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ABSTRACT

Many approaches for action recognition focus on general ac-
tions, such as “running” or “walking”. This work presents a
method for recognizing carrying actions in single images, by
utilizing privileged information, such as annotations, avail-
able only during training, following the learning using priv-
ileged information paradigm. In addition, we introduce a
dataset for carrying actions, formed using images extracted
from YouTube videos depicting several scenarios. We accom-
pany the dataset with a variety of different annotation types
that include human pose, object and scene attributes. The
experimental results demonstrate that our method, boosted
sample averaged F1 score performance by 15.4% and 4.15%
respectively, in the validation and testing partitions of our
dataset, when compared to an end-to-end CNN model, trained
only with observable information.

Index Terms— Action Recognition, Static Images, Priv-
ileged Information, LUPI, Deep Learning

1. INTRODUCTION

Identifying carrying actions performed by a person in a single
image is a task that has not been adequately explored in the
literature. The majority of single-image action recognition
methods focus on general actions such as “walking” or “rid-
ing horse”. Most of these methods use several types of addi-
tional information to assist the action recognition process, by
either allowing the use of more than one image region or 2D
pose information. Current methods, can be categorized into
three categories that use: (i) contextual regions from the im-
age, (ii) person body parts, and (iii) pose information [ 1, 2, 3].
However, contextual regions do not necessarily correspond
to real objects in the scene [4]. Additionally, pose cues pro-
duced by automated methods suffer from errors related to par-
tial person visibility or misdetections of the person’s body. In
recent years, several datasets for single-image action recog-
nition have been published [5, 6, 7, 8, 9]. However, most of
them, contain only general action classes and a limited set of
annotations, that are not suited to support the recognition of
carrying actions.

Training \

Privileged Information

Three Annotation Categories
Person

e Joint Locations

'S o Wears Uniform Attribute
o .

i QOcclusion Type Attribute
V4 ° e Joint in Object BBox Attribute
Object
e Object BBox Keypoints

e Object Labels

o  Occlusion Type Attribute
Scene

o Illumination Type Attribute

e Rural/ Urban Attribute
e Indoors/Outdoors Attribute

Observable Information
Primary Region

Backpack

Deployment

Observable Information
Primary Region

! |:> LUPI |:>

Classifier

Action Label

Carrying Load
Carrying Handbag
Carrying Phone

Carrying Weapon
No Carrying

Fig. 1: Overview of the RECASPIA method. To predict the
underlying action labels, our method adopts a LUPI classifier.
We use as observable information a feature vector for the pri-
mary region, extracted from a CNN model. Privileged infor-
mation consists of annotations about the person’s pose along
with object and scene attributes. We assume that privileged
information is only available during training.

More specifically, since in real-life applications, data of
scene attributes, person pose or objects can be hard to ob-
tain, due to acquisition constraints, we introduce a method
named RECASPIA that takes into account ground truth in-
formation from annotations, available only during training,
but not during testing. For this reason, our method follows
the learning using privileged information framework (LUPI)
[10, 11, 12, 13]. LUPI makes the assumption that a training
set is supplied with additional or “privileged” features that
are not available during test time. An overview of our method
is given in Fig. 1. We also propose a dataset for carrying ac-
tions, named UHSINICA. To create the dataset we used 2,379
single images containing six different carrying actions. These
images were extracted from YouTube videos. Each person in
the images is assigned multiple action labels depending on the
number of objects it carries. The dataset is also accompanied



# Carrying Person  Object Scene

Dataset #Images  # Classes Actions  BBoxes BBoxes Pose Attributes
Willow [5] 986 7 0 v X X X
PPMI [0] 4,800 24 v X X X
Pascal VOC 2012 [7] 4,500 10 0 v X X X
Stanford 40 [§] 9,532 40 0 v X X X
MPII [9] 40,522 410 3 X X v X
UHSINICA 2,379 6 6 v v v v

Table 1: A summary of datasets for action recognition in sin-
gle images. Note that UHSINICA provides an extended set
of annotations when compared to the other datasets.

by a rich set of annotations that describe person, object and
scene attributes, such as human pose, bounding boxes and
illumination conditions. We tested the performance of the
RECASPIA method on the UHSINICA dataset, making the
hypothesis that although privileged information is available
only during training, it can still be used to assist the recog-
nition of carrying actions. Our experimental results validated
our hypothesis as the LUPI framework demonstrated higher
recognition performance compared to other baselines.

The contributions of this work are: (i) Developed and
implemented a multi-label action recognition method named
RECASPIA, that takes into account different types of privi-
leged information, relevant for recognizing carrying actions
in single images, but unavailable during deployment, due
to acquisition constraints. (ii) Developed a dataset, called
UHSINICA, containing multiple annotation types, that enable
the development and evaluation of methods, for recognizing
carrying actions in single images, a topic not adequately ex-
plored in the literature. To the best of our knowledge, this is
the first work to take into account privileged information for
action recognition in single images.

2. RELATED WORK

Action recognition in single images: Most recent ap-
proaches for action recognition in single images, make use
of deep learning based architectures that take into account
different types of cues to assist the action recognition pro-
cess, such as contextual regions in Gkioxari ef al. [1], person
body parts in Zhao et al. [2] and pose information in Wang et
al. [3]. Other methods, such as the one introduced by Diba
et al.[14], emphasize visual attention mechanisms within
deep learning models to learn mid-level representations of
actions. In Zhang et al. [15], authors attempt to perform ac-
tion classification without knowledge of bounding boxes for
the persons involved. However, none of the previous meth-
ods have specifically addressed the recognition of carrying
actions.

Datasets for single-image action recognition: Several
datasets for this problem have been published in the past.
Besides the PPMI dataset [6] that focuses on persons that
play musical instruments, the rest of the datasets contain im-
ages from a variety of scenarios and focus on general actions.
Furthermore, aside from the MPII dataset [9], which offers

pose annotations, all other datasets are limited to annotations,
mainly comprised of person bounding boxes and action la-
bels. None of the existing datasets is specializing in carrying
actions. A summary of the datasets can be found in Table 1.
Privileged Information for image classification: Leverag-
ing additional information available only while training im-
age classification models is a concept that has been addressed
in many different contexts in the literature. In one of their
demonstrated uses of LUPI, Vapnik er al. [11], leveraged
textual descriptions of hand-drawn digit images as privileged
information, to further assist the recognition of handwritten
characters. Wang et al. [16] used textual tags as privileged
information to assist the recognition of objects. Vrigkas et
al. [17] introduced a probabilistic approach that integrated
privileged information such as audio and pose information
into a hidden conditional random field model, in order to per-
form action classification in videos. Finally, in Kakadiaris et
al. [18] the LUPI framework is used to predict a person’s
gender from still images using ratios of anthropometric mea-
surements as privileged information, while in Sarafianos et al.
[19], the authors introduced a method that used LUPI for do-
main adaptation, to perform animal recognition using visual
attributes as privileged information. LUPI has never been ap-
plied before in the context of action recognition from single
images.

3. METHODOLOGY

Problem Statement: Given an image I depicting human ac-
tions, the goal of this work is to predict the underlying subset
of action labels y € ), performed by a person within a pri-
mary region R where ) = {y1,...yn } is a set of N actions.
Observable Information: In our method, the primary re-
gion R is used to extract observable features that are available
both during training and the deployment stages of our method.
Each primary region R is forwarded through a convolutional
neural network (CNN) model [20]. Features for each primary
region were extracted from the last fully-connected layer. The
feature vector related to a primary region R is denoted as x
and consists of 512 dimensions.

Privileged Information: For each primary region R, we as-
sume that a set of annotations will be available. Since anno-
tated data can be hard to obtain during deployment, we con-
sider it to be privileged information. We argue that this in-
formation can be used within the LUPI framework to train
a classification model with enhanced performance. A fea-
ture vector of 80 dimensions, denoted as x*, is thus formed
from three different information types: (i) Person attributes:
16 joint location coordinates that correspond to head, neck,
thorax, pelvis, left and right shoulders, elbows, wrists, hip,
knees, and ankles. Other attributes for persons include oc-
clusion, wearing uniform and joints overlapping with object
bounding boxes. (ii) Object attributes: object bounding box
keypoint coordinates, object labels, and object occlusion at-



tributes. (iii) Scene attributes: illumination, rural or urban
and indoors or outdoors.

LUPI for Carrying Action Recognition: In RECASPIA,
LUPI is implemented using the SVM+ algorithm, introduced
in Vapnik ef al. [10, 11], which is an extension of the orig-
inal SVM introduced by Cortes et al.[21]. The training set
is introduced in the form of N triplets (x;, x},y;), & €
RY z* € Ry € {—1,+1}. Where z; is the feature vector
corresponding to the observable information, available both
at training and test time. x denotes privileged features, and
y; € {—1,+1} represents the class labels in a binary classifi-
cation setting and d represents the dimensionality of feature
vectors. The intuition behind adopting SVM+ for recogniz-
ing carrying actions, is to exploit the privileged features, =
that were provided by human annotators and contain infor-
mation about the persons, the objects and the scene, to further
constrain the solution provided by the observable features
x; which consist of primary region features, by solving the
following minimization problem during the training phase:

minimize (||w]|? + y[[w*[[?) + C TN | & (w*,b*)
w,b,w* b*

subject to: y; ((w, z;) +b) > 1 — & (w*, b%), M
gl(w*’b*) Z O,Z = ]-7 7N

In the above formulation, w € R™ represents the weight
vector, ||w||? indicates the size of the margin and b € R is
the bias parameter. In the LUPI paradigm, the slack vari-
ables ¢ are parameterized as a linear function of privileged
information &(w,b) = (w,x}) + b. Finally, C denotes the
penalty parameter. The aforementioned framework is appli-
cable to multi-label classification problems through the one-
vs-rest approach.

4. THE UHSINICA DATASET

Previous datasets for single image action recognition focus
only on generic actions but fail to present more sophisticated
and complex actions. In this paper, we address this unmet crit-
ical gap by introducing a new dataset named “SINgle Image
dataset for Carrying Actions” (UHSINICA). The objectives
of this dataset are: (i) introduce a challenging benchmark that
includes images of a person performing several types of car-
rying actions, (ii) to accompany the images with a rich set of
annotations.

Data Assembly: All images in the dataset were extracted
from 22 publicly available YouTube videos, published under
the Standard YouTube Licence. The dataset contains 7,389
person bounding boxes in 2,379 images, performing 6 dif-
ferent types of carrying actions. The images depict people in
a variety of scenarios such as footage from urban areas such
as city squares, railway stations, and airports, people hiking
in rural areas, military/police training. The videos were cap-
tured by different types of cameras, such as standard hand-
cams, CCTV cameras, trail cameras, and near-infrared cam-
eras, during either day or night. Thus, the dataset is composed
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Fig. 2: UHSINICA dataset statistics: person bounding boxes
per class, for the training, validation and testing partitions.

of images with varying resolutions and quality. The images
were extracted from the videos with a sampling rate of 0.5s,
as some videos had a short duration or frequent scene swaps.
Links to the video frames, as well as the annotation tool we
developed to create the dataset, will become publicly avail-
able upon the publication of the paper.

Annotation Process: For each image in the dataset, bound-
ing box annotations are provided for the persons depicted
and the objects they are carrying. Each person is associated
with at least one of the following action labels: “Carrying
Load”, “Carrying Backpack”, “Carrying Handbag”, “Car-
rying Phone”, “Carrying Weapon”, “No Carrying”. Each
object bounding box is associated with a class label from the
following list: “Person”, “Load”, “Backpack”, “Handbag”,
“Load”, “Phone”, “Weapon”. Each person was annotated
with 16 landmarks that represent the joints for the follow-
ing body parts: head, neck, thorax, pelvis, shoulders, elbows,
wrists, hips, knees and ankles. Additionally, we provide oc-
clusion annotations for person bounding boxes, their joints as
well as objects. Class distributions per partition can be viewed
in Fig. 2.

Evaluation protocol and metrics: The dataset is split in a
training partition consisting of 5, 398 primary regions from 13
videos, a validation partition with 896 primary regions from
five videos, and a test partition of 1, 095 primary regions form
the remaining five videos. Primary regions of each partition,
come from videos that have not been used in the other parti-
tions. We make the assumption that the bounding box of each
person is known at test time. To measure action recognition
performance, the sample averaged F1-score from all action
classes is adopted, as it considers multiple action labels being
assigned to each person, along with class imbalance.

5. EXPERIMENTS

In this section, the performance of RECASPIA is exam-
ined using the UHSINICA dataset. To better understand
RECASPIA’s characteristics, it is compared against five base-
lines. First, a comparison between an end-to-end CNN model
and an SVM classifier trained with observable features is es-
tablished. After justifying the selection of the SVM classifier
for our task, the informative value of the privileged features



Validation Partition F1-Scores (%)

Primary  Primary Privileged Low Level
Classes Region -  Region - Data - Fusion-  SVM+ | # Samples
ResNet-34  SVM SVM SVM
Carrying Load 3 6 0 4 31 94
Carrying Backpack 38 23 1 22 28 58
Carrying Handbag 39 23 15 32 41 331
Carrying Phone 0 0 67 0 8 52
Carrying Weapon 0 64 25 68 60 67
No Carrying 39 55 60 62 61 321
Fl-Score 3024 34.08 31.90 3076 45.64

(Sample Average)

Test Partition F1-Scores (%)

Carrying Load
Carrying Backpack
Carrying Handbag
Carrying Phone
Carrying Weapon
No Carrying

34
36

43

12
37
21
0
9
47

1
36
8
21
28
33

24
2

11

52

12
26
36
8
1
55

144
237
207
86
102
460

F1-Score

29.37

30.24

24.41

32.63

33.52

(Sample Average)

Table 2: Evaluation of the RECASPIA method and other
baselines using the UHSINICA Dataset.

needs to be demonstrated. This is achieved by evaluating an
SVM model trained only with privileged information. To ex-
amine the complementarity between the concatenated feature
vectors of observable and privileged information, assuming
the latter to be known at test time, another SVM model is
also trained and evaluated. Finally, the performance of RE-
CASPIA is assessed, by using the observable and privileged
features within the context of SVM+. Results from our ex-
periments can be found in Table 2.

Implementation Details: For all experiments that involved
an SVM classifier, we used a radial basis function (RBF) ker-
nel and performed grid search using the validation partition
of the dataset to determine the optimal hyper-parameter val-
ues. The adopted CNN architecture, was based on ResNet-34
[20] and pre-trained with ImageNet-1K [22]. Training was
performed through stochastic gradient descent. Since this is
a multi-label classification problem, the sigmoid binary cross
entropy loss was adopted. The batch size was set to 64 sam-
ples with a learning rate of 1073, that was decreased with a
step decay schedule. For data augmentation, shuffling, ran-
dom mirroring and random crops were applied. Primary re-
gions were scaled to 224 x 224 pixels.

Primary Region - ResNet-34: To assess the performance of
a CNN model with only observable features, in this experi-
ment, the ResNet-34 CNN model is used and trained end-to-
end with primary regions. This baseline achieved the low-
est performance as it produced sample-averaged F1-scores of
30.24% and 29.37% for the validation and test partitions re-
spectively.

Primary Region - SVM: As our second experiment, primary
region features were used with an SVM classifier. This base-
line performed better than the ResNet-34 model, as it pro-
duced sample-averaged F1-scores of 34.08% and 30.24% for
the validation and test partitions respectively. Both results in-
dicated an improvement over the end-to-end CNN model, that
justified the choice of SVM as a classifier for our problem.
Privileged Data - SVM: In our third experiment, a standard

SVM was used by assuming the set of privileged data to be
known both at training and test time. This experiment was
performed to assess the informative value of the annotations.
The sample-averaged Fl-scores for this case were 31.90%
and 24.41% for the validation and test partitions, which is
close to the models that used primary region features in the
two previous experiments.

Low-Level Fusion - SVM: In this experiment, the comple-
mentarity of observable and privileged features is assessed.
Again in this setting, privileged features are assumed to be
known both at training and test time. The primary region
feature vectors with the set of privileged feature vectors were
thus concatenated. This experiment led to an increase in
performance up to 5.16% for the validation partition and
2.39% for the test partition, when compared to the experi-
ments that only primary regions with the SVM classifier were
used. Therefore observable and privileged information are
complementary.

SVM+: Finally, the performance of the RECASPIA method
is examined. In RECASPIA, SVM+ is used with primary re-
gions features as observable information and the annotation
features as privileged information that are not available during
test time. RECASPIA outperformed all previous baselines by
producing sample-averaged F1-scores of 45.64% and 33.52%
for the validation and test partitions respectively. Adopting
the LUPI framework can thus surpass all the other baselines,
despite the fact that some of them have access to privileged
information at test time. The reason that the SVM+ model
performed better than the low-level fusion - SVM model, is
that in the latter case, the strongest modality may dominate
over the other. Thus, low-level fusion may not be an optimal
way to combine different types of data for this problem.

6. CONCLUSION

In this paper, a method named RECASPIA for performing
multi-label carrying action recognition was presented. RE-
CASPIA adopts the LUPI framework and leverages ground
truth annotations, available only during training time, to as-
sist the classification task. The UHSINICA dataset, that rep-
resents carrying actions from still images and provides a rich
set of annotations, was also introduced. Extensive experimen-
tation using our proposed dataset demonstrated performance
gains by using the LUPI framework. Our results, indicated
that using privileged information to train a model for carrying
action recognition, boosts performance over models that are
trained only with observable information.
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