
Memory Management Support for Multi-Programmed
Remote Direct Memory Access (RDMA) Systems

Kostas Magoutis

IBM T. J. Watson Research Center
19 Skyline Drive

Hawthorne, NY 10532
magoutis@us.ibm.com

Abstract
Current operating systems offer basic support for network
interface controllers (NICs) supporting remote direct
memory access (RDMA). Such support typically consists
of a device driver responsible for configuring
communication channels between the device and user-
level processes but not involved in data transfer. Unlike
standard NICs, RDMA-capable devices incorporate
significant memory resources for address translation
purposes. In a multi-programmed operating system (OS)
environment, these memory resources must be efficiently
shareable by multiple processes. For such sharing to
occur in a fair manner, the OS and the device must
cooperate to arbitrate access to NIC memory, similar to
the way CPUs and OSes cooperate to arbitrate access to
translation lookaside buffers (TLBs) or physical memory.
A problem with this approach is that today’s RDMA NICs
are not integrated into the functions provided by OS
memory management systems. As a result, RDMA NIC
hardware resources are often monopolized by a single
application. In this paper, I propose two practical
mechanisms to address this problem: (a) Use of RDMA
only in kernel-resident I/O subsystems, transparent to
user-level software; (b) An extended registration API and
a kernel upcall mechanism delivering NIC TLB entry
replacement notifications to user-level libraries. Both
options are designed to re-instate the multiprogramming
principles that are violated in early commercial RDMA
systems.

1. Introduction

The need to reduce networking overhead in system-
area networks in the early 1990's motivated a flurry of
research on user-level networking protocols. Projects such
as SHRIMP [2], Hamlyn [4], U-Net [23] and others,
proposed user-level access to a network interface
controller (NIC) as an approach that offers two primary
benefits: First, it enables host-based implementations of
new, lightweight networking protocols with lower
overhead compared to kernel-based TCP/IP protocol
stacks. Second, for applications requiring use of the

TCP/IP protocol stack, there is a potential for application-
specific customization of user-level libraries. In addition
to the ability for user-level access to the NIC, which is the
defining feature of user-level NICs, most of these projects
also advocated a new host programming interface to the
NIC. This programming interface is based on a queue-
pair (QP) abstraction and requires pre-posting of receive
buffers [1] [22]. It is important to note that this
programming interface is not a defining feature of user-
level NICs and can be implemented without special NIC
support [17]. In contrast, user-level access to the NIC
necessarily requires special NIC support, which increases
the complexity of NIC design as described later in this
paper.

A feature of the networking API introduced by user-
level NICs is the ability for remote direct data placement
(RDDP), i.e., direct data transfer between the network and
the target memory buffers without any intermediate data
movement. The key benefit of RDDP is elimination of
unnecessary memory system and CPU overhead incurred
in systems built over standard TCP/IP interfaces and
traditional NICs [13]. RDDP is possible with either
unsolicited or solicited I/O operations. In the former case,
incoming network I/O data are deposited in anonymous
buffers posted prior to the I/O taking place. In the latter
case, explicit tags are used (and carried on the incoming
data headers) to identify the user-level buffer that is the
target of the I/O operation. Tags for solicited RDDP can
take various forms [12]; one widely used option is using
the virtual memory address of user-level buffers as their
RDDP tag. This flavor of RDDP is known as remote
direct memory access (RDMA).

The benefits of user-level RDMA-capable network
interface controllers (RNICs) include lower CPU
overhead and flexibility due to the bypassing of the
kernel. The overhead reduction is partly due to transport
protocol offload1, the avoidance of unnecessary data
movement via memory copying, and the avoidance of the

1 RDDP requires total or partial transport protocol offload,

particularly when TCP/IP is used as a transport, since RDDP
operates at a higher level in the networking stack [16].

user-kernel boundary crossing. The bypassing of the
kernel makes possible user-level implementations that are
customized for applications and also the avoidance of
buggy kernel components [23]. An additional benefit of
the networking API is asynchrony without necessarily
requiring OS support for it [13].

Figure 1. Two processes sharing a user-level RNIC.

User-level RNICs often involve complex system

architectures (Figure 1). The programming interface that
user-level networking libraries use to control such RNICs
typically consists of a pair of receive (Rx) and transmit
(Tx) rings, mapped in the address space of each
communicating process (typically managed by a user-level
library) and shared between the process and the RNIC.
User-space buffers used for communication must be
described in terms of their virtual memory addresses.
Since the RNIC must be able to resolve such virtual
addresses into physical (bus) addresses to initiate direct
memory access (DMA) operations, an RNIC typically
includes a TLB-like address translation structure.

Most commercially available RNICs today are not
integrated into host and OS memory systems. This is due
to two main reasons: First, most OSes do not provide
support for device-specific page tables [20]; the
alternative of incorporating such abstractions in device
drivers involves significant complexity. Second, most
RNICs do not offer any mechanisms for handling TLB
miss faults, which would require suspending the faulting
RDMA operation, throwing an exception that can be
handled by the OS to load the missing translation (and
possibly servicing a virtual memory (VM) page fault from
disk), and restarting the operation [23]. This inability of
RNICs to support on-demand loading and unloading of
address translations means that these activities must
instead happen proactively, i.e., a process (or the kernel)
must load a translation to the NIC TLB prior to the
translation being used and (voluntarily) unload the
translation at some point in the future. The process of

adding address translations to a user-level RNIC is
currently performed by user processes using a REGISTER
system call. Similarly, address translations may be
voluntarily removed from the RNIC TLB using a
DEREGISTER system call. Registration typically also
involves pinning the VM pages whose address translations
are loaded on the RNIC TLB in physical memory.

The inability to support on-demand loading and
unloading of RNIC TLB entries rules out the option of
using host memory as a second-level address translation
structure to extend the RNIC addressing capabilities. The
only other practical option that can meet the requirements
of I/O-intensive applications is to equip RNICs with large
TLBs, which is standard practice today. This option
however, increases the cost of the RNIC and does not
work well in multiprogramming environments where the
RNIC is shared by multiple applications. New designs that
reduce RNIC TLB size requirements, better utilize those
TLBs, and are practical to implement in commercial
RNICs, could be a major driving force towards wider
adoption and deployment of RNICs. Two possible ways to
achieve these objectives are:

1. Use NIC address translation resources only for

operations that inherently require their use; such
operations do not include messaging (i.e., unsolicited
RDDP) nor control operations, e.g., access to control
data structures for the purpose of communicating
between the NIC and user-level networking libraries.

2. Increase the degree of utilization and avoid hoarding

of the NIC TLB in multiprogramming environments,
where the RNIC is shared by multiple processes.
With current RNICs, it is possible that a greedy
process allocates a large chunk of the RNIC TLB
without actually using all of it. This requires the
ability to forcibly unload translations from the NIC
TLB.

In this paper we present two design options that can

achieve the above goals. The first option is to use RDMA
only in kernel-resident I/O subsystems, transparently to
user-level software layers. This approach, which assumes
that RNICs are only accessible via a kernel host interface,
requires fewer RNIC TLB resources and allows for
efficient and fair global policies in sharing the RNIC
TLB. We describe such a design in Section 2. The second
option is to provide a collaborative mechanism between
user-level RNICs and user-level I/O libraries, whereby the
kernel notifies the library with an upcall when a TLB
entry must be de-registered; subsequently, the user-level
library must take appropriate action to decommission the
affected communication buffer(s). This mechanism, which
addresses point (2) above, is described in more detail in
Section 3.

2. Kernel-based RDMA

Kernel-based RNICs are defined to be RNICs that are
accessible to hosts only via a kernel interface (Figure 2-
right). As such, they are used by kernel-based I/O
subsystems (e.g., network file systems [5] and storage
device drivers [6]), whereas user-level RNICs can be used
by either user-level or kernel-based I/O subsystems [13].
In previous work we argued that the performance
drawback of using a kernel-based RNIC instead of a user-
level RNIC amounts to the overhead of crossing the user-
kernel boundary for issuing and managing I/O operations,
which is not a significant cost for I/O-intensive network
storage workloads [14]. In this paper, we argue that
kernel-based RNICs lend themselves to simpler and more
efficient system designs than user-level RNICs. In
particular, on the issue of efficient use of RNIC memory
resources, user-level RNICs have at least two fundamental
drawbacks compared to kernel-based RNICs. First, user-
level RNICs inherently use more memory resources for
address translation purposes. Second, user-level
networking systems do not currently offer the necessary
controls to enforce efficient and fair sharing of RNIC TLB
resources in multiprogramming environments.

In more detail, user-level RNICs store virtual address
translations and access control information on the RNIC
TLB for three main purposes: (a) control structures, such
as queues and transfer descriptors; (b) messaging buffers;
and (c) RDMA buffers. However, the need to use the
RNIC TLB for (a) and (b) can be eliminated in kernel-
based RNICs. First, control data structures and messaging
buffers need not be mapped in user address space and can
thus be referenced by physical address only. Since the
kernel is trusted to enforce the proper access control in the

case of control data structures and messaging buffers,
there is no need to dedicate resources for that purpose on
the RNIC. This, however, is not true for RDMA buffers
since memory accesses can be initiated by an untrusted
party and thus the access rights of the RDMA tags must
always be verified.

Another drawback of current commercially-available
user-level RNIC systems is their lack of mechanisms to
control the consumption of RNIC TLB resources by
individual processes. User-level I/O libraries typically try
to register with the RNIC as much of their communication
buffer pool as possible. This is because user-level
processes lack the incentive to be “good citizens” and to
act unselfishly by de-registering buffers or by performing
per-I/O registration, which would voluntarily reduce their
RNIC TLB usage. Thus, greedy processes can monopolize
the RNIC TLB, whether they use their TLB allocations or
not, and refuse access to other processes. Although it is in
principle possible to place limits on the maximum amount
of registration a process can perform (similarly to the
MLOCK kernel interface), such limits are typically static
(e.g., a pre-set maximum number of TLB entries per
process) and can result in underutilization of the NIC
TLB.

Stated differently, the issue has to do with the ability to
specify and enforce global policy that fairly and efficiently
arbitrates sharing of the NIC TLB (and of the physical
memory referenced by it) between processes. Ideally, it
should be possible to avoid processes selfishly hoarding
these resources but also let processes use more resources
than their “fair share” if others do not utilize their
resources. This problem (the fact that it is impossible to
enforce global system policy without some degree of
kernel involvement) is inherent to any user-level system

Figure 2. User-level vs. kernel-based RNIC. RDDP is possible in both cases, if supported by the I/O API [5][10] [13].

designed to bypass the kernel. Another example is
Exokernel [11], a system that advocates extermination of
all kernel abstractions.

Kernel-based RNICs enable solutions to the above
problems. First, regulation of the use of the RNIC TLB by
the kernel ensures that each process uses entries in the
RNIC TLB for only as long as necessary. This is possible
because, in kernel implementations of I/O subsystems, the
kernel is aware of the extent of the time interval a memory
buffer translation must be known to the NIC and can be
trusted to de-register the buffer after that. For example, in
many I/O subsystems [5] [13], an RDMA operation is
preceded by an RPC request and followed by an RPC
response. These two RPC messages designate an upper
bound on the duration of the RDMA operation. Thus, per-
I/O registration is enforceable, minimizing TLB space
use, i.e., a TLB entry is consumed by a buffer only if an
RDMA to that buffer is expected soon.

Another way to deal with hoarding processes in kernel-
based RNIC systems is to reduce their share of the TLB
when necessary. For example, in network or file access
protocols that use window-based flow control, the size of
the outstanding I/O window in conjunction with the
average I/O size give an estimate of the RNIC TLB
consumption over a certain network connection. At times,
a process with high throughput requirements may be
exceeding its “ fair share” of NIC TLB entries. In such
cases, the kernel can decide to reduce the process’ share
of the TLB and communicate that decision to the
responsible kernel-resident I/O subsystem. The latter can
effect the change by shrinking the appropriate outstanding
request window(s), effectively limiting the maximum
throughput achievable by that process, and de-registering
the appropriate amount of buffers. Revocation of
resources, just as described here, is straightforward when
performed in the kernel. Similar functionality applicable
to RNIC resource consumption by user-level I/O libraries
requires additional support and is the subject of Section 3.

In summary, use of kernel-based RNIC by kernel-
resident I/O subsystems only, offers the following
benefits:
1. The RNIC TLB is used only for essential operations

(i.e., RDMA); messaging and control operations do
not require use of the TLB when implemented in the
kernel.

2. The kernel can ensure economical consumption of
RNIC resources on behalf of processes; for example,
per-I/O registration and de-registration of buffers can
be enforced.

3. Besides economy of use, at times of contention for
RNIC TLB resources, the kernel can further yield
resources used by certain processes if necessary.

Point (1) is inherent to kernel-based RNICs. Points (2)

and (3) are matters of global policy, which is naturally

implementable in the kernel but can also be applied to
user-level systems with appropriate mechanisms, as
discussed in the next section.

3. A Collaborative Upcall-based Protocol

As argued in Section 2, there is currently a lack of
mechanisms to ensure that selfish user-level processes that
over-consume RNIC resources are forced to yield some of
those resources at times of contention. In this section, we
present a protocol that requires the collaboration of user-
level RNICs, the kernel, and user-level I/O libraries to
enable the revocation of unused or unlikely-to-be-used-
soon RNIC TLB entries from certain processes and their
re-allocation to others which have an immediate need for
them.

The foundation of our scheme is the ability of the
kernel (or of the user-level RNIC, through the kernel) to
request that user-level buffers be de-registered. Such
kernel-induced de-registrations require the attention and
collaboration of the application or the user-level I/O
library which has an incentive to comply in order to avoid
RDMA address translation errors in the future. In more
detail, our scheme consists of (a) a kernel upcall interface
that notifies user-level I/O libraries of imminent NIC TLB
entry replacement actions; note however, that the actual
replacement is performed at a future point in time; (b) a
new registration API that enables user processes to
(optionally) wait until a registration request is satisfied, if
not immediately possible; and finally (c) application-
specific NIC TLB replacement policies.

The mechanics of our collaborative protocol depend on
the type of buffer considered. For messaging buffers, the
RNIC simply removes a given buffer address translation
from its TLB and notifies (through the kernel) the user-
level process of this event with an upcall. After receiving
the upcall, the user-level I/O library is expected to remove
the buffer from its Rx or Tx rings (Figure 1) and also to
perform any necessary protocol-specific actions, such as
to adjust any application-level flow control protocol state
[13]. Subsequently, the user-level process I/O library may
either decide to remove that buffer from its active
communication pool or attempt to re-register it again in
the future. Incoming I/O transfers are not affected since
the RNIC ensures that such transfers use other registered
buffers from that process’s communication pool.

Kernel-induced de-registrations of RDMA buffers
require a similar degree of collaboration but are somewhat
more complex. Unlike messaging buffers, where the RNIC
has control over which messaging buffer is used next to
place incoming data (and can thus ensure that a buffer is
taken out of active use), RDMA buffers can be targeted at
any time without the RNIC being able to predict it. As a
result, the RNIC cannot immediately de-register a user-

level buffer associated with a given RDMA or otherwise
risk causing the failure of the RDMA operation. To deal
with this problem, the RNIC notifies the user-level
process (through the kernel) with an upcall of its intention
to de-register a buffer, but provides a grace period T to
ensure that the user-level library has enough time to de-
register and decommission the buffer. T is thus the time
between notification to the user-level process that a
translation is about to be removed from the NIC TLB and
the time of its actual removal. In this way, the kernel
minimizes (but does not eliminate) the risk of failing an
RDMA. The user-level I/O library is aware of the length
of the grace period T and must ensure that the expected
duration of any individual RDMA transfer operation it
issues does not exceed it.

Given the delay in satisfying eviction requests by
processes due to the grace period T and wanting to ensure
that processes do not wait too long before their
registrations requests are honored, the RNIC must be
proactive in evicting RNIC TLB entries (note similarity to
policies for cleaning dirty buffers in file caches [15]). This
is the task of the “ NIC TLB Reaper” module in Figure 3.
The upcall notification provides only a suggestion to the
application as to which TLB entries to replace; the latter
may respond by offering another “ victim” buffer as will be
discussed later.

New Registration API: The registration interface
offered by current commercial NICs returns successfully
only if RNIC TLB resources are immediately available for
allocation. If there are no available TLB entries at the
time of the call (or if the process’ s static limit is reached),
the registration API returns immediately with an error
code. Such an error should be treated as fatal for the
application, under the assumption that there is no dynamic
mechanism to free up RNIC TLB space other than
processes voluntarily de-registering some or all of their
buffers.

A more appropriate API for the functionality described
in this paper is one where a process is given the option to
wait (synchronously or asynchronously) for free RNIC
TLB entries. Such an API could be termed REGISTER-
WAIT. Since a registration request can trigger replacement
of other TLB entries (as seen in Figure 3), a registration
request might incur a delay but will be eventually
honored. The delay in satisfying a registration request
depends on the latency in satisfying eviction notification
upcalls delivered to other processes by the kernel. Such an
API has also the additional advantage of giving the kernel
an estimate of the current demand of a process for RNIC
TLB entries.

The “ Buffer Manager” module in Figure 3 exhibits the
structure of a user-level buffer manager that can handle

Figure 3. Collaborative upcall-based protocol. This design assumes the availability of ALLOCATE and FAST-
REGISTER RNIC Verbs APIs [18] which separate the allocation of TLB resources from their binding to a
particular buffer.

de-registration upcalls from the RNIC (through the
kernel), and perform (pre-)registrations (i.e., allocations of
RNIC TLB entries). This diagram assumes the availability
of the RNIC Verbs API [18].

RNIC TLB Replacement Policies: The RNIC TLB
replacement policies must ensure high TLB utilization
when used by multiple processes. TLB replacement must
be performed proactively to reduce the average wait time
incurred by processes wanting to register their buffers. A
replacement policy must balance the desire to maintain a
certain level of free TLB space with the amount of “ pain”
caused to communicating processes by asking them to de-
register some of their TLB entries. By reducing the
number of buffers on which a process can perform RDMA
transfers, the RNIC is effectively limiting the total
bandwidth achievable by that process.

In accordance with well-tested systems principles, a
NIC TLB replacement policy must satisfy the following
requirements:

1. Evict the least recently (or frequently, etc.) used TLB

entry. To make this decision, the kernel needs
information about access statistics for RNIC TLB
entries, provided by the RNIC (e.g., the “ TLB Entry
Usage Stats” module in Figure 3).

2. Consider evicting an entry that the user-level I/O

library or the application considers to be less
important than the one chosen by the kernel. This is
reminiscent of extensible page replacement, for
example as used in VINO ([21], Section 4.2) and
other systems. This task is expressed by the
“ Consider Alternative?” module in Figure 3.

Note that even when the RNIC does not provide access

statistics about its TLB entries, processes themselves
(possibly via shared memory segments between user-level
communication libraries and the kernel) can provide that
information to the kernel to enable an LRU or LFU or
other replacement algorithm. It is in the best interest of
processes to be truthful regarding their temporal and
spatial access characteristics as that will result in correctly
applying the kernel NIC TLB replacement policies for
better performance. In the absence of any such
information, a simple (e.g., random) replacement policy
can be used.

The scheme described here works fine if the process is
always aware of when an RDMA may take place, either
by initiating it, or by explicitly requesting its occurrence
through RPC request-response messages. However, this
excludes the case where RDMA can be initiated by a
remote party at any time; in such case, evicting an RDMA
address translation from the local RNIC TLB may cause
an I/O failure when a remote party decides to initiate

RDMA using that address. One solution to this problem is
to contact all remote hosts that might have and use this
translation and request to invalidate their relevant RDMA
reference. Another solution (that requires advanced RNIC
functionality) is to allow such faults to happen and recover
from them by throwing and catching remote RDMA
exceptions [12]. In most systems today, the process that
exports remotely-accessible communication buffers is
either the initiator of RDMA or explicitly requests that
remotely-initiated RDMA take place, making the
mechanisms described in this paper widely applicable.

Dealing with Failure: The grace period T allowed by
the kernel before a process de-registers a buffer is
expected to be sufficient to avoid failure by compliant
user-level I/O libraries under the assumption that a
pending RDMA operation on the buffer can complete
within time T after receiving the notification upcall.
However, RDMA operations may suffer indeterminate
delay in the network and communication libraries may not
have the real-time features that enable timely processing
of RDMA completions. While the latter problem can be
tackled programmatically with appropriate hardware, OS,
or runtime support, the RDMA network delay may be
hard to bound, particularly in large-scale networks such as
the Internet. This can result in evicting a busy RNIC TLB
entry, leading to failure of the RDMA operation. In that
case, the user-level library must be able to handle and
gracefully recover from such failure. The likelihood of
this happening can be reduced by increasing the grace
period T at the expense of increasing the maximum delay
incurred in de-registering a RNIC TLB entry. This
tradeoff seems to be an unavoidable price to pay in our
collaborative memory management protocol for user-level
RNICs.

4. Discussion

Comparing the two options considered in this paper, it
becomes apparent that one of them (using RDMA only in
kernel-resident I/O subsystems) has a number of
advantages over the other. First, de-registration of NIC
TLB entries with kernel-based RDMA is fully controlled
by the kernel; this eliminates the (however small)
possibility of RDMA failures, which cannot be excluded
with the upcall-based user-level RNIC approach. Second,
with kernel-based RDMA, part of the complexity of
managing RDMA memory resources is encapsulated in
the kernel, simplifying application I/O libraries.
Understandably, a source of complexity of the upcall-
based scheme stems from the difficulty that programmers
have with rationally arguing about time. It is fair to say,
however, that this difficulty has not prevented other
systems to successfully introduce time-based mechanisms

(e.g., see distributed consistency based on leases [9]). Part
of the complexity in our scheme can be encapsulated in
buffer managers developed to the new registration API.
Taking the above into account and given that there is no
performance-related reason against a kernel-based
interface to an RDMA NIC for network-storage-intensive
workloads [14], we recommend the kernel-based RNIC
design for practical implementations.

Note that the same general approach followed in the
collaborative protocol of Section 3 can be used in other
problems of similar flavor. One example is the case of
managing a shared connection pool to a database or other
transactional service. In that case, access to a limited
number of connections by a large number of client
applications must be arbitrated in a similar manner.
Similar to the problem addressed in this paper, lightly-
used connections may be taken away from certain clients
by the connection manager and given to other clients who
request them. To reduce the possibility of failure (i.e.,
forcing a connection closed before a client process is
finished using it) a similar grace period must be granted
before a connection is actually taken away.

5. Related work

A number of recent RDMA protocol specifications,
such as InfiniBand [10], the iWARP protocol suite [19],
and RNIC [18] are addressing the issue of memory
management and particularly how to reduce the cost of
memory registration so that the association of NIC TLB
resources with a buffer’ s memory address translation can
be done on-the-fly prior to each RDMA I/O. This is a key
requirement of storage protocols such as iSCSI and its
extensions for RDMA [6] (iSER), where the binding
between a memory buffer and the physical memory
backing it is not known until the time of I/O. The FAST-
REGISTER MEMORY REGION and BIND MEMORY WINDOW
APIs developed for this purpose, split the process of
registration in two parts; the allocation of NIC resources,
such as TLB entries, protection checks, etc.; and the
loading of an address translation into those resources. The
second part can be performed just prior to (and on the
data-path of) the I/O. This requires that NIC TLB
allocations be made early, possibly at the time of
connection initialization, and memory region identifiers
(STags) allocated in advance. The two above interfaces
are provided at the Verbs [18] level and are meant to be
implemented at the hardware, NIC firmware, driver or
user-level network library. The current practice for using
the FAST-REGISTER MEMORY REGION API is to rely on a
pool of pre-allocated memory regions, which is currently
assumed to be fixed. To work with the scheme described
in this paper, the pool of pre-allocated regions must be
managed dynamically by a buffer manager as depicted in

Figure 3, which must ensure that new registrations (in this
case, allocations of RNIC TLB space) are carried out as
needed to compensate for any kernel-induced de-
registrations. It is assumed that prior to issuing a FAST-
REGISTER MEMORY REGION work request followed by an
RDMA work request, the application must ensure that the
STag used is still registered with the NIC, by validating it
with the buffer manager.

Previous work on memory management for RNICs and
on reducing RNIC TLB memory requirements has focused
on extending RNIC address translation structures into host
memory, maintaining only a cache of address translations
(and potentially of other state, such as network
connections) onboard the RNIC. The key benefit of such
two-level memory management schemes is improved
scalability in the amount of memory that can be registered
with the RNIC with the potential to support practically
memory-free RNICs. Two-level schemes include systems
such as U-Net [24], UTLB [7], and miNI [1]. In addition,
the work of Schoinas and Hill [20] explored the design
space of two-level memory management schemes for
NICs. Design issues that vary in these projects are (a)
whether the host-side (i.e., 2nd level) address translation
structure is accessed by the RNIC or by the host; (b)
whether access to host memory is by DMA or by
programmable I/O (in case of direct access by the NIC),
or by interrupts thrown by the NIC and handled by host
software; and other issues such as time of memory
pinning, etc. There are however, a number of factors that
have impeded the adoption of two-level schemes: First,
there is significant complexity involved in maintaining
such a two-level address translation structure. Second,
given the performance penalty of accessing host memory
over I/O buses, it seems likely that effective use of the
RNIC TLB will still be the key factor affecting
performance, which argues for increasing RNIC memory
resources. The kernel-induced de-registration scheme
described in Section 3 is a similar but simpler and more
practical alternative to the above referenced two-level
memory management schemes.

6. References

[1] R. Azimi, A. Bilas, “ miNi: Reducing Network Interface

Memory Requirements with Dynamic Handle Lookup” , in
Proceedings of the 17th ACM International Conference on
Supercomputing (ICS03), June 2003.

[2] M. Blumrich and K. Li and R. Alpert and C. Dubnicki and
E for the SHRIMP Multi-computer” , in Proc. of 21st
Annual International Symposium on Computer
Architecture (ISCA), Chicago, IL, April 1994.

[3] P. Buonadonna, D. Culler, “ Queue-Pair IP: A Hybrid
Architecture for System Area Networks” , in Proc. of 29th
Annual International Symposium on Computer
Architecture (ISCA), Anchorage, AK, May 2002.

[4] G. Buzzard, D. Jacobson, S. Marovich, J. Wilkes, “ An
Implementation of the Hamlyn Sender-Managed Interface
Architecture” , in Proc. of Second Symposium on Operating
Systems Design and Implementation (OSDI), Seattle, WA,
October 1996.

[5] B. Callaghan, T. Talpey, “ NFS Direct Data Placement” ,
IETF draft-ietf-nfsv4-nfsdirect-00.txt, July 2004.

[6] M. Chadalapaka, U. Elzur, M. Ko, H. Shah, P. Thaler, “ A
Study of iSCSI Extensions for RDMA (iSER)” , in
Proceedings of ACM NICELI 2005 Workshop, Karlsruhe,
Germany, August 2003.

[7] Y. Chen, A. Bilas, S. Damianakis, C. Dubnicki, K. Li,
“ UTLB: A Mechanism for Address Translation on Network
Interfaces” , in Proceedings of 8th ASPLOS, San Jose, CA,
October 1998.

[8] P. Druschel, V. Pai, W. Zwaenepoel, “ Extensible Kernels
are Leading OS Research Astray“ , in Proceedings of
Workshop on Hot Topics in Operating Systems (HotOS),
1999.

[9] J. Gray, D. Cheriton, “ Leases: An Efficient, Fault-tolerant
Mechanism for Distributed File Cache Consistency” , in
Proceedings of ACM Symposium on Operating Systems
Principles, Litchfield Park, AZ, December 1989.

[10] InfiniBand Trade Association, http://infinibandta.org/specs

[11] F. Kaashoek, McKenzie, D. Engler, G. Ganger, H. Briceno,
Hunt, D. Mazieres, T. Pickney, R. Grimm, J. Giannotti,
“ Application Performance and Extensibility in Exokernel” ,
in Proceedings of 16th ACM Symposium on Operating
Systems Principles, Saint Malo, France, 1997.

[12] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer, “ Making
the Most of Direct Access Network Attached Storage” , in
Proceedings of 3rd USENIX Conference on File and
Storage Technologies, San Francisco, CA, April 2003.

[13] K. Magoutis, S. Addetia, A. Fedorova, M. I. Seltzer, J. S.
Chase, A. Gallatin, R. Kisley, R. Wickremesinghe, E.
Gabber, “ Structure and Performance of the Direct Access
File System” , in Proceedings of the USENIX Annual
Technical Conference, Monterey, CA, June 2002.

[14] K. Magoutis, M. I. Seltzer, E. Gabber, “ The Case Against
User-Level Networking“ , in Proceedings of 3rd Workshop
on Novel Uses of System-Area Networks (SAN-3), Madrid,
Spain, February 2004.

[15] M. K. McKusick, K. Bostic, M. Karels, J. Quarterman,
“ The Design and Implementation of the 4.4BSD Operating
System” , Addison Wesley, 1996.

[16] J. Mogul, “ TCP Offload is a Dumb Idea Whose Time Has
Come” , in Proc. of Ninth Workshop on Hot Topics in
Operating Systems (HotOS-IX), Lihue, Hawaii", May 2003.

[17] M-VIA: A High Performance Modular VIA for Linux,
National Energy Research Scientific Computing Center,
http://www.nersc.gov/research/FTG/via, 1999.

[18] R. Recio, “ RDMA enabled NIC (RNIC) Verbs Overview” ,
RDMA Consortium, April 29, 2003;
http://www.rdmaconsortium.org/home/RNIC_Verbs_Overv
iew2.pdf

[19] R. Recio, “ An RDMA Protocol Specification” , Internet
Draft, draft-ietf-iwarp-rdma-01.txt, February 2003.

[20] I. Schoinas, M. Hill, “ Address Translation Mechanisms for
Network Interfaces” , in Proc. of Fourth International
Symposium on High-Performance Computer Architecture
(HPCA), February 1998.

[21] M. Seltzer, Y. Endo, C. Small, K. Smith, “ Dealing with
Disaster: Surviving Misbehaved Kernel Components” , in
Proceedings of USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 1996.

[22] Virtual Interface (VI) Architecture Specification, December
1997.

[23] T. von Eicken, A. Basu, V. Buch, W. Vogels, “ U-Net: A
User-Level Network Interface for Parallel and Distributed
Computing“ , in Proceedings of the 15th ACM Symposium
on Operating Systems Principles, Copper Mountain, CO,
December 1995.

[24] M. Welsh, A. Basu, T. von Eicken, “ Incorporating Memory
Management into User-level Interfaces” , in Proceedings of
Hot Interconnects V, Stanford, CA, August 1997.

