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Abstract

Incorporating additional knowledge in the learning pro-
cess can be beneficial for several computer vision and ma-
chine learning tasks. Whether privileged information orig-
inates from a source domain that is adapted to a target do-
main, or as additional features available at training time
only, using such privileged (i.e., auxiliary) information is of
high importance as it improves the recognition performance
and generalization. However, both primary and privileged
information are rarely derived from the same distribution,
which poses an additional challenge to the recognition task.
To address these challenges, we present a novel learning
paradigm that leverages privileged information in a domain
adaptation setup to perform visual recognition tasks. The
proposed framework, named Adaptive SVM+, combines the
advantages of both the learning using privileged informa-
tion (LUPI) paradigm and the domain adaptation frame-
work, which are naturally embedded in the objective func-
tion of a regular SVM. We demonstrate the effectiveness of
our approach on the publicly available Animals with At-
tributes and INTERACT datasets and report state-of-the-art
results in both of them.

1. Introduction
When Vapnik and Vashist introduced the learning using

privileged information (LUPI) framework [34], they drew
inspiration from human learning. They observed how sig-
nificant the role of an intelligent teacher was in the learn-
ing process of a student, and proposed a machine learning
paradigm to imitate this process. Distilling knowledge in
the learning process can take many forms, which impact the
training stage in different ways. Privileged information can
appear in the form of additional features available only at
training time [25], in the form of a curriculum learning strat-
egy [4, 13] (i.e., presenting easier examples before more
complicated), or by transferring feature representations to
other domains [5, 32] by incorporating the adaptation to a
new domain in the learning process [3, 20, 38]. However,
what is considered as privileged information, how it can be

incorporated in the learning process, and in what form, de-
pends on the task, the available features, and the learning
scheme (supervised, or semi-supervised).

The scope of this work is to train a better classifier and
not to perform an end-to-end learning process to obtain bet-
ter features. The proposed scheme is general and can be
applied to any type of features (e.g., features extracted from
the last fully-connected layer of the VGG network [31]).
We tested our method in object recognition and human in-
teraction classification tasks, using as privileged informa-
tion visual attributes and clip art illustrations respectively,
and human annotation scores (easy/hard) to obtain the dif-
ferent domains. An illustrative example of our method is
depicted in Figure 1.

In this work, we aspire to exploit privileged information
in a two-fold manner: first as additional information that is
available only during training but not at testing time, and
second, by learning representations in a source domain and
transferring this information to a target domain. We com-
bine the advantages of the LUPI paradigm [34] and domain
adaptation as proposed by Yang et al. [38] and introduce
Adaptive SVM+; a new learning scheme that incorporates
privileged information (SVM+) and knowledge transferred
from a source domain to a target domain (Adaptive SVM)
in the objective function to improve performance and gen-
eralization.

2. Related Work and Prior Knowledge
Privileged Information: The idea of leveraging additional
information during the learning phase is not a new concept
as it has previously been addressed in the literature in many
contexts. The choice of different types of privileged infor-
mation in the context of object recognition implemented
in a max-margin scheme was proposed by Sharmanska et
al. [29]. Furthermore, Wang and Ji [37] proposed two dif-
ferent loss functions that exploit privileged information and
can be used with any classifier. The first model encoded
privileged information as an additional feature during train-
ing, while the second approach considered that privileged
information can be represented as secondary labels. An
interesting method that discusses the auxiliary view (i.e.,



Figure 1. Can we leverage privileged information in a domain adaptation setup? Wouldn’t it be great if we could find a way to leverage
information from a source domain and at the same time employ privileged information in the target domain? Our proposed approach
aspires to combine the advantages of domain transfer and the learning using privileged information paradigm to solve visual recognition
tasks.

auxiliary information) from an information theoretic per-
spective was introduced by Motiian et al. [24] and was
also extended to unsupervised domain transfer [23]. Lapin
et al. [16] related the privileged information framework to
the importance of sample weighting and showed that prior
knowledge can be encoded using weights in a regular SVM.
Recently, the LUPI paradigm has been employed with ap-
plications on gender classification facial expression recog-
nition as well as age and height estimation [14, 27, 35, 36].
Knowledge Distillation and Curriculum Learning:
Transfer learning seeks to leverage the knowledge obtained
while learning some tasks and applying it to new unseen,
and possibly unrelated, tasks. It has been applied with great
success in applications ranging from cross-domain setups
[9, 11, 38], to facial action unit detection in transductive
learning setup [7], to deep neural networks [12, 39]. Lopez-
Paz et al. [21] introduced generalized distillation, a method
that unifies the LUPI framework with the knowledge distil-
lation paradigm. Bengio et al. [4] argued that instead of em-
ploying samples at random it is better to present samples or-
ganized in a meaningful way so that less complex examples
are presented first. Curriculum learning [4, 22, 26], which
is the learning strategy that implements this paradigm, em-
ploys the prior knowledge learned from the first “easier”
tasks to improve the performance on “harder” ones that are
learned at a later stage. Such a learning process can exploit
prior knowledge to improve subsequent classification tasks
but it does not scale up to many tasks since each subsequent
task has to be learned individually.
Adaptive SVM [38]: In this section, we provide some the-
oretical background on Adaptive SVM [38] and highlight
its differences from a regular SVM, and then we formu-

late SVM+ [34], which employs the LUPI paradigm. In the
standard paradigm of supervised learning for binary classi-
fication, the training set consists of N tuples of feature vec-
tors xi, along with their respective labels yi, represented as
{(xi, yi)}Ni=1,xi ∈ Rd, where d is the number of features of
each sample and yi ∈ {−1,+1}. The standard SVM clas-
sifier finds a maximum-margin separating hyperplane be-
tween the two classes and solves the following constrained
optimization problem:

minimize
w, b

1

2
||w||2 + C

N∑
i=1

ξi,

s.t. yi
(
〈w,xi〉+ b

)
≥ 1− ξi, ξi ≥ 0,

(1)

where w represents the weight vector, ||w||2 is the size of
the margin, b is the bias parameter, ξ is the slack variable
for one training sample that indicates the deviation from the
margin borders and C denotes the penalty parameter.

Suppose we are given a training set comprising features
X s of dimensions l1×d and binary labels Ys of dimensions
l1×1. We will refer to this domain as source domain and we
will train a classifier fs(xs

i ) which predicts the respective
labels. We are also given another dataset (the target domain)
which comprises features X of dimensions l2×d and binary
labels Y of dimensions l2× 1. If this dataset had a plethora
of data samples then a classifier could be learned on (X ,Y)
using Eq. (1) or any other classification paradigm. However,
the target domain might be comprised of mostly unlabeled
data, and thus learning from a dataset with a few labeled
samples would result in a classifier with high variance on
its predictions and poor generalization. Furthermore, if the
previously learned classifier fs was applied to the new data,



then it would yield poor performance, since the target do-
main might originate from a different distribution.

To address these challenges, Yang et al. [38] introduced
Adaptive SVM. They proposed to adapt an auxiliary classi-
fier to the target domain by learning a “delta function” be-
tween the decision functions of the auxiliary and target clas-
sifiers using an objective function extended from standard
SVMs. Intuitively, using an Adaptive SVM is similar to do-
main adaptation or transferring knowledge between tasks.
The adaptation is performed using ∆f(x) = wT 〈x,x〉
on the basis of fs(x), where 〈x,x〉 is a feature map to
project each feature vector x to a higher dimension via
the kernel trick (also referred to as K(x,x)). Thus, in
Adaptive SVM we are interested in learning the function
f(x) = fs(x) + ∆f(x) = fs(x) + wT 〈x,x〉. The Adap-
tive SVM objective function is defined as follows:

minimize
w,b

1

2
||w||2 + C

l2∑
i=1

ξi

s.t. yifs(xi) + yiw
T 〈xi,xi〉 ≥ 1− ξi, ξi ≥ 0,

(2)

where w refers to the parameters of ∆f(x) and thus,
||w||2 = ||f−fs||2. This implies that Adaptive SVM seeks
to minimize the distance between the adapted decision and
the decision of the classifier [38] in the source domain. Us-
ing the computed support vectors, we obtain the adapted de-
cision function in which a new testing sample of the primary
dataset is first passed through the decision function of the
source domain classifier and then from the adapted decision
function. A parameter (Γ) that controls the weight of the de-
cision of the auxiliary classifier can be added in Eq. (2) as
in the method of Aytar and Zisserman [2]. To avoid adding
an extra parameter that also needs to be cross-validated we
will refrain from using it in the rest of our paper.
Learning Using Privileged Information (SVM+) [34]:
In the LUPI setup, during the training phase, instead
of tuples of features and labels we are given triplets
{(xi,x

∗
i , yi)}Ni=1,x ∈ Rd, x∗ ∈ Rd∗

, yi ∈ {−1,+1},
where feature vectors x∗ represent the additional (i.e., priv-
ileged) information. During the testing phase, features from
the privileged space X ∗ are not available. The goal of LUPI
is to exploit the privileged information during the training
phase to learn a model that further constrains the solution
in the original space X , and thus it can more accurately de-
scribe the testing data. In this paradigm, the slack variables
ξi are parameterized as a function of privileged information
ξi(w

∗, b∗) = 〈w∗,x∗
i 〉 + b∗. The SVM+ algorithm, which

implements LUPI in the training phase, solves the following
minimization problem:

minimize
w, b,w∗,b∗

1

2

(
||w||2 + γ||w∗||2

)
+ C

N∑
i=1

ξi(w
∗, b∗),

s.t. yi
(
〈w,xi〉+ b

)
≥ 1− ξi(w∗, b∗), ξi(w

∗, b∗) ≥ 0,

(3)

where γ controls the weight of the privileged information
in the correcting (i.e., privileged) space. In SVM+ the de-
cision function f(x) is the same with SVM, as at test time
the privileged information is not available. For additional
information regarding the dual formulations of each of the
objective functions, the interested reader is encouraged to
refer to the original publications [34, 38] and for fast algo-
rithms for both the linear and the kernel cases to the work
of Li et al. [17].

3. Adaptive SVM+
We introduce Adaptive SVM+, a novel method to per-

form domain transfer using privileged information. In
Adaptive SVM+ one is provided with two sets of data that
might be originating from completely different distribu-
tions. A classifier is first learned in the source domain which
may also have additional information. Since the data in the
target domain contain privileged information, a new objec-
tive function is needed based on SVM+ which at the same
time minimizes the distance between the adapted decision
function f(x) (computed on the triplets (X ,X ∗,Y) of the
target domain) and the auxiliary function fs(x) obtained
from the decision function in the source domain.
Objective Function: Adaptive SVM+ seeks to minimize
the distance of the data in the target and source domains
only in the original space and not in the privileged. The
reason for this is twofold. First, if we sought to minimize
the distance between the privileged information of two dif-
ferent domains, we would make a strong assumption that
would not hold in most cases. Second, since such infor-
mation is not available at test time, if we minimized the
distance between the privileged information of the two do-
mains, we would have to leverage information learned in the
privileged space of the source domain in the new target do-
main, which would break the intuition behind learning with
an intelligent teacher as in LUPI. Thus, the new objective
function of Adaptive SVM+ is defined as follows:

minimize
w,b,w∗,b∗

1

2

(
||w||2 + γ||w∗||2

)
+ C

l∑
i=1

(
〈w∗,x∗

i 〉+ b∗
)

s.t. yif
s(xi) + yi(〈w,xi〉+ b) ≥ 1−

(
〈w∗,x∗

i 〉+ b∗
)
,(

〈w∗,x∗
i 〉+ b∗

)
≥ 0,

(4)

To solve this problem, we construct the (primal) La-
grangian:

L(w, b,w∗, b∗, α, β) =
1

2

(
||w||2 + γ||w∗||2

)
+

+ C

l∑
i=1

(
〈w∗,x∗

i 〉+ b∗
)
−

l∑
i=1

βi
(
〈w∗,x∗

i 〉+ b∗
)

−
l∑
i=1

αi

(
yif

s(xi) + yi(〈w,xi〉+ b)−
(
1− (〈w∗,x∗

i 〉+ b∗)
))
,

(5)



Algorithm 1: Adaptive SVM+
Input : Training triplets (X ,X ∗,Y), testing features Xt, decision

function in the source domain fs(x)
1 α̂, β̂ ← compute support vectors using the triplets X ,X ∗,Y by

minimizing Eq. (6)
2 f(x)← construct the decision function using the obtained support

vectors α̂, testing features Xt and Eq. (7)
3 Yp ← obtain predictions by computing the sign of f(x)

Output: Class Predictions in the target domain Yp

where α, β ≥ 0 are the Lagrange multipliers. The dual
formulation of the problem is defined as follows:

minimize
α,β

1

2

l∑
i,j=1

αiαjyiyjK(xi, xj)−
l∑
i=1

(1− λi)αi+

+
1

2γ

l∑
i,j=1

(αi + βi − C)(αj + βj − C)K∗(x∗i , x
∗
j )

s.t.
l∑
i=1

(αi + βi − C) = 0, 0 ≤ αi, βi,

(6)

where similar to Adaptive SVM, λi = yif
s(xi) and K∗ is

the kernel in the privileged space. Minimizing Eq. (6) over
α, β is a quadratic programming problem, which provides
the support vectors of the primary data xi in the original
space α̂ and in the privileged space β̂, which can be used
for the correcting function. At testing time, only primary
tuples X ,Y are available and privileged information X ∗ is
absent. Thus the decision function of Adaptive SVM+ is no
different than that of Adaptive SVM, which is defined as:

f(x) = fs(x) +

l2∑
i=1

yiα̂iK(xi,x) + b

=

l2∑
i=1

ysiα
s
iK(xsi ,x) + bs +

l2∑
i=1

yiα̂iK(xi,x) + b,

(7)

Key Characteristics and Differences: Adaptive SVM+,
described in Algorithm 1, takes as an input features in the
original space X , privileged features X ∗, and labels Y , as
well as the decision function fs learned in the source do-
main. Learning fs is not constrained to a specific classifier
(Naive Bayes, SVMs and decision trees are all valid options
[38]) or to a specific learning paradigm since privileged in-
formation can also be exploited during the learning stage of
fs. Using the features in the new domain (depicted with
a red circle in Figure 2) the proposed paradigm aspires to
minimize the distance between the two domains in the orig-
inal space, while at the same time utilizing privileged in-
formation to learn a better decision function in the original
space of the target domain. The differences in the dual for-
mulation between SVM+ and Adaptive SVM+ correspond
to the introduction of an extra term in Eq. (6), which incor-
porates information from the source domain, and the lack of

Figure 2. Training and testing phases of Adaptive SVM+. A clas-
sifier is first learned in the source domain, which might or might
not have privileged information (dashed blue circle). This do-
main is then adapted to the target domain in which the Adaptive
SVM+ classifier, which uses additional features at training time, is
learned.

an additional constraint that exists in SVM+, but does not
exist in our proposed learning scheme. This constraint is
embedded in the objective function and is also absent in the
Adaptive SVM formulation compared to the regular SVM.

4. Experiments

To verify the effectiveness of our method, we con-
ducted evaluations and report state-of-the-art results in two
datasets: Animals with Attributes [15] and INTERACT [1].

4.1. Animals with Attributes Dataset

We followed the same experimental procedure with [24,
29, 37] in which out of the 50 animal classes, we used the
10 testing classes for a total of 6,180 images.
Features: For the primary space, we used the same set
of features with [24, 29], which are L1-normalized 2,000
dimensional SURF descriptors, provided along with the
dataset. For the privileged space, we computed attribute
predictions for each of the 85 attributes using the DAP
model [15]. Sharmanska et al. [30] collected Mechanical
Turk annotation of images to define easy and hard samples
for eight out of the 10 classes of the AwA dataset. The
scores are in the range from 1 (hardest) through 16 (easi-
est), which are linearly scaled to [0, 2], where values less
than or equal to one correspond to hard samples and scores
greater than one to easy samples. We use these scores to
define our source and target domains as we first learn the
former (the easy samples) and then the latter (the hard sam-
ples) by performing domain adaptation at the same time.
Evaluation Metric: We evaluate Adaptive SVM+ by re-
porting average precision (AP) results, which correspond to
the area under the precision-recall curve. The train/test split
is repeated 20 times and average AP results along with stan-
dard error over all possible configurations are reported.
Model Selection: The same joint cross validation scheme
with [24, 29] is used, during which the best parameters are
selected based on 5-fold cross validation and are then used
to re-train the complete training set. In both the source and



Table 1. Average precision (AP) results on the Animals with
Attributes dataset, with attributes as privileged information and
easy/hard sample annotation as source/target domains. On the
left side, we provide complete results in both domains for a fair
comparison. On the right side, we provide as reference the perfor-
mance of the respective methods in each domain separately. Please
refer to the supplementary material for the complete results.

Method AP

SVM 87.32
SVM+ [34] 87.58
Adaptive SVM [38] 87.94
RankTr [29] 87.93
LIR [37] 88.13
LMIBPI [24] 88.38
Adaptive SVM+ 88.66

Method - Domain AP

SVM (easy) 89.93
SVM+ (easy) 90.10

SVM (hard) 78.17
Adaptive SVM (hard) 79.63
SVM+ (hard) 78.78
Adaptive SVM+ (hard) 80.10

the target domains the parameter C and the parameter γ,
which controls the influence of the privileged space, are
searched within {10−4, . . . , 104}.
Training: We train 45 binary classifiers for each class pair
combination (e.g., chimpanzee versus giant panda) using 50
and 200 samples per class for training and testing, respec-
tively. We first train an SVM+ classifier on the easy samples
(i.e., source domain) and then an Adaptive SVM+ classifier
on the hard samples. When no easy/hard scores are avail-
able for one of the two classes, we report SVM+ classifica-
tion results without domain transfer. To perform a fair com-
parison with the rest of the methods: (i) a linear kernel is
used in all domains and both original and privileged spaces;
and (ii) the easy/hard ratio is preserved in the reported re-
sults, which means that if in one class, 75% of the samples
are easy and the rest are hard, after we train both classifiers
we randomly select 75% of the easy predictions and 25% of
the hard predictions to report the final AP results.
Discussion of Results: We provide a summary of the mean
AP results for all tasks in Table 1. Using the exact same fea-
tures and evaluation protocol, our method achieves state-of-
the-art results. Adaptive SVM+ is better than the rest in 21
out of 45 tasks, 13 of which are statistically significant over
the second best method (z-test). For the rest of the methods,
LMIBPI [24] achieved higher AP 15 times, RankTr [29]
5, and LIR [37] 4 times. On the right side of Table 1, we
provide domain specific results along with the method from
which we observe that: (i) privileged information is bene-
ficial, as both SVM+ and Adaptive SVM+ perform better
than their counterparts; and (ii) domain adaptation is ben-
eficial, as in both the Adaptive SVM and Adaptive SVM+
cases in the target domain there is a performance increase.

4.2. INTERACT Dataset

The INTERACT dataset [1] comprises 3,172 images of
60 fine-grained categories of interactions between two peo-
ple such as “laughing with”, “is lying in front of”, or “is
walking after”. Additionally, illustrations in the form of

clip art are provided depicting the same 60 fine-grained cat-
egories in two different level settings: (i) category-level in
which images and illustrations are collected independently,
and (ii) instance-level in which 2-3 illustrations of the same
interaction category are collected for a given image. We
followed the same experimental procedure with the method
of Sharmanska and Quadrianto [28] for the instance-level
setting. They proposed a framework called SVM MMD
to “learn from the mistakes of others” by minimizing the
distribution mismatch between errors made in images and
in privileged data (i.e., illustrations) using the Maximum
Mean Discrepancy (MMD) criterion. Adding a regularizer,
based on the MMD criterion to reduce the data distribution
mismatch in a LUPI setup was initially introduced by Li et
al. [18] to perform image categorization and retrieval.
Features: Both real images and illustrations are represented
by a 765-dimensional feature vector capturing human pose
information, expressions, relation (from person 1 to person
2) and appearance and are provided with the dataset. As
in [28] we pair each real image with a randomly selected
(among the two or three) illustration per image. Clip art
illustrations are used as a source domain and real images as
a target domain.
Evaluation Metric: To evaluate our approach, we used
classification accuracy. The train/test split process is re-
peated 20 times and average results along with standard er-
ror across repeats are reported.
Model Selection: Following the evaluation protocol of
Sharmanska and Quadrianto [28], we select the parameter C
from {100, . . . , 105} and in the privileged space the values
for both C and γ are obtained from {10−4, . . . , 104}. Once
the parameters are obtained using a 3-fold cross-validation
scheme, we use them to re-train the complete set.
Training: We trained 60 one-versus-rest binary classifiers
to predict the interaction of interest against the rest of the
interactions. Similar to [28], we trained Adaptive SVM+
using linear kernels and by sampling 25 positive vs 25 neg-
ative images. For testing, we use the remaining positive
images balanced with negative samples. Privileged features
comprise a randomly selected instance-level clip art illus-
tration, which depicts two sketches of humans imitating the
same interaction. Contrary to the AwA dataset, the decision
function in the source domain is learned without privileged
information as we simply train an SVM on clip art illustra-
tions. At testing time, Adaptive SVM+ is presented only
with real images of interactions of humans and no informa-
tion related to the clip art illustrations is available.
Discussion of Results: A summary of the classifications
results on the INTERACT dataset is presented in Table 2.
When using only linear kernel, our method performs better
than the state of the art. Although the improvement can be
seen as marginal in the linear kernel case, note that all meth-
ods are marginally better than a regular SVM, since some



Table 2. Classification accuracy results on the INTERACT dataset,
with one instance-level clip art per sample as privileged informa-
tion and illustrations/real images as source/target domains. Please
refer to the supplementary material for the complete results.

Method Cl. Acc. Method Cl. Acc.

SVM Images 80.51 SVM+ [34] 80.93
SVM Illustrations 77.32 SVM MMD [28] 81.58
SVM Combined 79.91 Adaptive SVM+ 81.87
Adaptive SVM 80.22 Adaptive SVM+ (RBF) 83.87

interactions are very similar to some others (e.g., walking
to, walking away from, walking with), which makes the ac-
curate classification of such tasks very challenging. Adap-
tive SVM+ is more accurate in 32 out of the 60 interactions,
SVM MMD [28] in 19, and the rest are attributed to SVM,
SVM+ and Adaptive SVM. When RBF kernels are used,
there is a 2.81% relative improvement. For complete results
in each action please refer to the supplementary material.

4.3. In the Deep Learning Era is Privileged Infor-
mation Necessary?

Interested in evaluating our proposed approach with
ConvNet-based features, we first trained as a baseline an
SVM on the Animals with Attributes dataset with features
extracted from the last fully-connected layer of the VGG
network [31]. We observed that the AP over all tasks was
over 99%, which is reasonable since ImageNet comprises
more than a hundred different classes of animals and thus,
the extracted feature representations are very discriminative
for such a task. However, for the INTERACT dataset, which
contains human interactions (that are not part of the Ima-
geNet classes), the obtained results did not reach the same
performance. Using z-score normalized VGG features, lin-
ear kernels and the same hyper-parameters with Section 4.2
we trained all four classifiers (i.e., SVM, Adaptive SVM,
SVM+ and Adaptive SVM+) on different ratios of train-
ing samples over the whole feature set. The average pre-
cision for the different models with respect to the ratio of
training samples is depicted in Figure 3. We observed that
when training samples constitute 75% or more of the whole
dataset, privileged information can be beneficial as for both
SVM+ and Adaptive SVM+ there is an increase on the aver-
age precision. Note that there are approximately 60 samples
for each of the positive and negative classes which explains
why the performance is not higher. The aim of our proposed
approach and the rest of the literature, was not to achieve the
best results possible on these datasets, but under the same
evaluation protocol to investigate to what extent privileged
information and domain adaptation can be beneficial.

However, an interesting discussion arises from these re-
sults. Since representation learning with ConvNets is a very
powerful feature extractor, is privileged information neces-
sary? We believe that the answer to this question is positive
for two different reasons. First, there are plenty of chal-

Figure 3. Average precision of different classifiers using VGG fea-
tures from the INTERACT dataset versus the ratio of training sam-
ples over the whole set of features.

lenging benchmarks (e.g., MS COCO [19]) in which state-
of-the-art deep learning techniques have not yet achieved
ImageNet-level results. Even on ImageNet, which has been
thoroughly benchmarked, a recent work of Chen et al. [6]
demonstrated that by using segmentation annotations as
privileged information better performance may be achieved.
Second, there are applications in which annotated data are
rare, difficult or even expensive to obtain (e.g., medical
data) and pre-trained deep learning models are still not
available. In such cases, privileged information in the form
of additional features or in the form of domain adaptation
[8, 10, 33] is still very relevant.

5. Conclusion
Can we leverage privileged information in a domain

adaptation setup? Is there a need to exploit such infor-
mation from a source domain in addition to the privileged
information in the target domain? Can we do better than
state-of-the-art techniques? In this work, we sought to give
an answer to these questions by proposing Adaptive SVM+;
a novel yet simple learning paradigm. It combines the ad-
vantages of both SVM+ and Adaptive SVM, and seeks to
minimize the distance between a source and a target domain
while at the same time, utilizing privileged information on
the latter. We tested the proposed learning scheme in object
recognition and human interaction classification tasks with
visual attributes along with human annotations of easy/hard
scores and clip-art illustrations of interactions, respectively.
We observed that Adaptive SVM+ achieved state-of-the-art
results across the board without adding any complexity or
extra parameters compared to the available methods.
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