
Managing service performance in NoSQL distributed
storage systems

Maria Chalkiadaki
Institute of Computer Science

Foundation for Research and Technology–Hellas
Heraklion GR-70013, Greece

mhalkiad@ics.forth.gr

Kostas Magoutis
Institute of Computer Science

Foundation for Research and Technology–Hellas
Heraklion GR-70013, Greece
magoutis@ics.forth.gr

ABSTRACT
In this paper we describe the architecture of a quality-of-
service (QoS) infrastructure for achieving controlled appli-
cation performance over NoSQL distributed storage systems.
We present an implementation of our architecture as an ex-
tension to the Apache Cassandra storage system and pro-
vide results from a preliminary evaluation using the Yahoo
Cloud Serving Benchmark (YCSB). Along the way we also
present details of an ongoing alternative implementation of
our QoS infrastructure in the context of the Apache HBase
storage system. Our evaluation provides evidence that our
QoS infrastructure can achieve the type of controlled perfor-
mance required by data intensive performance-critical appli-
cations.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Databases

Keywords
Distributed storage systems

1. INTRODUCTION
The demand for inexpensive scalability in data-intensive

analytics (web search, data warehouse analysis, etc.) has led
to the adoption of NoSQL systems (contrasted to SQL sys-
tems or traditional relational databases) implementing sim-
ple interfaces to non-relational data representations. Such
systems are well integrated with data programming plat-
forms such as Map-Reduce [6], and a number of such plat-
forms are currently implemented in Cloud infrastructures
and offered to applications developers as utility services.

In this paper we focus on two open-source NoSQL dis-
tributed storage systems: Apache Cassandra and Apache
HBase. Cassandra partitions data between nodes using a
consistent hashing function and stores data in each node
using a write-once Log Structured Merge (LSM)-tree based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG ’12 December 3-7, 2012, Montreal, Canada
Copyright 2012 ACM 978-1-4503-1607-1/12/12 ...$15.00.

scheme [9]. HBase partitions data using a distributed multi-
level tree that splits each table into Regions and stores Re-
gion data in the HDFS distributed file system. In this paper
we focus on a variant of HBase (developed in-house) where
we remove HDFS as a common shared store and instead pro-
vide each Region server with a local B+-tree indexed storage
repository. None of these systems offer support for managed
service performance to achieve application-specific targets,
which is the goal of the architecture described in this paper.

Our architecture continuously monitors application per-
formance and controls resource allocations in order to achieve
application goals via two key mechanisms: (i) storage elas-
ticity; and (ii) reserved cache allocations. We describe Cas-
sandra and HBase prototypes that use storage elasticity to
exploit I/O path parallelism and evaluate our Cassandra
prototype in such a scenario. Our Cassandra prototype fur-
ther supports reserved cached allocations allowing us to eval-
uate the tradeoffs involved in the use of both mechanisms to
achieve user requirements.

The key contribution of our work is the specification of a
QoS architecture that relies on mechanisms that are com-
mon across NoSQL systems. While the philosophy of the
QoS architecture is not new, its focus on NoSQL technolo-
gies provides insight into a growing area of distributed stor-
age systems in line with technology trends. In the remainder
of the paper we first present background and related work
in Section 2. In Section 3 we describe the design of our QoS
infrastructure and in Section 4 our current implementations.
In Section 5 we present an evaluation of our Cassandra pro-
totype using the YCSB benchmark. Finally, in Section 6 we
present our conclusions.

2. RELATED WORK
Distributed data stores (often referred to as key-value

stores) that implement distributed tabular structures with
configurable access semantics have recently been developed
as research prototypes as well as commercial systems to sup-
port a number of rapidly-growing large-scale data-centric
enterprises. Examples of such systems include Dynamo [7],
Bigtable [4], and their open-source variants Cassandra [9]
and HBase [2]. Cloud service offerings of these technolo-
gies are currently widely available, offering a broad range of
performance and dependability characteristics.

As enterprises that have invested into Cloud computing
are now raising their expectations from best effort to guar-
anteed levels of service, Cloud providers are beginning to of-
fer versions of their data-centric services that support con-
trolled performance, reliabilility, etc. Most recently (sum-

mer 2012) Amazon Web Services (AWS) announced two new
versions of existing services that offer guaranteed read/write
I/O throughput on a key-value store (this service is branded
DynamoDB) and provisioned I/O throughput over its elastic
block storage (service branded provisioned IOPS).

Providing quality of service over distributed storage has
been an active area of research for at least two decades.
Work at HP labs (a retrospective by John Wilkes provides
a good overview of this work [12]) addressed a wide range of
concerns, from specifications of workloads, QoS goals, and
device capabilities, to mappings of workload onto underlying
storage resources, and to run-time management of storage
I/O flows. It is worth noting that while QoS in networking
is a relatively mature field whose numerous research results
have progressed in many cases into formal protocol specifica-
tions and products, storage QoS is a less mature area due to
the significantly more challenging technical issues involved
(such as for example non-linear behavior due to caches and
the strong dependance on workload characteristics).

Work by Goyal et al. [8] in the context of the CacheCOW
system contributed algorithms for dynamically adapting stor-
age cache space allocated to different classes of service de-
pending on observed response time, temporal locality of ref-
erence, and the arrival pattern for each class. The focus of
this work was on centralized storage controllers rather than
distributed caches typically used in NoSQL systems. More
recently, Magoutis et al. [10] presented a self-tuning storage
management architecture that allows applications and the
storage environment to negotiate resource allocations with-
out requiring human intervention. The authors of this work
aim to maximize the utilization of all storage resources in a
storage area network subject to fairness (rather than user-
defined service-level objectives, as we do in this paper) in
the allocation of resources to applications.

With AWS being the current industry leader in guaran-
teed performance over distributed Cloud storage, it is worth
taking a deeper look into their published and commercial
work. Their SOSP paper [7] describes their (internal at
the time) Dynamo key-value data store service which of-
fered service-level agreements (SLA) on the response-time
of put/get operations (e.g., service-side completion within
300ms) offered by the service measured on the 99.9th per-
centile of the total number of requests, assuming the client
does not exceed a peak level of load (e.g., 500 requests /
sec). The recently introduced DynamoDB [1] is based on
the published design of Dynamo with the introduction of
new technologies such as solid-state storage (SSD) to ad-
dress reliability issues.

DynamoDB departs from the original Amazon design in
its SLA specification. Namely, a user specifies performance
requirements on a database table in terms of request capac-
ity or number of 1KB read or write operations (also known
as units of read or write capacity) desired to be executed
per second. DynamoDB allocates dedicated resources to ta-
bles to meet performance requirements, and automatically
partitions data over a sufficient number of servers to meet re-
quest capacity. If throughput requirements change, the user
can update a table’s request capacity on demand. Average
service-side latencies for Amazon DynamoDB are reported
to be in the single-digit milliseconds range [1]. Applications
whose request throughput exceeds their provisioned capac-
ity may be throttled. DynamoDB does not seem to provide
any guarantees on the response time offered nor on the dis-

tribution of requests on which their offered performance is
evaluated (e.g., 99.9th percentile over some time range).

Two of the most widely deployed NoSQL distributed stor-
age systems are HBase [2] and Cassandra [9]. HBase tables
contain rows of information indexed by primary key. The
basic unit of data is the column, which consists of a key and
a value. Sequences of columns (an arbitrary number) collec-
tively form a row. A number of logically-related columns can
be grouped into column families (CFs), which are kept phys-
ically close in both memory and disk. HBase partitions data
using a distributed multi-level tree that splits each table into
Regions and stores Region data in the HDFS distributed file
system using a scheme similar to LSM trees [11]. Our HBase
prototype used in this paper retains the data partititioning
mechanisms of HBase but adopts a per-Region server storage
subsystem (based on the Oracle Berkeley DB Java Edition)
that is reminiscent of that used in Amazon’s Dynamo [7].

Cassandra is an open source clone of Dynamo, combining
some features (such as column families, and storage manage-
ment based on LSM trees over local storage) from HBase.
Each node in a Cassandra cluster maps to a specific posi-
tion on a ring via a consistent hashing scheme [9]. Similarly,
each row maps to a position on the ring by hashing its key
using the same hash function. Each node is in charge of
storing all rows whose keys hash between this node’s posi-
tion and the position of the previous n nodes on the ring
when replicating n times. Cassandra leverages an LSM-tree
like scheme similar to that used by HBase to store data ex-
cept that individual files (called SSTables) are stored in each
node’s local file system as opposed to a distributed file sys-
tem. When reading a row stored in one or more SSTables,
Cassandra uses a row-level column index (and optionally a
Bloom filter) to find the necessary blocks on disk.

3. DESIGN
The goal of our QoS infrastructure is to estimate the

amount of resources needed to dedicate to an application
(initially, as well as dynamically over time) based on a simple
description of its behavior and intended goals. Applications
must provide the following information about their behavior,
on a per column-family basis (also called their CF profile):
(i) Data set size and degree of locality (a coarse characteriza-
tion such as random, zipf-like, etc.); (ii) average row size.
These attributes are important for caching purposes (small
datasets, strong locality, and/or small rows increase cache
efficiency) and to estimate the throughput expected from
the underlying devices (large rows –e.g., >1MB– result in
more sequential accesses, which can be efficiently executed
in standard hard-disk drives.

Applications can set a response-time target and an upper
limit on offered load on the CF. If the target is not set a-
priori, the system implicitly promises to keep service-side
latency within tolerable limits (e.g., less than 500ms) for the
offered load. The system will set aside resources (over time)
to satisfy the offered load at less than the targeted response
time. The key control parameters used by our system are
the total amount of cache to use for the specific application
profile, and the number of independent I/O paths to data
servers.

Just as any adaptive QoS system, we utilize a control loop
comprising the following phases: (a) monitoring, by mea-
suring put/get operation response time and throughput; (b)
comparing observed application metrics with targets agreed

Figure 1: Example of different per-CF resource mapping strategies: Column families CF1 and CF2 target
comparable levels of throughput. CF1 exhibits access locality and a small working set whereas CF2 does not.
The system continuously adapts cache sizes and number of server nodes to achieve the desired performance.

upon via SLAs; and (c) analyzing how to adapt if we fall be-
low or go above the targets. The QoS system is designed to
trade off read paths for cache memory depending on which
is the most efficient way to achieve its objectives (assuming
reliability objectives –e.g., number of replicas used– have al-
ready been satisfied). For example, applications accessing a
large CF with little locality or using large rows are not ex-
pected to benefit from a significant row cache. On the other
hand applications accessing a CF over a small working set
will likely benefit most from caching and will not require
many independent I/O paths for the same level of through-
put. An example of this principle is depicted in Figure 1.

Assuming no caching and a random workload with no lo-
cality, our QoS system initially attempts to satisfy a given
load (at a reasonable response time) by assigning a CF to the
right number of nodes. For example, a workload throwing
400 4KB (mostly random) reads per second to a Cassandra
cluster will require –in the worst case– the CF be spread
over four dedicated nodes (see section on I/O costs below
for a justification of these estimates). However, a workload
exhibiting strong locality in its accesses to a CF could be ac-
comodated into fewer nodes with the assumption that cache
hit rates will compensate for the reduced degree of paral-
lelism in the I/O paths.

Based on observations and construction of the application
profile over time, the QoS system decides on the best actions
to take in order to increase (or decrease) available through-
put: either adjust the CF cache (if the cache miss ratio is
high and the workload has enough locality to take advantage
of more cache) or scale data set to more machines (if the
workload has no locality). The decision takes into account
the overall availability of resources. For example increasing
data paths may be the only option if the system is running
low on memory that can be allocated for caching.

The system will throttle applications that exceed their
peak load to guarantee that they are getting the level of
performance requested and do not negatively interfere with
other applications that may be sharing resources with them.
Throttling of client traffic has also been used elsewhere (for
example see [3], [10]) as an effective mechanism for short-
term control of resources in a storage-area network.

Data repartitioning. The ability to change the mapping
of data to storage servers on-demand and while the system
is operating is a key functionality of re-configurable storage
systems and underlies the elasticity properties of Cloud stor-
age systems. In this section we describe the data repartition-
ing algorithm in Cassandra and a new data repartitioning
algorithm we have introduced into a home-grown version of
the HBase system.

Cassandra partitions the key space onto system nodes us-

Figure 2: Data repartitioning in Cassandra.

ing consistent caching. When a new node enters the system
(e.g., Node 7 in Figure 2) data movement takes place only
between the neighbors of the new node. For example in the
setup of Figure 2 (where replication factor is equal to two),
Node 7 will receive data from Nodes 1 and 2 and Node 2
will drop all data from the key range (between Nodes 6 and
1) no longer served by it.

HBase follows a different partitioning scheme where keys
are mapped to Regions and Regions are mapped to Region
Servers (equivalent to Cassandra nodes). Both mappings
are maintained by the HBase Master, a centralized server
that implements metadata interfaces to create, modify, and
remove tables and to assign, move, and unassign Regions
to servers. The Master operates a load-balancer component
that will periodically move regions around to balance cluster
load. Region splits are decided and carried out by Region
servers independently based on a region-size threshold.

Costs of performing I/O. To be able to estimate per-
formance on CF accesses, we take into account I/O path
functionality, which we briefly describe below in the case of
Cassandra (HBase utilizes similar concepts and therefore we
omit the full details for it). The Cassandra read path starts
at the client. A client can send operations to any node in
the cluster, who then becomes the coordinator for the op-
eration. The coordinator contacts a configurable number of
replicas to perform the read or write operation.

A read first looks up a row cache, then a key cache, and

then (if it misses in both caches) it tries to locate the key/value
pair in the node’s underlying storage system. In the worst
case, a number of SSTables will have to be brought in mem-
ory to find the requested key. The cost of this path involves
a number of network hops (depending on whether the co-
ordinator is also one of the replicas serving the key sought)
and disk accesses (none if we have a hit in the row cache),
one or more if we either hit in the key cache or have to bring
in indices from SSTables on disk. The use of compactions
and Bloom filters narrows down the choice among SSTables,
reducing I/O operations. Disk accesses in Cassandra go to
a local file system.

Write operations first record the update in a stable com-
mit log (synchronously, or by explicit user choice, asyn-
chronously) and then append it to a buffer (a memtable).
When memtables reach a certain size (or at regular inter-
vals) they are written to ordered SSTable files on disk. Write
performance is normally unaffected by SSTable creation ac-
tivity, unless write traffic exceeds the ability of a Cassandra
node to buffer while writing to disk. Cassandra performs a
number of background operations that may at times affect a
node’s response time, namely compactions that merge SSTa-
bles into fewer and larger files. Taking write intensity of a
workload into account, one has to factor in (amortize) the
periodic costs of compaction into the average cost of writes.

Finally, I/O costs depend significantly on the type of sta-
ble store –disk or SSD– used. Standard disks can perform
about 100 small (<4KB) random IOPS whereas SSDs can
perform several thousand random IOPS. Use of SSDs (as in
DynamoDB) can significantly lower the variance in the I/O
cost model and lead to more predictable behavior.

4. IMPLEMENTATION
We describe our implementation of the basic infrastruc-

ture (monitoring, elasticity, and caching control) that we
developed for run-time adaptation to user-specified perfor-
mance goals. Figure 3 depicts our Cassandra implemen-
tation, with solid boxes denoting existing components and
dotted boxes denoting our extensions.

Monitoring. Our monitoring infrastructure continuously
samples response times and I/O throughput of get and put
operations and periodically computes exponentially weighted
moving averages (EWMAs). The primary client of these
metrics is the QoS component, which uses the estimates to
take control actions (regulate cache assigned to a CF, or
increase/decrease I/O path parallelism).

The EWMA of successive response times for read oper-
ations is calculated based on the following formula, where
r(T) is the response time sampled at time T and α=0.125.

EWMA(T) = (1 − α) ∗ EWMA(T − 1) + α ∗ r(T)

The Thrift/Cassandra component depicted in Figure 3
measures individual operations by timestamping request and
response messages. Cassandra clients compute EWMAs for
response time and throughput and make them available to
the QoS controller through a simple interface. This func-
tionality is also built in and supported by the HBase client.

Elasticity. We use default support for elasticity in Cas-
sandra, namely we increase cluster capacity for an appli-
cation’s CF by bootstraping a new node into the targeted

ring (either at an explicit token or by automatically choosing
a token that gives it half the tokens from the most space-
constrained node) and use the move API to load-balance the
ring. We delete moved keys from offloaded nodes lazily using
the cleanup API.

We implemented elasticity in our version of HBase by (i)
splitting a Region (that maps to a Berkeley DB database)
into two (approximate) halves; (ii) serializing and shipping
a Region (Berkeley DB database) to a remote node; and
(iii) starting a Region at a remote node. The data transfer
is performed in the background prior to the Region being
moved, limiting the amount of time writes are blocked.

Caching. To control cache allocations in Cassandra we
use the setCapacity method of the row/key-cache JMX
MBeans exported by storage servers, determining how many
keys and rows to cache per CF on each node holding replicas
of those keys. Each key-cache hit saves one seek and each
row-cache hit saves two (or more) seeks. Since keys tend to
be much smaller than entire rows, the efficiency of the key
cache is expected to be higher than that of the row cache.

In our earlier versions of our implementation using JVM
heap for cache memory we were careful regulating these
caches to avoid exceeding a certain fraction of the total heap
size. Our experience indicates that exceeding that limit trig-
gers frequent garbage collection (GC) activity and leads to
automatic cache-size reduction by Cassandra. Our current
version solves this problem by using off-JVM heap memory
as described later in this section.

In contrast to Cassandra, HBase offers coarse-grain con-
trol of its cache memory (termed the block cache), namely
one can control only the total amount of memory allocated
to HFile blocks (including index blocks). Therefore HBase
does not readily support per-CF control of cache memory.
Extending HBase to support per-CF read caching is a goal
of ongoing work.

QoS controller. The key functionalities of the QoS con-
troller are to (i) setup SLAs with application clients, re-
questing their CF profiles (Section 3) and performance re-
quirements (we are currently focusing on satisfying response-
time targets at certain throughput rates); (ii) effect initial
resource allocations based on estimates for cost of I/O to
be performed by the application; (iii) periodically (once
a minute) collect monitored response-time and throughput
metrics from Cassandra clients and plan and effect changes
in resource allocations to better align with requested targets;
and (iv) perform admission control by estimating overall re-
source utilization and level of satisfaction of requirements for
current commitments. Since an application comprises sev-
eral Cassandra clients and each client monitors performance
independently, the QoS controller must combine (currently
averages) the reported metrics for the entire application.

Our implementation configures Cassandra servers to use
off-JVM heap memory (and thus not GC’ed) for its caches
(row cache, key cache, and memtable). We thus avoid some
of the cache-related memory pressure effects that impact
Cassandra performance in unpredictable ways. We do not
however fully prevent such activity, which is inherent in Java
implementations of data-intensive distributed systems. Our
QoS controller is able to draw certain statistics (such as
cache hit rates, cache capacity, etc.) at runtime through
Cassandra’s JMX interface. The controller has also the

Figure 3: The Cassandra QoS monitoring and control system.

Figure 4: Zipf-distributed reads.

ability to regulate certain background activities (such as
frequency and scope of compactions) via ColumnFamily-
StoreMBean methods such as setMinimumCompactionThresh-
old. Such controls are critical in order to avoid the unpre-
dictable impact of background activities on quality of ser-
vice. A full investigation of these effects and mechanisms is
the focus of future work.

5. EVALUATION
Our experimental setup consists of four servers with dual-

core Intel Core2-Duo CPUs at 3.16GHz equipped with 3GB
of DRAM and a single direct-attached SATA disk capable
of about 100 small (1KB) random IOPS. The server op-
erating system is Linux Ubuntu 10.4.1 LTS. Cassandra is
version 1.0.10 running over the OpenJDK 1.6.0-24 Java run-
time environment with a heap size of 1GB in each server.
Our evaluation workload is the Yahoo Cloud Serving Bench-
mark (YCSB) [5] version 0.1.4, configured to use 8 concur-
rent load-generating threads. In our experiments one server
is dedicated to executing the YCSB workload while the re-
maining three are dedicated to the Cassandra service. We
have used the Random Partitioner (the default partition-

Figure 5: Uniformly random reads.

ing strategy using consistent hashing) for mapping rows to
Cassandra servers and set the replication factor to two in a
read-any, write-both setting.

To exhibit the dynamic decisions taken by the QoS con-
troller we present results with two distinct types of applica-
tions: those that exhibit locality in table accesses and those
that do not. We emulate both by configuring YCSB to pro-
duce accesses based on (a) a Zipf probability distribution; or
(b) a uniformly-random probability distribution. According
to the Zipf distribution, some records are extremely popular
while most records are unpopular. We have disabled the key
cache to focus on the characteristics of the row cache alone.

Zipf distribution. In the first set of experiments, we
configure YCSB to produce a workload of Zipf-distributed
reads to 10 million 1KB records (a 12GB dataset). At the
initial stage of the YCSB benchmark the user sets up an
SLA for the single CF created and accessed by YCSB. In
the SLA the user specifies the dataset size (12GB), degree
of locality (zipf), the requested maximum response time for
read operations (30ms), an upper limit on throughput (1000
rows/sec), and row size (1KB). The QoS controller creates

a CF on a single Cassandra server and periodically (once a
minute) monitors the achieved response time.

Figure 4 depicts results from a typical run of the sys-
tem, which is initially above the response-time target. The
QoS controller increases the cache size for the CF from 0
to 200MB in steps of 50MB. Detecting that the benefits
from increasing cache size diminish, it decides (at 47′) to
spread the CF over two nodes. Bootstrapping the second
node (which takes over 50% of the ring) lasts 26′ transferring
12GB (our network has a peak speed of 10MB/s). During
that time response time increases since the first node is busy
preparing and streaming SSTables to the new node while the
latter is unavailable for reads during that process. After the
elasticity operation is complete, each node’s cache is halved
to 100MB to conserve the total cache size of 200MB. The
controller further increases each node’s cache size to 300MB
in increments of 50MB (to a total of 600MB) achieving an
average response time of about 38ms with no measurable
gain from further cache increases. It then decides (at 137′) to
increase the number of nodes to three (reducing each node’s
cache to 200MB). Bootstrapping the third node (which of-
floads 25% of the ring from the second node) lasts 125′ with
small performance hit due to throttling applied by Cassan-
dra. This brings response time within user-specified levels.

Uniformly random distribution. In the second set of
experiments we configure YCSB to produce a workload of
uniformly-random reads over the same 12GB dataset. The
user sets up an SLA similar to the previous with the dif-
ference that the degree of locality is now random and the
requested maximum response time is 50ms. The QoS con-
troller creates a CF on a single Cassandra server and peri-
odically (once a minute) monitors response time.

Figure 5 depicts results from a typical run of the system.
Increasing cache size from 0 to 100MB yields low cache hit
rates, prompting the controller to quickly (at 27′) increase
the number of nodes to two while reducing each node’s cache
to 50MB. Bootstrapping lasts 29′ with significant impact
on performance. The controller then increases each node’s
cache to 150MB (for a total of 300MB), stopping there as
it sees no measurable benefit from caching. It then decides
(at 90′) to further scale the system to three nodes, a boot-
strapping process that (similar to the previous experiment)
lasts 122′ with little performance impact, eventually bring-
ing response time within the user-specified target.

Note that we originated the system at a single node al-
though knowledge about the workload provided in the SLA
would suggest a better starting point is to spread the dataset
initially on more than one nodes. Our choice aimed to il-
lustrate that the QoS controller can still navigate the sys-
tem towards user-specified goals even when starting from
a sub-optimal point, at the expense of more elasticity ac-
tions. While spreading a dataset initially over many nodes
may seem to always be a good idea, a downside is that it
increases interference between applications at storage nodes.

6. CONCLUSIONS
In this paper we describe a QoS infrastructure geared to-

wards scalable NoSQL storage systems and current imple-
mentations of the infrastructure within the Apache Cassan-
dra and HBase systems. Our evaluation of the Cassandra-
based implementation under YCSB workloads highlights con-
trol of server-side caching as an effective solution to regulat-

ing application response time when the application exhibits
strong data-access locality. Control over I/O path paral-
lelism via elasticity mechanisms is a complementary and ef-
fective solution for matching user performance requirements.
The impact of elasticity actions on performance varies de-
pending on their intensity and the hardware characteristics
of the underlying platform, warranting further investigation.
Our work in this paper highlights the viability of the basic
mechanisms underlying our QoS architecture. Future work
will focus on the dynamics under variable, competing, and
write-intensive workloads.

7. ACKNOWLEDGMENTS
We thankfully acknowledge the support of the Cumu-

loNimbo (FP7-257993) and PaaSage (FP7-317715) EU projects.

8. REFERENCES
[1] Amazon Web Services. DynamoDB.

http://aws.amazon.com/dynamodb/, August 2012.

[2] Apache Software Foundation. HBase.
http://hbase.apache.org/, August 2012.

[3] D. Chambliss et al. Performance virtualization for
large-scale storage systems. In Proceedings of the
Symposium on Reliable Distributed Systems (SRDS),
Florence, Italy, 2003.

[4] F. Chang et al. Bigtable: A distributed storage system
for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):1–26, 2008.

[5] B. F. Cooper et al. Benchmarking cloud serving
systems with YCSB. In Proceedings of the 1st ACM
Symposium on Cloud computing (SoCC ’10),
Indianapolis, IN, June 2010.

[6] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[7] G. DeCandia et al. Dynamo: Amazon’s highly
available key-value store. In Proceedings of 21st ACM
Symposium on Operating Systems Principles,
Stevenson, WA, October 2007.

[8] P. Goyal, D. Jadav, D. S. Modha, and R. Tewari.
CacheCOW: QoS for Storage System Caches. In
Proceedings of 11th International Workshop on Quality
of Service (IWQoS 03), Monterey, CA, June 2003.

[9] A. Lakshman and P. Malik. Cassandra: A
decentralized structured storage system. In
Proceedings of 3rd ACM SIGOPS International
Workshop on Large Scale Distributed Systems and
Middleware (LADIS), Big Sky, MT, October 2009.

[10] K. Magoutis, P. Sarkar, and G. Shah. OASIS:
Self-Tuning Storage for Applications. In Proceedings of
23rd IEEE Conference on Mass Storage Systems and
Technologies (MSST), College Park, MD, May 2006.

[11] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Informatica,
33(4):351–385, 1996.

[12] J. Wilkes. Traveling to Rome: A retrospective on the
journey. Operating Systems Review (OSR),
43(1):10–15, January 2009.

