions by building
a graphical model for unsupervised learning of the activity label
from depth sensor data.
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Often, human actions are highly correlated to the actor, who
performs a specific action. Understanding both the actor and
the action may be vital for real life applications, such as robot
navigation and patient monitoring. Most of the existing works
do not take into account the fact that a specific action may
be performed in different manner by a different actor. Thus, a
simultaneous inference of actors and actions is required. Xu et al.
(2015) addressed these limitations and proposed a general proba-
bilistic framework for joint actor-action understanding while they
presented a new dataset for actor-action recognition.

There is an increasing interest in exploring human-object inter-
action for recognition. Moreover, recognizing human actions
from still images by taking advantage of contextual information,
such as surrounding objects, is a very active topic (Yao and Fei-
Fei, 2010). These methods assume that not only the human body
itself, but the objects surrounding it, may provide evidence of the
underlying activity. For example, a soccer player interacts with a
ball when playing soccer. Motivated by this fact, Gupta and Davis
(2007) proposed a Bayesian approach that encodes object detec-
tion and localization for understanding human actions. Extending
the previous method, Gupta et al. (2009) introduced spatial and
functional constraints on static shape and appearance features and
they were also able to identify human-to-object interactions with-
out incorporating any motion information. Ikizler-Cinbis and
Sclaroff (2010) extracted dense features and performed tracking
over consecutive frames for describing both motion and shape
information. Instead of explicitly using separate object detectors,
they divided the frames into regions and treated each region as an
object candidate.

Most of the existing probabilistic methods for human activity
recognitionmay performwell and apply exact and/or approximate
learning and inference. However, they are usually more com-
plicated than non-parametric methods, since they use dynamic
programing or computationally expensive HMMs for estimat-
ing a varying number of parameters. Due to their Markovian
nature, they must enumerate all possible observation sequences
while capturing the dependencies between each state and its
corresponding observation only. HMMs treat features as con-
ditionally independent, but this assumption may not hold for
the majority of applications. Often, the observation sequence
may be ignored due to normalization leading to the label bias
problem (Lafferty et al., 2001). Thus, HMMs are not suitable
for recognizing more complex events, but rather an event is
decomposed into simpler activities, which are easier to recog-
nize.

Conditional random fields, on the other hand, overcome the
label bias problem. Most of the aforementioned methods do not
require large training datasets, since they are able tomodel the hid-
den dynamics of the training data and incorporate prior knowl-
edge over the representation of data. Although CRFs outperform
HMMS in many applications, including bioinformatics, activity,
and speech recognition, the construction ofmore complexmodels
for human activity recognition may have good generalization
ability but is rather impractical for real time applications due to
the large number of parameter estimations and the approximate
inference.

4.3. Rule-Based Methods
Rule-based approaches determine ongoing events by modeling an
activity using rules or sets of attributes that describe an event. Each
activity is considered as a set of primitive rules/attributes, which
enables the construction of a descriptivemodel for human activity
recognition.

Action recognition of complex scenes with multiple subjects
was proposed by Morariu and Davis (2011). Each subject must
follow a set of certain rules while performing an action. The
recognition process was performed over basketball game videos,
where the players were first detected and tracked, generating a
set of trajectories that are used to create a set of spatiotemporal
events. Based on the first-order logic and probabilistic approaches,
such as Markov networks, the authors were able to infer which
event has occurred. Figure 6 summarizes their method using
primitive rules for recognizing human actions. Liu et al. (2011a)
addressed the problem of recognizing actions by a set of descrip-
tive and discriminative attributes. Each attribute was associated
with the characteristics describing the spatiotemporal nature of
the activities. These attributes were treated as latent variables,
which capture the degree of importance of each attribute for each
action in a latent SVM approach.

A combination of activity recognition and localization was
presented by Chen andGrauman (2012). The whole approach was
based on the construction of a space-time graph using a high-
level descriptor, where the algorithm seeks to find the optimal
subgraph that maximizes the activity classification score (i.e.,
find the maximum weight subgraph, which in the general case
is an NP-complete problem). Kuehne et al. (2014) proposed a
structured temporal approach for daily living human activity
recognition. The author used HMMs to model human actions as
action units and then used grammatical rules to form a sequence
of complex actions by combining different action units. When
temporal grammars are used for action classification, the main
problem consists in treating long video sequences due to the
complexity of the models. One way to cope with this limitation
is to segment video sequences into smaller clips that contain sub-
actions, using a hierarchical approach (Pirsiavash and Ramanan,
2014). The generation of short description from video sequences
(Vinyals et al., 2015) based on convolutional neural networks
(CNN) (Ciresan et al., 2011) was also used for activity recognition
(Donahue et al., 2015).

Intermediate semantic features representation for recognizing
unseen actions during training were proposed (Wang and Mori,
2010). These intermediate features were learned during training,
while parameter sharing between classes was enabled by capturing
the correlations between frequently occurring low-level features
(Akata et al., 2013). Learning how to recognize new classes that
were not seen during training, by associating intermediate features
and class labels, is a necessary aspect for transferring knowledge
between training and test samples. This problem is generally
known as zero-shot learning (Palatucci et al., 2009). Thus, instead
of learning one classifier per attribute, a two-step classification
method has been proposed by Lampert et al. (2009). Specific
attributes are predicted from already learned classifiers and are
mapped into a class-level score.
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FIGURE 6 | Relation between primitive rules and human actions (Morariu and Davis, 2011).

Action classification from still images by learning semantic
attributes was proposed by Yao et al. (2011). Attributes describe
specific properties of human actions, while parts of actions, which
were obtained from objects and human poses, were used as bases
for learning complex activities. The problem of attribute-action
association was reported by Zhang et al. (2013). The authors
proposed a multitask learning approach Evgeniou and Pontil
(2004) for simultaneously coping with low-level features and
action-attribute relationships and introduced attribute regular-
ization as a penalty term for handling irrelevant predictions. A
robust to noise representation of attribute-based human action
classification was proposed by Zhang et al. (2015). Sigmoid and
Gaussian envelopes were incorporated into the loss function
of an SVM classifier, where the outliers are eliminated dur-
ing the optimization process. A GMM was used for modeling
human actions, and a transfer ranking technique was employed
for recognizing unseen classes. Ramanathan et al. (2015) were
able to transfer semantic knowledge between classes to learn
human actions from still images. The interaction between dif-
ferent classes was performed using linguistic rules. However,
for high-level activities, the use of language priors is often not
adequate, thus simpler and more explicit rules should be con-
structed.

Complex human activities cannot be recognized directly
from rule-based approaches. Thus, decomposition into sim-
pler atomic actions is applied, and then combination of indi-
vidual actions is employed for the recognition of complex
or simultaneously occurring activities. This limitation leads
to constant feedback by the user of rule/attribute annota-
tions of the training examples, which is time consuming and
sensitive to errors due to subjective point of view of the
user defined annotations. To overcome this drawback, sev-
eral approaches employing transfer learning (Lampert et al.,
2009; Kulkarni et al., 2014), multitask learning (Evgeniou
and Pontil, 2004; Salakhutdinov et al., 2011), and seman-
tic/discriminative attribute learning (Farhadi et al., 2009; Jayara-
man and Grauman, 2014) were proposed to automatically gener-
ate and handle the most informative attributes for human activity
classification.

4.4. Shape-Based Methods
Modeling of human pose and appearance has received a great
response from researchers during the last decades. Parts of the
human body are described in 2D space as rectangular patches and
as volumetric shapes in 3D space (see Figure 7). It is well known
that activity recognition algorithms based on the human silhou-
ette play an important role in recognizing human actions. As a
human silhouette consists of limbs jointly connected to each other,
it is important to obtain exact human body parts from videos. This
problem is considered as a part of the action recognition process.
Many algorithms convey a wealth of information about solving
this problem.

A major focus in action recognition from still images or videos
has been made in the context of scene appearance (Thurau and
Hlavac, 2008; Yang et al., 2010;Maji et al., 2011).More specifically,
Thurau and Hlavac (2008) represented actions by histograms of
pose primitives, and n-gram expressions were used for action
classification. Also, Yang et al. (2010) combined actions and
human poses together, treating poses as latent variables, to infer
the action label in still images. Maji et al. (2011) introduced
a representation of human poses, called the “poselet activation
vector,” which is defined by the 3D orientation of the head and
torso and provided a robust representation of human pose and
appearance. Moreover, action categorization based on modeling
the motion of parts of the human body was presented by Tran
et al. (2012), where a sparse representation was used to model
and recognize complex actions. In the sense of template-matching
techniques, Rodriguez et al. (2008) introduced the maximum
average correlation height (MACH) filter, which was a method
for capturing intraclass variabilities by synthesizing a single action
MACH filter for a given action class. Sedai et al. (2013a) proposed
a combination of shape and appearance descriptors to represent
local features for human pose estimation. The different types of
descriptors were fused at the decision level using a discriminative
learning model. Nevertheless, identifying which body parts are
most significant for recognizing complex human activities still
remains a challenging task (Lillo et al., 2014). The classification
model and some representative examples of the estimation of
human pose are depicted in Figure 8.
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FIGURE 7 | Human body representations. (A) 2D skeleton model (Theodorakopoulos et al., 2014) and (B) 3D pictorial structure representation (Belagiannis et al.,
2014).

FIGURE 8 | Classification of actions from human poses (Lillo et al., 2014). (A) The discriminative hierarchical model for the recognition of human action from
body poses. (B) Examples of correct human pose estimation of complex activities.

Ikizler and Duygulu (2007) modeled the human body as a
sequence of oriented rectangular patches. The authors described
a variation of BoW method called bag-of-rectangles. Spatially
oriented histograms were formed to describe a human action,
while the classification of an action was performed using four
different methods, such as frame voting, global histogramming,
SVM classification, and dynamic timewarping (DTW) (Theodor-
idis and Koutroumbas, 2008). The study of Yao and Fei-Fei (2012)
modeled human poses for human-object interactions by introduc-
ing a mutual context model. The types of human poses, as well as
the spatial relationship between the different human parts, were
modeled. Self organizingmaps (SOM) (Kohonen et al., 2001) were
introduced by Iosifidis et al. (2012b) for learning humanbody pos-
ture, in conjunction with fuzzy distances, to achieve time invari-
ant action representation. The proposed algorithm was based on
multilayer perceptrons, where each layer was fed by an associated

camera, for view-invariant action classification. Human inter-
actions were addressed by Andriluka and Sigal (2012). First,
2D human poses were estimated from pictorial structures from
groups of humans and then each estimated structure was fitted
into 3D space. To this end, several 2D human pose benchmarks
have been proposed for the evaluation of articulated human pose
estimation methods (Andriluka et al., 2014).

Action recognition using depth cameras was introduced by
Wang et al. (2012a), where a new feature type called “local occu-
pancy pattern” was also proposed. This feature was invariant to
translation and was able to capture the relation between human
body parts. The authors also proposed a new model for human
actions called “actionlet ensemble model,” which captured the
intraclass variations and was robust to errors incurred by depth
cameras. 3D human poses have been taken into consideration in
recent years and several algorithms for human activity recognition
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have been developed. A recent review on 3D pose estimation and
activity recognition was proposed by Holte et al. (2012b). The
authors categorized 3D pose estimation approaches aimed at pre-
senting multiview human activity recognition methods. The work
of Shotton et al. (2011) modeled 3D human poses and performed
human activity recognition from depth images by mapping the
pose estimation problem into a simpler pixel-wise classification
problem. Graphical models have been widely used in modeling
3D human poses. The problem of articulated 3D human pose
estimation was studied by Fergie and Galata (2013), where the
limitation of themapping from the image feature space to the pose
space was addressed using mixtures of Gaussian processes, parti-
cle filtering, and annealing (Sedai et al., 2013b). A combination of
discriminative and generative models improved the estimation of
human pose.

Multiview pose estimation was examined by Amin et al. (2013).
The 2D poses for different sources were projected onto 3D space
using a mixture of multiview pictorial structures models. Bela-
giannis et al. (2014) have also addressed the problem of multiview
pose estimation. They constructed 3D body part hypotheses by
triangulation of 2D pose detections. To solve the problem of
body part correspondence between different views, the authors
proposed a 3D pictorial structure representation based on a CRF
model. However, building successful models for human pose
estimation is not straightforward (Pishchulin et al., 2013). Com-
bining both pose-specific appearance and the joint appearance of
body parts helps to construct a more powerful representation of
the human body. Deep learning has gained much attention for
multisource human pose estimation (Ouyang et al., 2014) where
the tasks of detection and estimation of human pose were jointly
learned. Toshev and Szegedy (2014) have also used deep learning
for human pose estimation. Their approach relies on using deep
neural networks (DNN) (Ciresan et al., 2012) for representing
cascade body joint regressors in a holistic manner.

Despite the vast development of pose estimation algorithms,
the problem still remains challenging for real time applications.
Jung et al. (2015) presented amethod for fast estimation of human
pose with 1,000 frames per second. To achieve such a high com-
putational speed, the authors used random walk sub-sampling
methods. Human body parts were handled as directional tree-
structured representations and a regression tree was trained for
each joint in the human skeleton. However, this method depends
on the initialization of the random walk process.

Sigal et al. (2012b) addressed the multiview human-tracking
problem where the modeling of 3D human pose consisted of
a collection of human body parts. The motion estimation was
performed by non-parametric belief propagation (Bishop, 2006).
On the other hand, the work of Livne et al. (2012) explored the
problemof inferring human attributes, such as gender, weight, and
mood, by the scope of 3D pose tracking. Representing activities
using trajectories of human poses is computationally expensive
due to many degrees of freedom. To this end, efficient dimen-
sionality reduction methods should be applied. Moutzouris et al.
(2015) proposed a novel method for reducing dimensionality of
human poses called “hierarchical temporal Laplacian eigenmaps”
(HTLE).Moreover, the authors were able to estimate unseen poses
using a hierarchical manifold search method.

Du et al. (2015) divided the human skeleton into five segments
and used each of these parts to train a hierarchical neural network.
The output of each layer, which corresponds to neighboring parts,
is fused and fed as input to the next layer. However, this approach
suffers from the problem of data association as parts of the human
skeleton may vanish through the sequential layer propagation
and back projection. Nie et al. (2015) also divided human pose
into smaller mid-level spatiotemporal parts. Human actions were
represented using a hierarchical AND/OR graph and dynamic
programing was used to infer the class label. One disadvantage
of this method is that it cannot deal with self-occlusions (i.e.,
overlapping parts of human skeleton).

A shared representation of human poses and visual information
has also been explored (Ferrari et al., 2009; Singh and Nevatia,
2011; Yun et al., 2012). However, the effectiveness of suchmethods
is limited by tracking inaccuracies in human poses and complex
backgrounds. To this end, several kinematic and part-occlusion
constraints for decomposing human poses into separate limbs
have been explored to localize the human body (Cherian et al.,
2014). Xu et al. (2012) proposed a mid-level representation of
human actions by computing local motion volumes in skeletal
points extracted from video sequences and constructed a code-
book of poses for identifying the action. Eweiwi et al. (2014)
reduced the required amount of pose data using a fixed length
vector of more informative motion features (e.g., location and
velocity) for each skeletal point. A partial least squares approach
was used for learning the representation of action features, which
is then fed into an SVM classifier.

Kviatkovsky et al. (2014) mixed shape and motion features
for online action classification. The recognition processes could
be applied in real time using the incremental covariance update
and the on-demand nearest neighbor classification schemes. Rah-
mani et al. (2014) trained a random decision forest (RDF) (Ho,
1995) and applied a joint representation of depth information
and 3D skeletal positions for identifying human actions in real
time. A novel part-based skeletal representation for action recog-
nition was introduced by Vemulapalli et al. (2014). The geom-
etry between different body parts was taken into account, and
a 3D representation of human skeleton was proposed. Human
actions are treated as curves in the Lie group (Murray et al.,
1994), and the classification was performed using SVM and
temporal modeling approaches. Following a similar approach,
Anirudh et al. (2015) represented skeletal joints as points on
the product space. Shape features were represented as high-
dimensional non-linear trajectories on a manifold to learn the
latent variable space of actions. Fouhey et al. (2014) exploited
the interaction between human actions and scene geometry to
recognize human activities from still images using 3D skeletal
representation and adopting geometric representation constraints
of the scenes.

The problem of appearance-to-pose mapping for human activ-
ity understanding was studied by Urtasun and Darrell (2008).
Gaussian processes were used as an online probabilistic regressor
for this task using sparse representation of data for reducing com-
putational complexity. Theodorakopoulos et al. (2014) have also
employed sparse representation of skeletal data in the dissimilarity
space for human activity recognition. In particular, human actions
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are represented by vectors of dissimilarities and a set of prototype
actions is built. The recognition is performed into the dissimilarity
space using sparse representation-based classification. A publicly
available dataset (UPCVAction dataset) consisting of skeletal data
of human actions was also proposed.

A common problem in estimating human pose is the high-
dimensional space (i.e., each limb may have a large number of
degrees of freedom that need to be estimated simultaneously).
Action recognition relies heavily on the obtained pose estimations.
The articulated human body is usually represented as a tree-like
structure, thus locating the global position and tracking each limb
separately is intrinsically difficult, since it requires exploration
of a large state space of all possible translations and rotations
of the human body parts in 3D space. Many approaches, which
employ background subtraction (Sigal et al., 2012a) or assume
fixed limb lengths and uniformly distributed rotations of body
parts (Burenius et al., 2013), have been proposed to reduce the
complexity of the 3D space.

Moreover, the association of human pose orientation with
the poses extracted from different camera views is also a dif-
ficult problem due to similar body parts of different humans
in each view. Mixing body parts of different views may lead
to ambiguities because of the multiple candidates of each cam-
era view and false positive detections. The estimation of human
pose is also very sensitive to several factors, such as illu-
mination changes, variations in view-point, occlusions, back-
ground clutter, and human clothing. Low-cost devices, such as
Microsoft Kinect and other RGB-D sensors, which provide 3D
depth data of a scene, can efficiently leverage these limitations
and produce a relatively good estimation of human pose, since
they are robust to illumination changes and texture variations
(Gao et al., 2015).

5. MULTIMODAL METHODS

Recently, much attention has been focused onmultimodal activity
recognitionmethods. An event can be described by different types
of features that provide more and useful information. In this
context, several multimodal methods are based on feature fusion,
which can be expressed by twodifferent strategies: early fusion and
late fusion. The easiest way to gain the benefits ofmultiple features
is to directly concatenate features in a larger feature vector and
then learn the underlying action (Sun et al., 2009). This feature
fusion technique may improve recognition performance, but the
new feature vector is of much larger dimension.

Multimodal cues are usually correlated in time, thus a temporal
association of the underlying event and the different modalities
is an important issue for understanding the data. In that context,
audio-visual analysis is used in many applications not only for
audio-visual synchronization (Lichtenauer et al., 2011) but also
for tracking (Perez et al., 2004) and activity recognition (Wu et al.,
2013). Multimodal methods are classified into three categories:
(i) affective methods, (ii) behavioral methods, and (iii) methods
based on social networking. Multimodal methods describe atomic
actions or interactions that may correspond to affective states
of a person with whom he/she communicates and depend on
emotions and/or body movements.

5.1. Affective Methods
The core of emotional intelligence is understanding the map-
ping between a person’s affective states and the corresponding
activities, which are strongly related to the emotional state and
communication of a person with other people (Picard, 1997).
Affective computing studies model the ability of a person to
express, recognize, and control his/her affective states in terms of
hand gestures, facial expressions, physiological changes, speech,
and activity recognition (Pantic and Rothkrantz, 2003). This
research area is generally considered to be a combination of
computer vision, pattern recognition, artificial intelligence, psy-
chology, and cognitive science.

A key issue in affective computing is accurately annotated
data. Ratings are one of the most popular affect annotation tools.
However, this is challenging to obtain for real world situations,
since affective events are expressed in a different manner by dif-
ferent persons or occur simultaneously with other activities and
feelings. Preprocessing affective annotations may be detrimental
for generating accurate and ambiguous affective models due to
biased representations of affect annotation. To this end, a study on
how to produce highly informative affective labels has been pro-
posed by Healey (2011). Soleymani et al. (2012) investigated the
properties of developing a user-independent emotion recognition
system that is able to detect the most informative affective tags
from electroencephalogram (EEG) signals, pupillary reflex, and
bodily responses that correspond to video stimulus. Nicolaou et al.
(2014) proposed a novel method based on probabilistic canonical
correlation analysis (PCCA) (Klami and Kaski, 2008) and DTW
for fusing multimodal emotional annotations and performing
temporal aligning of sequences.

Liu et al. (2011b) associated multimodal features (i.e., textual
and visual) for classifying affective states in still images. The
authors argued that visual information is not adequate for under-
standing human emotions, and thus additional information that
describes the image is needed. Dempster-Shafer theory (Shafer,
1976) was employed for fusing the different modalities, while
SVM was used for classification. Hussain et al. (2011) proposed
a framework for fusing multimodal psychological features, such
as heart and facial muscle activity, skin response, and respiration,
for detecting and recognizing affective states. AlZoubi et al. (2013)
explored the effect of the affective feature variations over time on
the classification of affective states.

Siddiquie et al. (2013) analyzed four different affective dimen-
sions, such as activation, expectancy, power, and valence (Schuller
et al., 2011). To this end, they proposed joint hidden conditional
random Fields (JHCRF) as a new classification scheme to take
advantage of the multimodal data. Furthermore, their method
uses late fusion to combine audio and visual information together.
This may lead to significant loss of the intermodality dependence,
while it suffers frompropagating the classification error across dif-
ferent levels of classifiers. Although their method could efficiently
recognize the affective state of a person, the computational bur-
den was high as JHCRFs require twice as many hidden variables
as the traditional HCRFs when features represent two different
modalities.

Nicolaou et al. (2011) proposed a regression model based
on SVMs for regression (SVR) (Smola and Schölkopf, 2004)
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for continuous prediction of multimodal emotional states, using
facial expression, shoulder gesture, and audio cues in terms of
arousal and valence (Figure 9). Castellano et al. (2007) explored
the dynamics of body movements to identify affective behaviors
using time series of multimodal data. Martinez et al. (2014) pre-
sented a detailed review of learning methods for the classification
of affective and cognitive states of computer game players. They
analyzed the properties of directly using affect annotations in
classification models, and proposed a method for transforming
such annotations to build more accurate models.

Multimodal affect recognitionmethods in the context of neural
networks and deep learning have generated considerable recent
research interest (Ngiam et al., 2011). In a more recent study,
Martinez et al. (2013) could efficiently extract and select the
most informative multimodal features using deep learning to
model emotional expressions and recognize the affective states
of a person. They incorporated psychological signals into emo-
tional states, such as relaxation, anxiety, excitement, and fun, and
demonstrated that deep learning was able to extract more infor-
mative features than feature extraction on psychological signals.

Although the understanding of human activities may ben-
efit from affective state recognition, the classification process
is extremely challenging due to the semantic gap between the
low-level features extracted from video frames and high-level
concepts, such as emotions, that need to be identified. Thus,
building strong models that can cope with multimodal data,
such as gestures, facial expressions and psychological data,
depends on the ability of the model to discover relations between
different modalities and generate informative representation
on affect annotations. Generating such information is not an

easy task. Users cannot always express their emotion with
words, and producing satisfactory and reliable ground truth
that corresponds to a given training instance is quite diffi-
cult as it can lead to ambiguous and subjective labels. This
problem becomes more prominent as human emotions are
continuous acts in time, and variations in human actions
may be confusing or lead to subjective annotations. There-
fore, automatic affective recognition systems should reduce the
effort for selecting the proper affective label to better assess
human emotions.

5.2. Behavioral Methods
Recognizing human behaviors from video sequences is a chal-
lenging task for the computer vision community (Candamo et al.,
2010). A behavior recognition system may provide information
about the personality and psychological state of a person, and
its applications vary from video surveillance to human-computer
interaction. Behavioral approaches aim at recognizing behavioral
attributes, non-verbal multimodal cues, such as gestures, facial
expressions, and auditory cues. Factors that can affect human
behavior may be decomposed into several components, including
emotions, moods, actions, and interactions, with other people.
Hence, the recognition of complex actions may be crucial for
understanding human behavior. One important aspect of human
behavior recognition is the choice of proper features, which can
be used to recognize behavior in applications, such as gaming
and physiology. A key challenge in recognizing human behaviors
is to define specific emotional attributes for multimodal dyadic
interactions (Metallinou and Narayanan, 2013). Such attributes
may be descriptions of emotional states or cognitive states, such

FIGURE 9 | Flow chart of multimodal emotion recognition. Emotions, facial expressions, shoulder gestures, and audio cues are combined for continuous
prediction emotional states (Nicolaou et al., 2011).
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as activation, valence, and engagement. A typical example of a
behavior recognition system is depicted in Figure 10.

Audio-visual representation of human actions has gained an
important role in human behavior recognition methods. Sargin
et al. (2007) suggested a method for speaker identification inte-
grating a hybrid scheme of early and late fusion of audio-visual
features and used CCA (Hardoon et al., 2004) to synchronize the
multimodal features. However, their method can cope with video
sequences of frontal view only. Metallinou et al. (2008) proposed
a probabilistic approach based on GMMs for recognizing human
emotions in dyadic interactions. The authors took advantage of
facial expressions as they can be expressed by the facial action
coding system (FACS) (Ekman et al., 2002), which describes
all possible facial expressions as a combination of action units
(AU), and combines themwith audio information, extracted from
each participant, to identify their emotional state. Similarly, Chen
et al. (2015) proposed a real-time emotion recognition system
that modeled 3D facial expressions using random forests. The
proposed method was robust to subjects’ poses and changes in the
environment.

Wu et al. (2010) proposed a human activity recognition system
by taking advantage of the auditory information of the video
sequences of the HOHA dataset (Laptev et al., 2008) and used
late fusion techniques for combining audio and visual cues. The
main disadvantage of this method is that it used different clas-
sifiers to separately learn the audio and visual context. Also,
the audio information of the HOHA dataset contains dynamic
backgrounds and the audio signal is highly diverse (i.e., audio
shifts roughly from one event to another), which generates the

need for developing audio feature selection techniques. Similar in
spirit is the work of Wu et al. (2013), who used the generalized
multiple kernel learning algorithm for estimating the most infor-
mative audio features. They applied fuzzy integral techniques to
combine the outputs of two different SVM classifiers, increasing
the computational burden of the method.

Song et al. (2012a) proposed a novel method for human behav-
ior recognition based on multiview hidden conditional random
fields (MV-HCRF) (Song et al., 2012b) and estimated the inter-
action of the different modalities by using kernel canonical cor-
relation analysis (KCCA) (Hardoon et al., 2004). However, their
method cannot deal with data that contain complex backgrounds,
and due to the down-sampling of the original data the audio-visual
synchronization may be lost. Also, their method used different
sets of hidden states for audio and visual information. This prop-
erty considers that the audio and visual features were a priori
synchronized, while it increases the complexity of themodel.Met-
allinou et al. (2012) employed several hierarchical classification
models from neural networks to HMMs and their combinations
to recognize audio-visual emotional levels of valence and arousal
rather than emotional labels, such as anger and kindness.

Vrigkas et al. (2014b) employed a fully connectedCRFmodel to
identify human behaviors, such as friendly, aggressive, and neu-
tral. To evaluate their method, they introduced a novel behavior
dataset, called the Parliament dataset, which consists of politi-
cal speeches in the Greek parliament. Bousmalis et al. (2013b)
proposed a method based on hierarchical Dirichlet processes to
automatically estimate the optimal number of hidden states in
an HCRF model for identifying human behaviors. The proposed

FIGURE 10 | Example of interacting persons. Audio-visual features and emotional annotations are fed into a GMM for estimating the emotional curves (Metallinou
et al., 2013).
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model, also known as infinite hidden conditional random field
model (iHCRF), was employed to recognize emotional states,
such as pain and agreement, and disagreement from non-verbal
multimodal cues.

Baxter et al. (2015) proposed a human classification model that
does not learn the temporal structure of human actions but rather
decomposes human actions and uses them as features for learning
complex human activities. The intuition behind this approach is
a psycholinguistics phenomenon, where randomizing letters in
the middle of words has almost no effect on understanding the
underlying word if and only if the first and the last letters of
this word remain unchanged (Rawlinson, 2007). The problem of
behavioral mimicry in social interactions was studied by Bilakhia
et al. (2013). It can be seen as an interpretation of human speech,
facial expressions, gestures, and movements. Metallinou et al.
(2013) applied mixture models to capture the mapping between
audio and visual cues to understand the emotional states of dyadic
interactions.

Selecting the proper features for human behavior recognition
has always been a trial-and-error approach for many researchers
in this area of study. In general, effective feature extraction is
highly application dependent. Several feature descriptors, such as
HOG3D (Kläser et al., 2008) and STIP (Laptev, 2005), are not able
to sufficiently characterize human behaviors. The combination
of visual features with other more informative features, which
reflect human emotions and psychology, is necessary for this task.
Nonetheless, the description of human activities with high-level
contents usually leads to recognition methods with high com-
putational complexity. Another obstacle that researchers must
overcome is the lack of adequate benchmark datasets to test and
validate the reliability, effectiveness, and efficiency of a human
behavior recognition system.

5.3. Methods Based on Social Networking
Social interactions are an important part of daily life. A funda-
mental component of human behavior is the ability to interact
with other people via their actions. Social interaction can be
considered as a special type of activity where someone adapts
his/her behavior according to the group of people surrounding
him/her. Most of the social networking systems that affect peo-
ple’s behavior, such as Facebook, Twitter, and YouTube, measure
social interactions and infer how such sites may be involved
in issues of identity, privacy, social capital, youth culture, and
education. Moreover, the field of psychology has attracted great

interest in studying social interactions, as scientists may infer
useful information about human behavior. A recent survey on
human behavior recognition provides a complete summarization
of up-to-date techniques for automatic human behavior analysis
for single person, multiperson, and object-person interactions
(Candamo et al., 2010).

Fathi et al. (2012) modeled social interactions by estimating
the location and orientation of the faces of persons taking part
in a social event, computing a line of sight for each face. This
information was used to infer the location where an individ-
ual may be found. The type of interaction was recognized by
assigning social roles to each person. The authors were able to
recognize three types of social interactions: dialog, discussion, and
monolog. To capture these social interactions, eight subjects wear-
ing head-mounted cameras participated in groups of interacting
persons analyzing their activities from the first-person point of
view. Figure 11 shows the resulting social network built from this
method. In the sense of first-person scene understanding, Park
and Shi (2015) were able to predict joint social interactions by
modeling geometric relationships between groups of interacting
persons. Although the proposed method could cope with missing
information and variations in scene context, scale, and orienta-
tion of human poses, it is sensitive to localization of interacting
members, which leads to erroneous predictions of the true class.

Human behavior on sport datasets was investigated by Lan
et al. (2012a). The authors modeled the behavior of humans in
a scene using social roles in conjunction with modeling low-
level actions and high-level events. Burgos-Artizzu et al. (2012)
discussed the social behavior of mice. Each video sequence was
segmented into periods of activities by constructing a temporal
context that combines spatiotemporal features. Kong et al. (2014a)
proposed a new high-level descriptor called “interactive phrases”
to recognize human interactions. This descriptor was a binary
motion relationship descriptor for recognizing complex human
interactions. Interactive phrases were treated as latent variables,
while the recognition was performed using a CRF model.

Cui et al. (2011) recognized abnormal behaviors in human
group activities. The authors represented human activities by
modeling the relationships between the current behavior of a
person and his/her actions. An attribute-based social activity
recognition method was introduced by Fu et al. (2014). The
authors were interested in classifying social activities of daily life,
such as birthdays and weddings. A new social activity dataset
has also been proposed. By treating attributes as latent variables,

FIGURE 11 | Social network of interacting persons. The connections between the group of persons P1 . . .P25 and the subjects wearing the cameras S1 . . .S8

are weighted based on how often a person’s face is captured by a subject’s camera (Fathi et al., 2012).

Frontiers in Robotics and AI | www.frontiersin.org November 2015 | Volume 2 | Article 2816

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive


Vrigkas et al. A Review of Human Activity Recognition Methods

the authors were able to annotate and classify video sequences
of social activities. Yan et al. (2014) leveraged the problem of
human tracking for modeling the repulsion, attraction, and non-
interaction effects in social interactions. The tracking problem
was decomposed into smaller tasks by tracking all possible con-
figurations of interactions effects, while the number of trackers
was dynamically estimated. Tran et al. (2014b) modeled crowded
scenes as a graph of interacting persons. Each node represents one
person and each edge on the graph is associated with a weight
according to the level of the interaction between the participants.
The interacting groupswere foundby graph clustering,where each
maximal clique corresponds to an interacting group.

The work of Lu et al. (2011) focused on automatically tracking
and recognizing players’ positions (i.e., attacker and defender)
in sports’ videos. The main problem of this work was the low
resolution of the players to be tracked (a player was roughly
15 pixels tall). Lan et al. (2012b) recognized group activities,
whichwere considered as latent variables, encoding the contextual
information in a video sequence. Two types of contextual infor-
mation were explored: group-to-person interactions and person-
to-person interactions. To model person-to-person interactions,
one approach is to model the associated structure. The second
approach is based on spatiotemporal features, which encode the
information about an action and the behavior of people in the
neighborhood. Finally, the third approach is a combination of the
above two.

Much focus has also been given to recognizing human activ-
ities from real life videos, such as movies and TV shows, by
exploiting scene contexts to localize activities and understand
human interactions (Marszałek et al., 2009; Patron-Perez et al.,
2012; Bojanowski et al., 2013; Hoai and Zisserman, 2014). The
recognition accuracy of such complex videos can also be improved
by relating textual descriptions and visual context to a unified
framework (Ramanathan et al., 2013). An alternative approach is
a system that takes a video clip as its input and generates short
textual descriptions, which may correspond to an activity label,
which was unseen during training (Guadarrama et al., 2013).
However, natural video sequences may contain irrelevant scenes
or scenes with multiple actions. As a result, Bandla and Grauman
(2013) proposed a method for recognizing human activities from
unsegmented videos using a voting-based classification scheme to
find the most frequently used action label.

Marín-Jiménez et al. (2014) used a bag of visual-audio words
scheme along with late fusion for recognizing human interac-
tions in TV shows. Even though their method performs well in
recognizing human interaction, the lack of an intrinsic audio-
visual relationship estimation limits the recognition problem.
Bousmalis et al. (2011) considered a system based on HCRFs
for spontaneous agreement and disagreement recognition using
audio and visual features. Although bothmethods yielded promis-
ing results, they did not consider any kind of explicit correlation
and/or association between the different modalities. Hoai and
Zisserman (2014) proposed a learning based method based on
the context and the properties of a scene for detecting upper
body positions and understanding the interaction of the par-
ticipants in TV shows. An audio-visual analysis for recognizing
dyadic interactions was presented by Yang et al. (2014). The

author combined a GMM with a Fisher kernel to model mul-
timodal dyadic interactions and predict the body language of
each subject according to the behavioral state of his/her inter-
locutor. Escalera et al. (2012) represented the concept of social
interactions as an oriented graph using an influence model to
identify human interactions. Audio and visual detection and
segmentation were performed to extract the exact segments of
interest in a video sequence, and then the influence model
was employed. Each link measured the influence of a person
over another.

Many works on human activity recognition based on deep
learning techniques have been proposed in the literature. In fact,
deep learning methods have had a large impact on a plethora
of research areas including image/video understanding, speech
recognition, and biomedical image analysis. Kim et al. (2013) used
deep belief networks (DBN) (Hinton et al., 2006) in both super-
vised and unsupervised manners to learn the most informative
audio-visual features and classify human emotions in dyadic inter-
actions. Their system was able to preserve non-linear relation-
ships betweenmultimodal features and showed that unsupervised
learning can be used efficiently for feature selection. Shao et al.
(2015) mixed appearance and motion features for recognizing
group activities in crowded scenes collected from the web. For
the combination of the different modalities, the authors applied
multitask deep learning. By thesemeans, they were able to capture
the intraclass correlations between the learned attributes while
they proposed a novel dataset of crowed scene understanding,
called WWW crowd dataset.

Deep learning has also been used by Gan et al. (2015) for
detecting and recognizing complex events in video sequences.
The proposed approach followed a sequential framework. First,
saliency maps were used for detecting and localizing events, and
then deep learning was applied to the pretrained features for
identifying the most important frames that correspond to the
underlying event. Although much of the existing work on event
understanding relies on video representation, significant work has
been done on recognizing complex events from static images.
Xiong et al. (2015) utilized CNNs to hierarchically combine infor-
mation from different visual channels. The new representation of
fused features was used to recognize complex social events. To
assess their method, the authors introduced a large dataset with
>60,000 static images obtained from the web, called web image
dataset for event recognition (WIDER).

Karpathy et al. (2014) performed an experimental evaluation of
CNNs to classify events from large-scale video datasets, using one
million videos with 487 categories (Sports-1M dataset) obtained
fromYouTube videos. Chen et al. (2013a) exploited different types
of features, such as static and motion features, for recognizing
unlabeled events from heterogenous web data (e.g., YouTube and
Google/Bing image search engines). A separate classifier for each
source is learned and a multidomain adaptation approach was
followed to infer the labels for each data source. Tang et al. (2013)
studied the problem of heterogenous feature combination for
recognizing complex events. They considered the problem as two
different tasks. At first, they estimated which were the most infor-
mative features for recognizing social events, and then combined
the different features using an AND/OR graph structure.
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Modeling crowded scenes has been a difficult task due to partial
occlusions, interacting motion patterns, and sparsely distributed
cameras in outdoor environments (Alahi et al., 2014). Most of
the existing approaches for modeling group activities and social
interactions between different persons usually exploit contextual
information from the scenes. However, such information is not
sufficient to fully understand the underlying activity as it does not
capture the variations in human poses when interactingwith other
persons. When attempting to recognize social interactions with a
fixed number of participants, the problem may become more or
less trivial. When the number of interacting people dynamically
changes over time, the complexity of the problem increases and
becomes more challenging. Moreover, social interactions are usu-
ally decomposed into smaller subsets that contain individual per-
son activities or interaction between individuals. The individual
motion patterns are analyzed separately and are then combined to
estimate the event. A person adapts his/her behavior according to
the person with whom s/he interacts. Thus, such an approach is
limited by the fact that only specific interaction patterns can be
successfully modeled and is sensitive in modeling complex social
events.

5.4. Multimodal Feature Fusion
Consider the scenario where several people have a specific activ-
ity/behavior and some of them may emit sounds. In the simple
case, a human activity recognition system may recognize the
underlying activity by taking into account only the visual informa-
tion. However, the recognition accuracy may be enhanced from
audio-visual analysis, as different people may exhibit different
activities with similar body movements, but with different sound
intensity values. The audio information may help to understand
who is the person of interest in a test video sequence and distin-
guish between different behavioral states.

A great difficulty in multimodal feature analysis is the dimen-
sionality of the data from different modalities. For example, video
features are much more complex with higher dimensions than
audio, and thus techniques for dimensionality reduction are use-
ful. In the literature, there are two main fusion strategies that can
be used to tackle this problem (Atrey et al., 2010; Shivappa et al.,
2010).

Early fusion, or fusion at the feature level, combines features
of different modalities, usually by reducing the dimensionality in
eachmodality and creating a new feature vector that represents an
individual. Canonical correlation analysis (CCA) (Hardoon et al.,
2004) was widely studied in the literature as an effective way for
fusing data at the feature level (Sun et al., 2005; Wang et al., 2011c;
Rudovic et al., 2013). The advantage of early fusion is that it yields
good recognition results when the different modalities are highly
correlated, since only one learning phase is required. On the other
hand, the difficulty of combining the different modalities may
lead to the domination of one modality over the others. A novel
method for fusing verbal (i.e., textual information) andnon-verbal
(i.e., visual signals) cues was proposed by Evangelopoulos et al.
(2013). Each modality is separately analyzed and saliency scores
are used for linear and non-linear fusing schemes.

The second category of methods, which is known as late fusion
or fusion at the decision level, combines several probabilistic

models to learn the parameters of each modality separately. Then
all scores are combined together in a supervised framework yield-
ing a final decision score (Westerveld et al., 2003; Jiang et al.,
2014). The individual strength of eachmodality may lead to better
recognition results. However, this strategy is time-consuming and
requires more complex supervised learning schemes, which may
cause a potential loss of inter-modality correlation. A comparison
of early versus late fusion methods for video analysis was reported
by Snoek et al. (2005).

Recently, a third approach for fusingmultimodal data has come
to the foreground (Karpathy et al., 2014). This approach, called
slow fusion, is a combination of the previous approaches and
can be seen as a hierarchical fusion technique that slowly fuses
data by successively passing information through early and late
fusion levels. Although this approach seems to have the advan-
tages of both early and late fusion techniques, it also has a large
computational burden due to the different levels of information
processing. Figure 12 illustrates the graphical models of different
fusion approaches.

6. DISCUSSION

Human activity understanding has become one of the most active
research topics in computer vision. The type and amount of data
that each approach uses depends on the ability of the underlying
algorithm to deal with heterogeneous and/or large scale data.
The development of a fully automated human activity recognition
system is a non-trivial task due to cluttered backgrounds, complex
camera motion, large intraclass variations, and data acquisition
issues. Tables 2 and 3 provide a comprehensive comparison of
unimodal and multimodal methods, respectively, and list the
benefits and limitations of each family of methods.

The first step in developing a human activity recognition sys-
tem is to acquire an adequate human activity database. This
database may be used for training and testing purposes. A com-
plete survey, which covers important aspects of human activity
recognition datasets, was introduced by Chaquet et al. (2013). An
appropriate human activity dataset is required for the develop-
ment of a human activity recognition system. This dataset should
be sufficiently rich in a variety of human actions. Moreover, the
creation of such a dataset should correspond to real world scenar-
ios. The quality of the input media that forms the dataset is one
of the most important things one should take into account. These

FIGURE 12 | Graphical representation of different fusion approaches
(Karpathy et al., 2014).
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TABLE 2 | Comparison of unimodal methods.

Type of method Pros Cons

Space-time - Localization of actions - Sensitivity to noise and occlusions
- 3D body representation - Recognizing complex activities may be tricky
- Good representation of low-level features - Feature sparsity leads to low repeatability
- Detailed analysis of human movements - Gap between low-level features and high-level events
- Unsupervised learning - Human body detection is often a prerequisite

Stochastic - Complex activity recognition - Learning and inference may be difficult
- Modeling of human interactions - Learning a large number of parameters
- Recognition from very short clips - Label bias problem
- Partial occlusion, background clutter, and camera motion handling - Prone to overfitting
- High generalization ability - Approximate solutions
- Non-periodic activity recognition - Large number of training data required

Rule-based - High-level representation of human actions - Decomposition of complex activities into smaller tasks
- Sequential activity recognition - Only atomic actions are recognized
- Context-free grammar classification - Rule/attribute generation is difficult
- Knowledge transfer between actions - Problems with long video sequences
- Learning of multiple tasks simultaneously

Shape-based - 2D and 3D body representation - Large number of degrees of freedom
- Independent modeling of human body parts - Skeleton tracking inaccuracies
- Recognition from still images - View-point and self occlusions dependent
- Upper body action recognition - Sensitivity to illumination changes and human clothing
- Existence of low-cost devices for pose estimation - Difficulties in mapping image feature space to pose space

TABLE 3 | Comparison of multimodal methods.

Type of method Pros Cons

Affective - Association of human emotions and actions - Affective data annotation is difficult
- Better understanding of human activities - Problems in handling continuous actions
- Complex activity recognition - Dimensionality of the different modalities
- Incorporation of well known classification models - Gap between low-level features and high-level concepts

Behavioral - Personalized action recognition - Emotional attribute specification is difficult
- Improve human-computer interaction - Mainly frontal view emotion recognition
- Complex activity recognition - Complex classification models
- Recognizes human interactions - Proper feature selection is difficult
- Psychological attributes improve recognition - Visual feature descriptors cannot capture human emotions

- Dimensionality of the different modalities

Social networking - Recognizes social human interactions - Limited by the number of interacting persons
- Easy access to data though social platforms - Dimensionality of the different modalities
- Reliable recognition of human-to-human or human-to-object
interactions

- Decomposition of complex actions into smaller tasks is
necessary

- Abnormal activity recognition - Difficulties in crowded scene modeling due to occlusions

input media can be static images or video sequences, colored or
gray-scaled. An ideal human activity dataset should address the
following issues: (i) the input media should include either still
images and/or video sequences, (ii) the amount of data should
be sufficient, (iii) input media quality (resolution, grayscale or
color), (iv) large number of subjects performing an action, (v)
large number of action classes, (vi) changes in illuminations, (vii)
large intraclass variations (i.e., variations in subjects’ poses), (viii)
photo shooting under partial occlusion of human structure, and
(ix) complex backgrounds.

Although there exists a plethora of benchmark activity recogni-
tion datasets in the literature, we have focused on the most widely
used ones with respect to the database size, resolution, and usabil-
ity. Table 4 summarizes human activity recognition datasets, cat-
egorizing them into seven different categories. All datasets are
grouped by their associated category and by chronological order

for each group. We also present the number of classes, actors, and
video clips along with their frame resolution.

Many of the existing datasets for human activity recognition
were recorded in controlled environments, with participant actors
performing specific actions. Furthermore, several datasets are not
generic, but rather cover a specific set of activities, such as sports
and simple actions, which are usually performed by one actor.
However, these limitations constitute an unrealistic scenario that
does not cover real-world situations and does not address the
specifications for an ideal human activity dataset as presented
earlier. Nevertheless, several activity recognition datasets that take
into account these requirements have been proposed.

Several existing datasets have reached their expected life cycle
(i.e., methods on Weizmann and KTH datasets achieved 100%
recognition rate). These datasets were captured in controlled
environments and the performed actions were obtained from
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TABLE 4 | Human activity recognition datasets.

Dataset name and category Year # classes # actors # videos Resolution

Single action recognition
KTH (Schuldt et al., 2004) 2004 6 25 2,391 160×120
Weizman (Blank et al., 2005) 2005 10 9 90 180×144
UCF Sports (Rodriguez et al., 2008) 2008 9 200 720×480
MuHAVi (Singh et al., 2010) 2010 17 14 720×576
UCF50 (Reddy and Shah, 2013) 2013 50 6,676
UCF101 (Soomro et al., 2012) 2012 101 13,320 320×240

Movie
UCF YouTube (Liu et al., 2009) 2009 11 >1.100 720×480
Hollywood2 (Marszałek et al., 2009) 2009 12 3,669
HMDB51 (Kuehne et al., 2011) 2011 51 6,849 320×240
TVHI (Patron-Perez et al., 2012) 2012 4 20 300 320×240

Surveillance
PETS 2004 (CAVIAR) (Fisher, 2004) 2004 6 28 384×288
PETS 2007 (Fisher, 2007b) 2007 3 7 768×576
VIRAT (Oh et al., 2011) 2011 23 17 1,920×1,080

Pose
TUM Kitchen (Tenorth et al., 2009) 2009 10 4 20 324×288
Two-person interaction (Yun et al., 2012) 2012 8 7 ≈300 640×480
MSRC-12 Kinect gesture (Fothergill et al., 2012) 2012 12 30 594
J-HMDB (Jhuang et al., 2013) 2013 21 1 928 240×320
UPCV Action (Theodorakopoulos et al., 2014) 2014 10 20 ≈200

Daily living
URADL (Messing et al., 2009) 2009 17 5 150 1,280×720
ADL (Pirsiavash and Ramanan, 2012) 2012 18 20 ≈10 h 1,280×960
MPII Cooking (Rohrbach et al., 2012) 2012 65 12 44 1,624×1,224
Breakfast (Kuehne et al., 2014) 2014 10 52 ≈77 h 320×240

Social networking
CCV (Jiang et al., 2011) 2001 20 9.317
FPSI (Fathi et al., 2012) 2012 6 8 ≈42 h 1,280×720
Broadcast field hockey (Lan et al., 2012b) 2012 11 58
USAA (Fu et al., 2012) 2012 8 ≈200
Sports-1M (Karpathy et al., 2014) 2014 487 1M
ActivityNet (Heilbron et al., 2015) 2015 203 27,801 1,280×720
WWW Crowd (Shao et al., 2015) 2015 94 10,000 640×360

Behavior
BEHAVE (Fisher, 2007a) 2007 8 321 640×480
Canal9 (Vinciarelli et al., 2009) 2009 2 190 ≈42 h 720×576
USC Creative IT (Metallinou et al., 2010) 2010 50 16 100
Parliament (Vrigkas et al., 2014b) 2014 3 20 228 320×240

a frontal view camera. The non-complex backgrounds and
the non-intraclass variations in human movements make these
datasets non-applicable for real world applications. However,
these datasets still remain popular for human activity classifica-
tion, as they provide a good evaluation criterion for many new
methods. A significant problem in constructing a proper human
activity recognition dataset is the annotation of each action, which
is generally performed manually by the user, making the task
biased.

Understanding human activities is a part of interpersonal rela-
tionships. Humans have the ability to understand another human’s
actions by interpreting stimuli from the surroundings. On the
other hand, machines need a learning phase to be able to perform
this operation. Thus, some basic questions arise about a human
activity classification system:

1. How to determine whether a human activity classification
system provides the best performance?

2. In which cases is the system prone to errors when classifying a
human activity?

3. In what level can the system reach the human ability of recog-
nizing a human activity?

4. Are the success rates of the system adequate for inferring safe
conclusions?

It is necessary for the system to be fully automated. To
achieve this, all stages of human activity modeling and analysis
are to be performed automatically, namely: (i) human activity
detection and localization, where the challenge is to detect and
localize a human activity in the scene. Background subtraction
(Elgammal et al., 2002) and human tracking (Liu et al., 2010)
are usually used as a part of this process; (ii) human activ-
ity modeling (e.g., feature extraction; Laptev, 2005) is the step
of extracting the necessary information that will help in the
recognition step; and (iii) human activity classification is the
step where a probe video sequence is classified in one of the
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classes of the activities that have been defined before building
the system.

In addition, the system should work regardless of any exter-
nal factors. This means that the system should perform robustly
despite changes in lighting, pose variations or partially occluded
human bodies, and background clutter. Also, the number as well
as the type of human activity classes to be recognized is an
important factor that plays a crucial role in the robustness of the
system. The requirements of an ideal human activity classification
system should cover several topics, including automatic human
activity classification and localization, lighting and pose variations
(e.g., multiview recognition), partially occluded human bodies,
and background clutter. Also, all possible activities should be
detected during the recognition process, the recognition accu-
racy should be independent from the number of activity classes,
and the activity identification process should be performed in
real time and provide a high success rate and low false posi-
tive rate.

Besides the vast amount of research in this field, a generaliza-
tion of the learning framework is crucial toward modeling and
understanding real world human activities. Several challenges that
correspond to the ability of a classification system to generalize
under external factors, such as variations in human poses and dif-
ferent data acquisition, are still open issues. The ability of a human
activity classification system to imitate humans’ skill in recogniz-
ing human actions in real time is a future challenge to be tackled.
Machine-learning techniques that incorporate knowledge-driven
approachesmay be vital for human activitymodeling and recogni-
tion in unconstrained environments, where data may not be ade-
quate or may suffer from occlusions and changes in illuminations
and view point.

Training and validation methods still suffer from limitations,
such as slow learning rate, which gets even worse for large scale
training data, and low recognition rate. Although much research
focuses on leveraging human activity recognition from big data,
this problem is still in its infancy. The exact opposite problem
(i.e., learning human activities from very little training data or
missing data) is also very challenging. Several issues concerning
the minimum number of learning examples for modeling the
dynamics of each class or safely inferring the performed activity
label are still open and need further investigation. More atten-
tion should also be put in developing robust methods under
the uncertainty of missing data either on training steps or test-
ing steps.

The role of appropriate feature extraction for human activ-
ity recognition is a problem that needs to be tackled in future
research. The extraction of low-level features that are focused on
representing humanmotion is a very challenging task. To this end,
a fundamental question arises are there features that are invariant
to scale and viewpoint changes, which can model human motion
in a uniquemanner, for all possible configurations of human pose?

Furthermore, it is evident that there exists a great need for
efficiently manipulating training data that may come from het-
erogeneous sources. The number and type of different modal-
ities that can be used for analyzing human activities is an
important question. The combination of multimodal features,
such as body motion features, facial expressions, and the

intensity level of voice, may produce superior results, when
compared to unimodal approaches, On the other hand, such
a combination may constitute over-complete examples that can
be confusing and misleading. The proposed multimodal feature
fusion techniques do not incorporate the special characteris-
tics of each modality and the level of abstraction for fusing.
Therefore, a comprehensive evaluation of feature fusion meth-
ods that retain the feature coupling is an issue that needs to
be assessed.

It is evident that the lack of large and realistic human activity
recognition datasets is a significant challenge that needs to be
addressed. An ideal action dataset should cover several topics,
including diversity in human poses for the same action, a wide
range of ground truth labels, and variations in image capturing
and quality. Although a list of action datasets that correspond to
most of these specifications has been introduced in the literature,
the question of how many actions we can actually learn is a task
for further exploration. Most of the existing datasets contain very
few classes (15 on average). However, there exist datasets with
more activities that reach 203 or 487 classes. In such large datasets,
the ability to distinguish between easy and difficult examples for
representing the different classes and recognizing the underlying
activity is difficult. This fact opens a promising research area that
should be further studied.

Another challengeworthy of further exploration is the exploita-
tion of unsegmented sequences, where one activity may succeed
another. Frequent changes in human motion and actions per-
formed by groups of interacting persons make the problem amply
challenging. More sophisticated high-level activity recognition
methods need to be developed, which should be able to local-
ize and recognize simultaneously occurring actions by different
persons.

7. CONCLUSION

In this survey, we carried out a comprehensive study of state-
of-the-art methods of human activity recognition and pro-
posed a hierarchical taxonomy for classifying these methods.
We surveyed different approaches, which were classified into
two broad categories (unimodal and multimodal) according to
the source channel each of these approaches employ to recog-
nize human activities. We discussed unimodal approaches and
provided an internal categorization of these methods, which
were developed for analyzing gesture, atomic actions, and more
complex activities, either directly or employing activity decom-
position into simpler actions. We also presented multimodal
approaches for the analysis of human social behaviors and
interactions. We discussed the different levels of representa-
tion of feature modalities and reported the limitations and
advantages for each representation. A comprehensive review of
existing human activity classification benchmarks was also pre-
sented and we examined the challenges of data acquisition to
the problem of understanding human activity. Finally, we pro-
vided the characteristics of building an ideal human activity
recognition system.

Most of the existing studies in this field failed to efficiently
describe human activities in a concise and informative way as they
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introduce limitations concerning computational issues. The gap
of a complete representation of human activities and the corre-
sponding data collection and annotation is still a challenging and
unbridged problem. In particular, we may conclude that despite
the tremendous increase of human understandingmethods, many
problems still remain open, including modeling of human poses,
handling occlusions, and annotating data.
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