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Abstract

Classification models may often suffer from “structure
imbalance” between training and testing data that may oc-
cur due to the deficient data collection process. This im-
balance can be represented by the learning using privileged
information (LUPI) paradigm. In this paper, we present a
supervised probabilistic classification approach that inte-
grates LUPI into a hidden conditional random field (HCRF)
model. The proposed model is called LUPI-HCRF and is
able to cope with additional information that is only avail-
able during training. Moreover, the proposed method em-
ployes Student’s t-distribution to provide robustness to out-
liers by modeling the conditional distribution of the priv-
ileged information. Experimental results in three publicly
available datasets demonstrate the effectiveness of the pro-
posed approach and improve the state-of-the-art in the
LUPI framework for recognizing human activities.

1. Introduction
The rapid development of human activity recognition

systems for applications such as surveillance and human-
machine interactions [5, 31] brings forth the need for devel-
oping new learning techniques. Learning using privileged
information (LUPI) [18, 28, 34] has recently generated con-
siderable research interest. The insight of LUPI is that one
may have access to additional information about the train-
ing samples, which is not available during testing.

Despite the impressive progress that has been made in
recognizing human activities, the problem still remains
challenging. First, constructing a visual model for learn-
ing and analyzing human movements is difficult. The large
intra-class variabilities or changes in appearance make the
recognition problem difficult to address. Finally, the lack of
informative data or the presence of misleading information
may lead to ineffective approaches.

We address these issues by presenting a probabilistic ap-
proach, which is able to learn human activities by exploiting
additional information about the input data, that may reflect
on auxiliary properties about classes and members of the

Figure 1. Robust learning using privileged information. Given a
set of training examples and a set of additional information about
the training samples (left) our system can successfully recognize
the class label of the underlying activity without having access
to the additional information during testing (right). We explore
three different forms of privileged information (e.g., audio signals,
human poses, and attributes) by modeling them with a Student’s
t-distribution and incorporating them into the LUPI-HCRF model.

classes of the training data (Fig. 1). In this context, we em-
ploy a new learning method based on hidden conditional
random fields (HCRFs) [24], called LUPI-HCRF, which
can efficiently manage dissimilarities in input data, such as
noise, or missing data, using a Student’s t-distribution. The
use of Student’s t-distribution is justified by the property
that it has heavier tails than a standard Gaussian distribu-
tion, thus providing robustness to outliers [23].

The main contributions of our work can be summarized
in the following points. First, we developed a probabilis-
tic human activity recognition method that exploits privi-
leged information based on HCRFs to deal with missing or
incomplete data during testing. Second, contrary to previ-
ous methods, which may be sensitive to outlying data mea-
surements, we propose a robust framework by employing a
Student’s t-distribution to attain robustness against outliers.
Finally, we emphasize the generic nature of our approach to
cope with samples from different modalities.



2. Related work
A major family of methods relies on learning human

activities by building visual models and assigning activity
roles to people associated with an event [27, 36]. Earlier
approaches use different kinds of modalities, such as au-
dio information, as additional information to construct bet-
ter classification models for activity recognition [32].

A shared representation of human poses and visual infor-
mation has also been explored [40]. Several kinematic con-
straints for decomposing human poses into separate limbs
have been explored to localize the human body [4]. How-
ever, identifying which body parts are most significant for
recognizing complex human activities still remains a chal-
lenging task [16]. Much focus has also been given in rec-
ognizing human activities from movies or TV shows by ex-
ploiting scene contexts to localize and understand human
interactions [10, 22]. The recognition accuracy of such
complex videos can also be improved by relating textual
descriptions and visual context to a unified framework [26].

Recently, intermediate semantic features representation
for recognizing unseen actions during training has been pro-
posed [17, 38]. These features are learned during training
and enable parameter sharing between classes by capturing
the correlations between frequently occurring low-level fea-
tures [1]. Instead of learning one classifier per attribute, a
two-step classification method has been proposed by Lam-
pert et al. [14]. Specific attributes are predicted from pre-
trained classifiers and mapped into a class-level score.

Recent methods that exploited deep neural networks
have demonstrated remarkable results in large-scale
datasets. Donahue et al. [6] proposed a recurrent con-
volutional architecture, where recurrent long-term models
are connected to convolutional neural networks (CNNs)
that can be jointly trained to simultaneously learn spatio-
temporal dynamics. Wang et al. [37] proposed a new video
representation that employs CNNs to learn multi-scale con-
volutional feature maps. Tran et al. [33] introduced a 3D
ConvNet architecture that learns spatio-temporal features
using 3D convolutions. A novel video representation, that
can summarize a video into a single image by applying rank
pooling on the raw image pixels, was proposed by Bilen et
al. [2]. Feichtenhofer et al. [7] introduced a novel architec-
ture for two stream ConvNets and studied different ways for
spatio-temporal fusion of the ConvNet towers. Zhu et al.
[41] argued that videos contain one or more key volumes
that are discriminative and most volumes are irrelevant to
the recognition process.

The LUPI paradigm was first introduced by Vapnik and
Vashist [34] as a new classification setting to model based
on a max-margin framework, called SVM+. The choice of
different types of privileged information in the context of
an object classification task implemented in a max-margin
scheme was also discussed by Sharmanska et al. [30]. Wand
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Figure 2. Graphical representation of the chain structure model.
The grey nodes are the observed features (xi), the privileged infor-
mation (x∗

i ), and the unknown labels (y), respectively. The white
nodes are the unobserved hidden variables (h).

and Ji [39] proposed two different loss functions that exploit
privileged information and can be used with any classifier.
Recently, a combination of the LUPI framework and active
learning has been explored by Vrigkas et al. [35] to classify
human activities in a semi-supervised scheme.

3. Robust privileged probabilistic learning
Our method uses HCRFs, which are defined by a chained

structured undirected graph G = (V, E) (see Fig. 2), as the
probabilistic framework for modeling the activity of a sub-
ject in a video. During training, a classifier and the mapping
from observations to the label set are learned. In testing, a
probe sequence is classified into its respective state using
loopy belief propagation (LBP) [12].

3.1. LUPI-HCRF model formulation

We consider a labeled dataset with N video sequences
consisting of triplets D = {(xi,j ,x∗i,j , yi)}Ni=1, where
xi,j ∈ RMx×T is an observation sequence of length T with
j = 1 . . . T . For example, xi,j might correspond to the
jth frame of the ith video sequence. Furthermore, yi corre-
sponds to a class label defined in a finite label set Y . Also,
the additional information about the observations xi is en-
coded in a feature vector x∗i,j ∈ RMx∗×T . Such privileged
information is provided only at the training step and it is
not available during testing. Note that we do not make any
assumption about the form of the privileged data. In what
follows, we omit indices i and j for simplicity.

The LUPI-HCRF model is a member of the exponential
family and the probability of the class label given an obser-
vation sequence is given by:

p(y|x,x∗;w) =
∑
h

p(y,h|x,x∗;w)

=
∑
h

exp (E(y,h|x,x∗;w)−A(w)) ,

(1)

where w = [θ,ω] is a vector of model parameters, and
h = {h1, h2, . . . , hT }, with hj ∈ H being a set of latent



variables. In particular, the number of latent variables may
be different from the number of samples, as hj may cor-
respond to a substructure in an observation. Moreover, the
features follow the structure of the graph, in which no fea-
ture may depend on more than two hidden states hj and
hk [24]. This property not only captures the synchroniza-
tion points between the different sets of information of the
same state, but also models the compatibility between pairs
of consecutive states. We assume that our model follows
the first-order Markov chain structure (i.e., the current state
affects the next state). Finally, E(y,h|x;w) is a vector of
sufficient statistics and A(w) is the log-partition function
ensuring normalization:

A(w) = log
∑
y′

∑
h

exp (E(y′,h|x,x∗;w)) . (2)

Different sufficient statistics E(y|x,x∗;w) in (1) define
different distributions. In the general case, sufficient statis-
tics consist of indicator functions for each possible config-
uration of unary and pairwise terms:

E(y,h|x,x∗;w) =
∑
j∈V

Φ(y, hj ,xj ,x
∗
j ;θ) +

∑
j,k∈E

Ψ(y, hj , hk;ω) ,

(3)

where the parameters θ and ω are the unary and the pair-
wise weights, respectively, that need to be learned. The
unary potential does not depend on more than two hidden
variables hj and hk, and the pairwise potential may depend
on hj and hk, which means that there must be an edge (j, k)
in the graphical model. The unary potential is expressed by:

Φ(y, hj ,xj ,x
∗
j ;θ) =

∑
`

φ1,`(y, hj ;θ1,`)

+ φ2(hj ,xj ;θ2) + φ3(hj ,x
∗
j ;θ3) ,

(4)

and it can be seen as a state function, which consists of
three different feature functions. The label feature function,
which models the relationship between the label y and the
hidden variables hj , is expressed by:

φ1,`(y, hj ;θ1,`) =
∑
λ∈Y

∑
a∈H

θ1,`1(y = λ)1(hj = a) , (5)

where 1(·) is the indicator function, which is equal to 1 if its
argument is true, and 0 otherwise. The observation feature
function, which models the relationship between the hidden
variables hj and the observations x, is defined by:

φ2(hj ,xj ;θ2) =
∑
a∈H

θ>2 1(hj = a)xj . (6)

Finally, the privileged feature function, which models the
relationship between the hidden variables hj is defined by:

φ3(hj ,x
∗
j ;θ3) =

∑
a∈H

θ>3 1(hj = a)x∗j . (7)

The pairwise potential is a transition function and rep-
resents the association between a pair of connected hidden
states hj and hk and the label y. It is expressed by:

Ψ(y, hj , hk;ω) =
∑
λ∈Y
a,b∈H

∑
`

ω`1(y = λ)1(hj = a)1(hk = b) .

(8)

3.2. Parameter learning and inference

In the training step the optimal parameters w∗ are esti-
mated by maximizing the following loss function:

L(w) =

N∑
i=1

log p(yi|xi,x∗i ;w)− 1

2σ2
‖w‖2 . (9)

The first term is the log-likelihood of the posterior proba-
bility p(y|x,x∗;w) and quantifies how well the distribution
in Eq. (1) defined by the parameter vector w matches the
labels y. The second term is a Gaussian prior with variance
σ2 and works as a regularizer. The loss function is opti-
mized using the limited-memory BFGS (LBFGS) method
[20] to minimize the negative log-likelihood of the data.

Our goal is to estimate the optimal label configuration
over the testing input, where the optimality is expressed in
terms of a cost function. To this end, we maximize the pos-
terior probability and marginalize over the latent variables
h and the privileged information x∗:

y = arg max
y

p(y|x;w)

= arg max
y

∑
h

∑
x∗

p(y,h|x,x∗;w)p(x∗|x;w) .
(10)

To efficiently cope with outlying measurements about
the training data, we consider that the training samples x
and x∗ jointly follow a Student’s t-distribution. Therefore,
the conditional distribution p(x∗|x;w) is also a Student’s
t-distribution St(x∗|x;µ∗,Σ∗, ν∗), where x∗ forms the first
Mx∗ components of (x∗,x)

T , x comprises the remaining
M − Mx∗ components, with mean vector µ∗, covariance
matrix Σ∗ and ν∗ ∈ [0,∞) corresponds to the degrees of
freedom of the distribution [13]. If the data contain out-
liers, the degrees of freedom parameter ν∗ is weak and the
mean and covariance of the data are appropriately weighted
in order not to take into account the outliers. An approxi-
mate inference is employed for estimation of the marginal
probability (Eq. (10)) by applying the LBP algorithm [12].

4. Multimodal Feature Fusion
One drawback of combining features of different modal-

ities is the different frame rate that each modality may
have. Thus, instead of directly combining multimodal fea-
tures together one may employ canonical correlation analy-
sis (CCA) [9] to exploit the correlation between the differ-
ent modalities by projecting them onto a common subspace



Algorithm 1 Robust privileged probabilistic leaning
Input: Original data x, privileged data x∗, class labels y

1: Perform feature extraction from both x and x∗

2: Project x and x∗ onto a common space using Eq. (11)
3: w∗ ← arg min

w
(−L(w)) /* Train LUPI-HCRF on x

and x∗ using Eq. (9) */
4: ŷ ← arg max

y
p(y|x;w) /* Marginalize over h and x∗

using Eq. (10) */
Output: Predicted labels ŷ

so that the correlation between the input vectors is maxi-
mized in the projected space. In this paper, we followed
a different approach. Our model is able to learn the rela-
tionship between the input data and the privileged features.
To this end, we jointly calibrate the different modalities by
learning a multiple output linear regression model [21]. Let
x ∈ RM×d be the input raw data and a ∈ RM×p be the
set of semantic attributes (privileged features). Our goal is
to find a set of weights γ ∈ Rd×p, which relates the priv-
ileged features to the regular features by minimizing a dis-
tance function across the input samples and their attributes:

arg min
γ

‖xγ − a‖2 + η‖γ‖2 , (11)

where ‖γ‖2 is a regularization term and η controls the de-
gree of the regularization, which was chosen to give the best
solution by using cross validation with η ∈ [10−4, 1]. Fol-
lowing a constrained least squares (CLS) optimization prob-
lem and minimizing ‖γ‖2 subject to xγ = a, Eq. (11) has
a closed form solution γ =

(
xTx + ηI

)−1
xTa, where I is

the identity matrix. Note that the minimization of Eq. (11)
is fast since it needs to be solved only once during training.
Finally, we obtain the prediction f of the privileged features
by multiplying the regular features with the learned weights
f = x · γ. The main steps of the proposed method are
summarized in Algorithm 1.

5. Experiments
Datasets: The TV human interaction (TVHI) [22]

dataset consists of 300 videos and contains four kinds of in-
teractions. The SBU Kinect Interaction (SBU) [40] dataset
is a collection of approximately 300 videos that contain
eight different interaction classes. Finally, the unstructured
social activity attribute (USAA) [8] dataset includes eight
different semantic class videos of social occasions and con-
tains around 100 videos per class for training and testing.

5.1. Implementation details

Feature selection: For the evaluation of our method, we
used spatio-temporal interest points (STIP) [15] as our base

Dataset Features (dimension) Regular Privileged

TVHI [22]
STIP (162) 3
Head orientations (2) 3
MFCC (39) 3

SBU [40] STIP (162) 3
Pose (15) 3

USAA [8]

STIP (162) 3
SIFT (128) 3
MFCC (39) 3
Semantic attributes (69) 3

Table 1. Types of features used for human activity recognition for
each dataset. The numbers in parentheses indicate the dimension
of the features. The checkmark corresponds to the usage of the
specific information as regular or privileged. Privileged features
are used only during training.

video representation. These features were selected because
they can capture salient visual motion patterns in an effi-
cient and compact way. In addition, for the TVHI dataset,
we also used the provided annotations, which are related
to the locations of the persons in each video clip. For this
dataset, we used audio features as privileged information.
More specifically, we employed the mel-frequency cepstral
coefficients (MFCC) [25] features, resulting in a collection
of 13 MFCC coefficients, and their first and second order
derivatives forming a 39-dimensional feature vector.

Furthermore, for the SBU dataset, as privileged informa-
tion, we used the positions of the locations of the joints for
each person in each frame, and six more feature types con-
cerning joint distance, joint motion, plane, normal plane,
velocity, and normal velocity as described by Yun et al.
[40]. Finally, for the USAA dataset we used the provided
attribute annotation as privileged information to character-
ize each class with a feature vector of semantic attributes.
As a representation of the video data, we used the provided
SIFT [19], STIP, and MFCC features. Table 1 summarizes
all forms of features used either as regular or privileged for
each dataset during training and testing.

Model selection: The model in Fig. 2 was trained by
varying the number of hidden states from 4 to 20, with a
maximum of 400 iterations for the termination of LBFGS.
The L2 regularization scale term σ was searched within
{10−3, . . . , 103} and 5-fold cross validation was used to
split the datasets into training and test sets, and the average
results over all the examined configurations are reported.

5.2. Results and discussion

Classification with hand-crafted features: We com-
pare the results of our LUPI-HCRF method with the state-
of-the-art SVM+ method [34] and other baselines that in-
corporate the LUPI paradigm. Also, to demonstrate the ef-
ficacy of robust privileged information to the problem of
human activity recognition, we compared it with ordinary
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Figure 3. Confusion matrices for the classification results of the
proposed LUPI-HCRF approach for (a) the TVHI [22], (b) the
SBU [40], and (c) the USAA [8] datasets.

SVM and HCRF, as if they could access both the original
and the privileged information at test time. This means that
we do not differentiate between regular and privileged infor-
mation, but use both forms of information as regular to infer
the underlying class label instead. Also, for the SVM+ and
SVM, we consider a one-versus-all decomposition of multi-
class classification scheme and average the results for every
possible configurations. Finally, the optimal parameters for
the SVM and SVM+ were selected using cross validation.

The resulting confusion matrices for all datasets are de-
picted in Fig. 3. For the TVHI and SBU datasets, the classi-
fication errors between different classes are relatively small,
as only a few classes are strongly confused with each other.
For the USAA dataset, the different classes may be strongly
confused (e.g., the class wedding ceremony is confused with
the class graduation party) as the dataset has large intra-
class variabilities, while the different classes may share the
same attribute representation as different videos may have
been captured under similar conditions.

The benefit of using robust privileged information along
with conventional data instead of using each modality sep-
arately or both modalities as regular information is shown
in Table 2. The combination of regular and privileged fea-
tures has considerably increased the recognition accuracy to
much higher levels than using each modality separately. If
only privileged information is used as regular for classifica-
tion, the recognition accuracy is notably lower than when
using visual information for the classification task. Thus,
we may come to the conclusion that finding proper privi-
leged information is not always a straightforward problem.

Table 3 compares the proposed approach with state-of-
the-art methods on the human activity classification task on
the same datasets. The results indicate that our approach
improved the classification accuracy. On TVHI, we sig-

Dataset Regular Privileged Accuracy (%)

TVHI [22]

visual 7 60.9
audio 7 35.9
visual+audio 7 81.3
visual audio 84.9

SBU [40]

visual 7 69.8
pose 7 62.5
visual+pose 7 81.4
visual pose 85.4

USAA [8]

visual 7 55.5
sem. attributes 7 37.4
visual+sem. attributes 7 54.0
visual sem. attributes 58.1

Table 2. Comparison of feature combinations for classifying hu-
man activities and events on TVHI [22], SBU [40] and USAA [8]
datasets. Robust privileged information seems to work in favor of
the classification task. The crossmark corresponds to the absence
of privileged information during training.

Hand-crafted features
Method TVHI SBU USAA
Wang and Schmid [36] 76.1± 0.4 79.6±0.4 55.5± 0.1
Wang and Ji [39] 74.8± 0.2 62.4± 0.3 48.5± 0.2
Sharmanska et al. [30] 65.2± 0.1 56.3± 0.2 56.3± 0.2
SVM [3] 75.9± 0.6 79.4± 0.4 47.4± 0.1
HCRF [24] 81.3± 0.7 81.4± 0.8 54.0± 0.8
SVM+ [34] 75.0± 0.2 79.4± 0.3 48.5± 0.1
LUPI-HCRF 84.9± 0.8 85.4± 0.4 58.1± 1.4

Table 3. Comparison of the classification accuracies (%) on TVHI,
SBU and USAA datasets using hand-crafted features.

nificantly managed to increase the classification accuracy
by approximately 10% with respect to the SVM+ approach.
Also, the improvement of our method with respect to SVM+
was about 6% and 10% for the SBU and USAA datasets, re-
spectively. This indicates the strength of the LUPI paradigm
and demonstrates the need for additional information.

Classification with CNN features: In our experiments,
we used CNNs for both end-to-end classification and fea-
ture extraction. In both cases, we employed the pre-trained
model of Tran et al. [33], which is a 3D ConvNet. We
selected this model because it was trained on a very large
dataset, namely Sports 1M dataset [11], which provides
very good features for the activity recognition task, espe-
cially in our case where the size of the training data is small.

For the SBU dataset, which is a fairly small dataset, only
a few parameters had to be trained to avoid overfitting. We
replaced the fully-connected layer of the pre-trained model
with a new fully-connected layer of size 1024 and retrained
the model by adding a softmax layer on top of it. For the
TVHI dataset, we fine-tuned the last group of convolutional
layers, while for USAA, we fine-tuned the last two groups.
Each group has two convolutional layers, while we added
a new fully-connected layer of size 256. For the optimiza-
tion process, we used mini-batch gradient descent (SGD)
with momentum. The size of the mini-batch was set to 16



CNN features
Method TVHI SBU USAA
CNN (end-to-end) [33] 60.5± 1.1 94.2± 0.8 67.4± 0.6
SVM [3] 90.0± 0.3 92.8± 0.2 91.9± 0.3
HCRF [24] 89.6± 0.5 91.1± 0.4 91.6± 0.8
SVM+ [34] 92.5± 0.4 94.8± 0.3 92.3± 0.3
LUPI-HCRF 93.2± 0.6 94.9± 0.7 93.9± 0.9

Table 4. Comparison of the classification accuracies (%) on TVHI,
SBU and USAA datasets using CNN features.

with a constant momentum of 0.9. For the SBU dataset, the
learning rate was initialized to 0.01 and it was decayed by a
factor of 0.1, while the total number of training epochs was
1000. For the TVHI and USAA datasets, we used a con-
stant learning rate of 10−4 and the total number of training
epochs was 500 and 250, respectively. For all datasets, we
added a dropout layer after the new fully-connected layer
with probability 0.5. Also, we performed data augmenta-
tion on each batch online and 16 consecutive frames were
randomly selected for each video. These frames were ran-
domly cropped, resulting in frames of size 112 × 112 and
then flipped with probability 0.5. For classification, we used
the centered 112 × 112 crop on the frames of each video
sequence. Then, for each video, we extracted 10 random
clips of 16 frames and averaged their predictions. Finally,
to avoid overfitting, we used early stopping and extracted
CNN features from the newly added fully-connected layer.

Table 4 summarizes the comparison of LUPI-HCRF with
state-of-the-art methods using the features extracted from
the CNN model, and end-to-end learning of the CNN model
using softmax loss for the classification. The improvement
of accuracy, compared to the classification based on the
traditional features (Table 3), indicates that CNNs may ef-
ficiently extract informative features without any need to
hand design them. We may observe that privileged in-
formation works in favor of the classification task in all
cases. LUPI-HCRF achieves notably higher recognition ac-
curacy with respect to the HCRF model and the SVM+ ap-
proaches. Moreover, for both TVHI and USAA datasets,
when LUPI-HCRF is compared to the end-to-end CNN
model, it achieved an improvement of approximately 33%
and 27%, respectively. This huge improvement can be ex-
plained by the fact that the CNN model uses a very simple
classifier in the softmax layer, while LUPI-HCRF is a more
sophisticated model that can efficiently handle sequential
data in a more principled way.

The corresponding confusion matrices using the CNN-
based features, are depicted in Fig. 4. The combination
of privileged information with the information learned from
the CNN model feature representation resulted in very small
inter- and intra-class classification errors for all datasets.

Discussion: In general, our method is able to robustly
use privileged information in a more efficient way than its
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Figure 4. Confusion matrices for the classification results of the
proposed LUPI-HCRF approach for (a) the TVHI [22], (b) the
SBU [40], and (c) the USAA [8] datasets using the CNN features.

SVM+ counterpart by exploiting the hidden dynamics be-
tween the videos and the privileged information. However,
selecting which features can act as privileged information is
not straightforward. The performance of LUPI-based clas-
sifiers relies on the delicate relationship between the regular
and the privileged information. Tables 3 and 4 show that
SVM and HCRF perform worse than LUPI-HCRF. This is
because at training time privileged information comes as
ground truth but at test time it is not. Also, privileged in-
formation is costly or difficult to obtain with respect to pro-
ducing additional regular training examples [29].

6. Conclusion

In this paper, we addressed the problem of human activ-
ity recognition and proposed a novel probabilistic classifica-
tion model based on robust learning by incorporating a Stu-
dent’s t-distribution into the LUPI paradigm, called LUPI-
HCRF. We evaluated the performance of our method on
three publicly available datasets and tested various forms of
data that can be used as privileged. The experimental results
indicated that robust privileged information ameliorates the
recognition performance. We demonstrated improved re-
sults with respect to the state-of-the-art approaches that may
or may not incorporate privileged information.
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