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Abstract 
Redundant Arrays of Independent Controllers (RAIC) is a new 
methodology for increasing the availability and performance of 
storage resources in on-demand enterprise data centers. Currently, 
large and dynamically-growing data sets, typical in e-business on-
demand workloads, are constrained by the capacity, availability 
and performance boundaries of individual RAID controllers. 
Simple approaches to extending such data sets over multiple 
RAID controllers result in reduced availability guarantees.  Some 
of the challenges in improving performance by distributing data 
sets over many RAID controllers include the heterogeneity in the 
underlying storage resources as well as the lack of information 
about their characteristics. RAIC is a new methodology to 
compose storage objects according to user-specified performance 
and availability goals, which may exceed the capabilities of any 
single individual RAID controller. RAIC policies ensure that the 
capacity of storage objects can be extended while maintaining 
performance and availability goals, even in heterogeneous 
environments including different types of RAID controllers. 

 

1. Introduction 
A key objective in today’s e-business on-demand environments is 
to provide applications with uninterrupted access to a large pool 
of storage servers over a storage-area network (SAN). The storage 
servers in such environments are typically RAID-array controllers. 
Storage objects such as file systems or database tables are layered 
over virtual-disk abstractions commonly referred to as logical 
volumes, which in turn map to storage volumes (otherwise known 
as LUNs) exported from storage controllers. An example of this 
storage hierarchy is shown in Figure 1. Some enterprise data-
centers consist of homogeneous, often identical, storage 
controllers. Such environments are nearly always the result of a 
strategic partnership between an enterprise and a storage systems 
vendor. Many e-business on-demand environments see such 
partnerships as too limiting and thus opt for the flexibility of a 
migration path to the vendors that offer the best price/performance 
benefits. This is a reason that many of today’s data centers consist 
of heterogeneous storage resources, which can be storage 
controllers from different vendors or from different generations of 
a controller type. Cost tradeoffs as well as rapid technological 
advances often result in new generations of a storage controller 
coming into service before old generations complete their useful 
lifecycle. 

Two important challenges in on-demand data centers today are (a) 
the mapping of dynamically-growing storage objects to a pool of 
heterogeneous storage controllers, in a scalable and seamless 

manner, and (b) the reduction in the complexity of managing the 
storage resources. In this paper, we present a methodology that 
addresses the first challenge. This methodology can be 
implemented within a storage virtualization service, which 
reduces the complexity of storage management by providing a 
common administration interface across heterogeneous storage 
resources. 

1.1 Storage allocation models 
Modern applications using a range of data-management systems, 
from file systems to databases, have certain performance and 
availability goals such as a certain level of I/O operations per 
second, mean-time-to-failure (MTTF) etc., metrics. These 
applications require system support for mapping their 
performance and availability goals to storage resources with the 
appropriate capabilities. A common practice is to assign each data 
object (e.g., a file system or a database table-space) of a storage 
consumer to a single storage controller as shown in Figure 1. We 
refer to this practice as the one-to-one storage allocation model. 
The most important benefit of the one-to-one model is its 
simplicity: storage characteristics such as performance and 
availability of a data object are directly mapped to the well-
defined capabilities of a single storage controller. 

 

 

 

Figure 1 Storage volumes that make up a data object (e.g., a file system 
or a database table-space), map to a single storage controller in the one-to-
one storage allocation model. 

 

The simple one-to-one storage allocation model however, has two 
important drawbacks: First, a data object is constrained by the 
single-system limits of the storage controller (e.g. storage 



capacity, performance, and availability level). This problem can 
be partially addressed by using enterprise-class storage 
controllers, which provide large capacity, high performance, and 
high availability. A problem with this approach is the high cost of 
enterprise-class storage controllers. The second drawback of the 
one-to-one model is that unused storage capacity in a group of 
storage controllers cannot be combined to create a data object. 
This problem of internal fragmentation of storage controller 
capacity leads to suboptimal storage utilization. 

However, the most significant drawback of the one-to-one model 
is its limited scalability for data objects whose storage 
requirements grow, eventually exceeding the capabilities of any 
single RAID controller in terms of capacity, performance, or 
availability. A natural extension is a model that maps data objects 
to more than one controller, which we term the one-to-many 
model. While this model offers the potential to achieve the desired 
scalability characteristics, these characteristics depend on the 
performance and availability capabilities of many storage 
controllers. This dependence is particularly complex in the case of 
heterogeneous controllers. The one-to-many allocation model is 
not widely deployed because the only way to manage its 
complexity today is manually, by highly-skilled system 
administrators. 

Besides the issue of storage allocation, another challenge in on-
demand data centers is the lack of a single administrative interface 
across heterogeneous controllers. A single management interface 
is expected to reduce administration complexity and thus the total 
cost of ownership (TCO). A solution that promises to address this 
problem and has recently started to be deployed is block-level 
storage virtualization. 

1.2 Storage Virtualization 
Block-level storage virtualization [1] [2] [3] is the aggregation of 
storage resources into a single storage pool, managed from a 
single administration point. Storage virtualization provides: (a) a 
common administrative interface across homogeneous or 
heterogeneous storage resources, reducing administration costs; 
(b) better resource utilization, by aggregating previously 
unconnected storage “islands”, and by consolidating all available 
storage volumes across storage controllers; and (c) the 
opportunity to implement advanced storage functions such as 
point-in-time copying and mirroring over all back-end storage 
resources, irrespective of the capabilities of the back-end 
controllers. Block-level storage virtualization can be implemented 
at various levels in a SAN: on application servers by logical 
volume managers (LVMs); in network elements (e.g., intelligent 
switches and routers [3]); or in dedicated storage virtualization 
controllers [2] [6], as shown in Figure 2. 

An overriding concern in the design and implementation of 
storage virtualization engines is how to minimize the impact of 
virtualization on the performance (e.g., response time) and 
availability of back-end storage resources. In other words, the key 
challenge they face is to preserve the quality of service of the 
back-end storage controllers. For this reason most virtualization 
engines today take pains to impose minimal performance 
penalties, and ensure that the availability of the virtualizer itself is 
not lower than that of the storage controllers it exports. 
Techniques used to minimize the performance penalties include 
aggressive non-volatile caching for read and write I/O, scalable 
clustered designs, and lightweight implementations within 

network elements such as host-bus adapters (HBAs) or network 
switches. High availability of the virtualization service itself can 
generally be achieved with sufficient hardware redundancy and 
high-availability software features. A clustered storage 
virtualization controller has demonstrated such a highly-available 
design [2]. 

 

 

 

Figure 2 In this example, a storage virtualization controller imports 
storage volumes from storage controllers of type A and B into separate 
volume groups. Each storage volume exported by the virtualization 
controller is carved out of one of these volume groups. Note that this is 
equivalent to performing storage allocation using the one-to-one model. 

 

Most deployments of storage virtualization services use the one-
to-one model for storage allocation and management. This means 
that storage volumes from each back-end storage controller form a 
separate volume group, as shown in Figure 2. In this way, a 
volume group is available when the back-end storage controller it 
corresponds to is available, and the volume-group performance 
approximates the performance of that back-end controller. In 
other words, the quality of service of the back-end storage 
controllers is preserved. An opportunity to combine the benefits 
of virtualization with the strengthening of storage characteristics 
exists with stacking RAID layers in a SAN, as described in the 
next section. 

1.3 Stacking Multiple RAID Levels in a SAN 
In principle, it is possible to replace physical disks in the back-
end of a RAID controller with storage volumes imported from 
other RAID controllers. In this way, RAID disk (or parity) groups 
may be composed out of combinations of heterogeneous disk 
resources, including physical disks as well as external storage 
volumes, as shown in Figure 3. We use the term Multi-Level 
Heterogeneous RAID (MLH-RAID) for this scheme. In MLH-
RAID, each subsequent RAID level can be used to strengthen the 
performance and availability provided by its preceding RAID 
level. For example, to implement RAID-1 at the second level of a 
two-level MLH-RAID hierarchy as the one shown in Figure 3, the 
second-level RAID controller will mirror data blocks on two 
separate first-level storage volumes, which may in turn be 
implemented using RAID-5 over groups of physical disks at the 
first-level RAID controllers. There are two key differences 



between MLH-RAID and a storage virtualization controller: 
RAID controllers are designed to improve on the performance and 
availability of back-end disks by taking advantage of disk-spindle 
parallelism and opportunities for data redundancy. The downside 
of this is that RAID controllers are expected to impose a 
performance penalty on the I/O data path due to the complexity of 
the RAID scheme. This is a fundamental tradeoff between MLH-
RAID and storage virtualization controllers. 

Note that there are a number of shortcomings with a simple-
minded MLH-RAID implementation. First, standard RAID array 
implementations lack adaptivity to heterogeneous disk groups and 
are unaware of special availability characteristics of the 
underlying storage controllers. Second, storage volumes from a 
single storage controller are failure-dependent and should be used 
in different parity groups; as a result, one would need a significant 
number of controllers to match the desired parity-group sizes. 

 

 

 

Figure 3 In a multi-layered RAID scheme, higher-level RAID controllers 
can create RAID disk (or parity) groups from heterogeneous storage 
devices, which may include direct-attached physical disk drives as well as 
storage volumes imported from lower-level RAID controllers. 

 

In this paper, we emphasize that combining a storage 
virtualization service with an automated method of transforming 
the quality of service of a collection of heterogeneous storage 
resources by applying the one-to-many allocation model, is the 
key to achieving scalability in on-demand data centers. Two road-
blocks to any such storage system implementation today are (a) 
the lack of complete information about the characteristics of the 
underlying heterogeneous storage resources, and (b) the lack of 
system policies to take advantage of this information. Our 
proposed system architecture, the Redundant Arrays of 
Independent Controllers (RAIC), addresses these shortcomings. 
RAIC can be implemented as an extension to an existing storage-
management system that already provides basic virtualization 
services. In addition, RAIC enables the composition of storage 
volumes that can approximate the desired availability and 
performance goals by combining storage resources from a 
sufficient number of heterogeneous RAID storage controllers. 
RAIC automates the management of one-to-many allocation 
policies by collecting knowledge about the characteristics and 

capabilities of the underlying RAID controllers, as well as 
administrator preferences, and by feeding them to a set of policies 
to handle events such as requests for additional storage capacity 
or storage controller failures, without downgrading the desired 
availability and performance of high-level storage objects. 

Our contributions in this paper are the following: 

• We describe the RAIC storage management architecture, 
which helps existing storage virtualization systems scale 
storage capacity, availability, and performance over a 
collection of heterogeneous controllers. 

• We identify the information that RAIC needs to collect about 
storage resources. We also identify policies that RAIC uses 
to compose storage objects according to application goals 
and to adapt to changing conditions. 

• We describe possible implementations of RAIC as part of a 
storage virtualization controller or in an MLH-RAID storage 
controller. In both cases, the management complexity is 
hidden behind the storage virtualization interface. 

 

2. Related Work 
Prior research on Redundant Arrays of Inexpensive1 Disks 
(RAIDs) [4] [5] proposed ways to improve on the performance 
and availability of physical disks by laying out a virtual-disk layer 
over a set of physical disks and employing different forms of 
redundancy to tolerate the additional failure modes. Note that 
although the RAID architecture improves on the performance and 
availability of single disks, RAID controllers still face scalability 
limits due to single-system capacity and physical packaging 
constraints. Today’ s on-demand data centers are equipped with 
large numbers of generally heterogeneous RAID controllers. 

The RAID abstraction offers three distinct advantages: (a) Block-
level storage virtualization, (b) disk-spindle parallelism, and (c) 
data redundancy. In more detail: (a) Storage virtualization at the 
block-level is defined as a mapping between a set of low-level 
disks to a set of high-level disks, the latter sometimes referred to 
as storage volumes. A typical RAID controller is a storage 
virtualization engine which, by appropriate choice of the storage 
virtualization mapping, can achieve: (b) increased performance 
through parallelism, achieved by striping or mirroring a storage 
volume over more than one disk; and (c) increased availability 
through data redundancy. With striping or mirroring data blocks, 
a stream of simultaneous accesses to a storage volume can be 
mapped to multiple underlying disk spindles, which can operate 
concurrently. RAID controllers typically achieve parallelism by 
using block-level striping (RAID levels 0, 5) or mirroring (RAID 
levels 1, 10). RAID schemes for data redundancy include a variety 
of techniques, such as parity (RAID 5), mirroring at the block 
level (RAID 1 and 10), and more recently, erasure codes. Most 
RAID schemes to date have been designed with the assumption of 
homogeneous underlying storage resources. RAIC, in contrast, is 
designed to support adaptation in the face of heterogeneity. 

The principles of the RAID architecture have been extended over 
network-accessible groups of disks in the Swift/RAID [7] and 

                                                                 
1 Because of the restrictiveness of “Inexpensive”, the ‘I’  in RAID is 

sometimes said to stand for “Independent” [5]. 



Zebra [12] systems, which are based on distributed data-striping 
and parity-based availability. These projects focused primarily on 
scaling storage-system performance in homogeneous distributed 
environments. Other projects such as HERA [8] and AdaptRAID 
[9] considered heterogeneous environments:  The HERA project 
proposed a RAID design over a set of heterogeneous disks by 
interposing a logical-disk abstraction between the two. HERA 
creates a set of homogeneous logical disks from a set of 
heterogeneous physical disks and builds the RAID abstraction on 
top of these logical disks. HERA considered both performance 
and availability of the resulting RAID abstraction; however, one 
drawback of the HERA approach is that it is specific to 
multimedia applications, which are read-mostly, throughput-
sensitive and use large I/O blocks. AdaptRAID is a more general 
approach in that it is geared towards general-purpose workloads 
and scientific applications. AdaptRAID proposed a block-
distribution algorithm to build a RAID disk array from 
heterogeneous set of disks. AdaptRAID arrays can achieve better 
throughput than standard RAID arrays, which typically assume 
that all disks have the lowest common capacity and speed. 
However, AdaptRAID does not consider availability tradeoffs in 
heterogeneous disk groups. 

A number of adaptive RAID schemes explored other approaches 
to adapting to heterogeneity. AutoRAID [18] is a storage system 
that internally performs migration of data blocks between RAID 
level 0 (mirrored) and RAID level 5 (parity protected), trading 
performance for storage efficiency. AutoRAID is able to internally 
and dynamically migrate data when new (and possibly larger-
capacity) disks are added to the array. AutoRAID is able to use all 
storage capacity but does not adapt to the performance and 
availability differential between disk drives. The WiND [19] 
project at Wisconsin explores a number of approaches to adapting 
to storage heterogeneity, such as storage-aware caching [24], 
exposing storage hints to the file system [26], and graceful 
degradation under disk failures in a RAID array controller [27]. 

Goal-oriented storage system design and management has been 
studied in the context of Hippodrome [16] and Stonehenge [15] 
projects among others. Hippodrome is a storage design approach 
that iteratively approximates a minimal-cost RAID array that is 
provisioned for a particular workload. Hippodrome combines 
trace-based workload characterization, table-based storage-device 
modeling, and an analytical storage-system model solver [17] 
based on a randomized multi-dimensional bin-packing algorithm. 
Stonehenge aims to enforce user-defined quality-of-service 
guarantees over a group of physical disks by using an approach 
termed measurement-based admission control (MBAC). While the 
general goal of Stonehenge is to guarantee QoS for multiple 
attributes of the virtual disks it creates, it currently focuses on 
performance and does not yet cover RAID schemes. RAIC is 
similar to Stonehenge in that it also aims to approximate multi-
dimensional QoS; RAIC however, follows a simpler, more 
practical approach, based on storage system characterization and 
administrator-defined policies. 

RAID arrays can theoretically achieve impressive availability 
levels in terms of MTTF metrics [4] [5]. However, other factors 
such as power outages, operator errors, scheduled down-time, etc., 
reduce the operational availability of storage controllers. To 
guard against controller unavailability, many enterprise and mid-
range RAID controllers, and more recently, storage virtualization 
controllers [6], provide a storage-volume replication (or 

mirroring) feature, which operates as shown in Figure 4. The 
primary use of volume replication today is for disaster recovery, 
as part of a cascaded data backup scheme that replicates data to a 
secondary, remote site. In such a cascaded data backup scheme, a 
synchronous mirroring relationship or peer-to-peer remote copy 
(PPRC) operation is performed between a storage volume and its 
mirror within the same site; at the same time, an asynchronous 
replication relationship is set up between that site and a remote 
backup site. 

 

 

 
 

Figure 4 Volume mirroring is a data-redundancy mechanism provided at the 
front-end of RAID storage controllers on top of the redundancy mechanism 
(parity, block mirroring) that the RAID controller implements in its storage 
back-end. The higher-level mirroring policies (e.g., failover handling, etc.) 
must be specified externally by the agent that configures the mirroring 
relationship. 

 

Recent research on planning for disaster recovery has focused 
primarily on increasing data integrity and availability to minimize 
financial penalties associated with data loss or unavailability [13]. 
An additional part of the financial cost of a solution is the cost of 
outlays, i.e., the cost of equipment, such as storage controllers and 
channel extenders. This work is closely related to RAIC; our 
focus, however, is in partial data center failures such as temporary 
storage controller outages, which are potentially more frequent 
and less severe than entire-site failures. Use of volume replication 
to survive controller failures within a single site has not been 
studied in depth and management software that makes extensive 
use of such a facility is not an integral part of on-demand 
infrastructure processes today. 

Automated availability management in a heterogeneous setting 
has recently been studied in the context of peer-to-peer systems 
[14]. This work is related to ours in that storage consumers can 
specify availability goals that the system tries to achieve by using 
redundancy techniques (replication and/or erasure coding) on top 
of the measured availability characteristics of individual hosts that 
are storing data. This work, however, does not take into account 
multiple storage attributes (e.g., performance in addition to 
availability), it uses availability measures that are more 
appropriate for the Internet, and is geared towards environments 



with significant “ churn” , i.e., high frequency of storage hosts 
entering and departing the system. 

Brown and Patterson [10] made the case for characterizing system 
availability using a benchmarking methodology. In their 
approach, they considered availability as a spectrum rather than a 
simple binary metric (“ up”  or “ down” ) or even an average of the 
percentage of time that a system is available. They took into 
account various states of degraded performance and rejected the 
notion that availability can be defined at a point in time or as a 
simple average over time. Instead, they propose examining the 
variations in a system’ s quality of service over time, where the 
notion of quality of service varies depending on the type of system 
studied. For storage systems, as well as for most servers, 
performance (e.g., IOs/sec) and degree of fault tolerance (e.g., 
number of failures that can be tolerated) are two obvious metrics. 
Brown and Patterson proposed taking availability measurements 
while injecting one or more faults and using graphs and numerical 
summaries of these time-dependent measurements as system-
availability characterizations. 

Existing high-availability specifications such as IBM’ s Highly-
Available Cluster Multi-Processing (HACMP) [21] require either 
volume mirroring at the LVM level or RAID data redundancy 
within a storage controller to achieve high availability. However, 
for large data sets that have to span multiple controllers, possibly 
of different characteristics and capabilities, a new methodology 
that provides stronger availability guarantees is required. RAIC is 
positioned to fill this need. 

3. Redundant Arrays of Independent Controllers 
Redundant Arrays of Independent Controllers, or RAIC, is a new 
storage management architecture that can approximate user-
specified capacity, performance, and availability goals in on-
demand data centers. RAIC distributes storage objects over 
groups of underlying storage volumes from one or more 
heterogeneous back-end storage controllers. Key tasks of RAIC 
are the composition of storage resources from groups of 
heterogeneous storage volumes, and the availability and 
performance management of these storage resources. RAIC reacts 
to dynamic conditions such as requests for additional storage 
capacity extensions, or environmental changes, such as transient 
or long-term failures of RAID controllers. On each such action, 
RAIC policies take into account knowledge about the current state 
of the system. For example, detailed on-site classification of the 
availability of RAIC controllers, as described in Section 3.2, is 
critical in achieving availability goals and rapidly recovering from 
planned or accidental controller down-time. RAIC policies can 
also include administrator beliefs in the dependability of on-site 
storage controllers. 

The central component of RAIC, whose architecture is depicted in 
Figure 5, is the Volume Manager (VM). The RAIC VM is 
responsible for creating RAIC Volume Groups (VGs), which are 
collections of storage volumes imported from back-end RAID 
controllers and associated with certain capacity, availability and 
performance characteristics [22] [23]. Storage consumers that use 
RAIC as a storage manager, import storage volumes carved out of 
RAIC VGs. The RAIC VM contains policies to create and extend 
a VG, and to proactively or reactively handle dynamic state 
changes such as transient or long-term underlying storage volume 
unavailability. 

 

 

 

Figure 5 The RAIC VM composes or extends VGs according to 
capacity, performance, and availability goals. RAIC responds to changes 
in controller-availability state using availability and performance 
classification of RAID controllers as well as administrator input. 

 

The underlying storage volumes managed by RAIC are 
characterized by their storage capacity and the identity of their 
respective back-end storage controllers. Ideally, these storage 
volumes would be associated with specific performance and 
availability characteristics, as is currently the case with disk 
drives. Such guarantees, however, are hard to achieve for storage 
volumes exported from RAID controllers. To account for this lack 
of availability and performance guarantees, the RAIC VM collects 
and maintains information about the underlying storage volumes 
and the back-end controllers that export them. This information is 
used along with RAIC policies to best approximate the capacity, 
availability, and performance characteristics associated with the 
RAIC VGs. The information collected and maintained by the 
RAIC VM, as shown in Figure 6, consists of capacity and 
implementation characteristics of the underlying storage volumes; 
performance and availability characterization of the back-end 
storage controllers; and the level of failure-independence between 
storage controllers. 

3.1 Storage Volume Characteristics 
The RAIC VM collects information from back-end storage 
controllers regarding the capacity, implementation and access 
paths of storage volumes. This information is used to determine 
whether any two storage volumes contend for resources, such as 
physical-disk spindles (e.g., if they are carved out of the same 
RAID disk group on the same controller) or data paths through a 
single controller or through the storage-area network. The lower 
the level of contention between two storage volumes, the closer 
these storage volumes are to being branded performance isolated 
[25]. This information becomes particularly important when it is 
critical to achieve the performance goals in a VG. Some of this 
information can be collected through storage management 
interfaces such as SMI-S [28]. 

 



 
 

Figure 6 Information about storage controllers and storage volumes 
collected and maintained by RAIC. 

 

3.2 Storage Controller Availability 
The RAIC VM collects and maintains information about back-end 
storage controller availability. This information is frequently 
updated automatically and also through administrator input, to 
reflect the administrator’ s experience and confidence of back-end 
storage controller’ s operating behavior. Most of today’ s RAID 
controllers that are classified as Highly Available (HA) are built 
using redundant hardware components to sustain failure of any 
single hardware component. Their effective availability, however, 
depends significantly on other factors, such as the design and 
behavior of their systems management software with respect to 
transient errors, its recovery policies, environmental factors such 
as installation issues, operator errors, etc. Our empirical evidence 
suggests that the intervals of unavailability of highly-available 
controllers as a side effect of operator errors or simply during 
heavyweight administrative tasks are not negligible. In addition, 
some data centers include mid-range or low-end RAID controllers 
that do not offer a high degree of hardware redundancy and as 
such, certain types of failures such as transient faults can render 
such controllers inaccessible. 

The availability of RAID controllers depends in part upon the 
reliability of the SAN fabric, the controller hardware and software 
components, and its disk drives [5]. Disk drives typically operate 
for long time intervals before failing (MTTFs of modern disks are 
in the order of 100,000 hours). When they fail, they are almost 
always replaced rather than repaired. Sometimes a “ stutter”  time 
interval precedes failure [20]. Storage controllers on the other 
hand, after experiencing a period of unavailability, they are nearly 
always repaired rather than replaced. Moreover, controller down-
time is not always due to component failures. Periodic 
maintenance and other corrective and preventive actions 
contribute to controller down-time, making operational 

availability more appropriate as a measure of controller 
availability, as expressed in the following equation: 

Availability = MTBM / (MTBM + MDT). 

The history of a storage controller’ s mean-time-between-
maintenance (MTBM) and mean downtime (MDT) is a good 
indicator of its future availability behavior. This information can 
be useful and used in addition to MTTF, MTBF, and MTTR 
metrics that are usually published by the storage controller 
vendor. Finally, additional input in the form of administrator 
beliefs about a controller’ s availability, which take into account 
environmental factors such installation issues, lack of power-line 
redundancy, etc., are also part of a storage controller’ s 
characterization. 

For the purpose of this paper, we suggest a discrete availability 
classification (µ )    of storage controllers and leave more details of 
this characterization for future work. This availability scale ranges 
from 0 to 1, as shown in Figure 7. Note two important points 
about this availability classification: First, the mapping of a RAID 
storage controller to a certain availability level is dynamic and 
periodically re-evaluated; this characterization may change based 
on current conditions such as confidence on the systems 
management software and operator experience. Second, certain 
high availability levels (e.g., µ = 0.99) may not be achievable by 
any single RAID controller alone, but only through an external 
management system such as RAIC. 

 

 

 

Figure 7 A storage controller can dynamically move between availability 
levels based on its history and current confidence on its operating 
parameters. Achieving arbitrarily high levels of availability (such as µ = 
0.99) may only be possible with techniques such as those used by RAIC. 

 

3.3 Storage Controller Failure-Independence 
The RAIC VM collects failure-independence measurements 
between storage controllers. When including storage volumes 
from several back-end storage controllers in a RAIC VG, the 
overall availability of the VG depends on the failure-
independence of the back-end storage controllers. Standard 
RAID-array availability calculations make the assumption that 
back-end disk drives operate with independent failure modes [5]. 
This assumption does not always hold for storage volumes carved 
out of different storage controllers in typical data centers. For 
example, in many cases, groups of storage controllers are powered 
from the same power line(s) or are accessible from the same SAN 
switch, etc. Such storage controllers (and therefore all storage 
volumes exported from them) are failure-dependent. RAIC 



collects information from administrators about the failure-
dependency of storage controllers and uses it in availability 
calculations of VGs. 

4. RAIC Implementations 
In this paper we describe two possible RAIC implementations. 
The first implementation extends the MLH-RAID scheme 
described in Section 1.3. In such a setup, the RAIC functionality 
adds information and policies, necessary to handle storage 
volumes from multiple heterogeneous controllers, to a simple-
minded RAID implementation. For example, additional data 
redundancy and stripping over lower-quality disks as well as 
storage-aware caching [24] can improve the overall performance 
and availability of a heterogeneous parity group. In the second 
implementation, RAIC is integrated with a storage virtualization 
controller, using externally-implemented mirroring operations to 
strengthen data availability guarantees. In the remainder of the 
paper, we will refer to such an implementation as RAIC-SVC. We 
believe that both implementation options are practically viable 
and equally promising. Due to space limitations, in this paper we 
focus on the second implementation. 

A RAIC-SVC Volume Group is composed of two sets of 
underlying storage volumes: an Active Set and a Mirror Set. The 
Active Set contains storage volumes from one or more back-end 
storage controllers, chosen based on the capacity and performance 
goals. The Mirror Set contains storage volumes from one or more 
back-end storage controllers that mirror selected storage volumes 
from the Active Set. The storage volumes in the Mirror Set are 
chosen based on the data availability goals. The RAIC VM is 
careful to mirror volume across controllers with independent 
failure modes. Data accesses are performed on the Active Set and 
updates are reflected to the Mirror Set via the mirroring 
relationships set up by RAIC. In the event of controller failure(s), 
RAIC maintains data access by failing over to the surviving 
storage volume(s). 

 

 

 

Figure 8  An example of a RAIC-SVC VG configuration. 

 

Note that RAIC separates the management of storage capacity and 
performance (i.e., the composition of the Active Set), from the 
management of storage object availability (i.e., the composition of 
the Mirror Set and the replication relationships between the 
Active and Mirror Sets). In the remainder of this paper we focus 
primarily on the management of availability. One reason behind 
our choice is that there already exists previous research addressing 

the issue of performance over heterogeneous storage volumes [8] 
[9] [19]. Another reason is a prevailing belief in the systems 
community that availability planning and recovery-oriented 
computing are a key priority in systems research today [10] [11]. 

Next, we describe the policies used in creating and extending 
RAIC-SVC VGs, and in proactively or reactively responding to 
events that signal a change in the state of a VG. 

4.1 Creating a RAIC-SVC Volume Group 
When creating volume groups, RAIC-SVC first considers whether 
striping over multiple underlying storage volumes is necessary. 
This would be the case if the overall performance goal of the VG 
exceeds the capabilities of any single back-end RAID controller; 
if so, RAIC-SVC will stripe data over multiple volumes. It is 
possible that striping may be necessary on only a subset of the 
volumes comprising the VG. This subset may be comprised of 
lower-performance volumes in a heterogeneous VG. An important 
issue is the unit of striping; RAIC will decide on the stripe size 
taking into account application workload characteristics. 

 

 

 

Figure 9  A realization of the VG configuration of Figure 8. 

 

RAIC-SVC uses the following policies when creating a volume 
group: Initially, it attempts to find a single back-end storage 
controller that satisfies both the performance and availability 
goals of the VG. The reason for doing this is to be able to get as 
close as possible to the performance goal with minimal 
availability loss. If a single storage controller can be found, 
RAIC-SVC tries to allocate all underlying storage volumes in the 
VG from that storage controller (greedy approach). RAIC-SVC 
also uses guidance policies reflecting business or other goals in 
selecting a suitable storage controller. If there is no single storage 
controller with the desired capacity, RAIC-SVC looks for 
multiple storage controllers with similar characteristics. When 
performance is critical in a VG, RAIC-SVC chooses to allocate 
performance-isolated storage volumes (Section 3.1). 

After it allocates a number of storage volumes that can satisfy the 
capacity and approximate the performance goals of the VG, it 
adds these volumes to the Active Set. RAIC-SVC then proceeds 
to choose a number of storage volumes for the Mirror Set and set 
up a sufficient number of mirroring relationships to achieve the 
availability goals of the VG. Mirroring will be necessary for two 
reasons: (a) a RAIC VG may contain volumes from a single back-



end RAID controller but may have an availability goal that 
exceeds the capabilities of the controller, or (b) a RAIC VG may 
contain storage volumes from several back-end RAID controllers. 

4.1.1 Examples 
Next, we will provide examples where mirroring helps achieve the 
availability goals of a data set even as the latter grows 
dynamically to incorporate storage volumes spanning 
heterogeneous (and sometimes lower quality) storage arrays. In all 
examples we assume failure-independence between all controllers. 

In the example of Figure 10, we assume that the availability of 
each individual RAID array is µ = 0.9 (this can be interpreted as 
meaning “ the array is available 90% of the time” ) but the storage 
consumer has set an availability goal of 0.99. By mirroring each 
volume of RAID controller A to a volume on RAID controller B, 
the overall availability of the system is improved to 0.99 as the 
following calculation shows: 

 

Availability = Pr[RAID Array A or RAID Array B available] =  

       = 1 – Pr[RAID Array A & RAID Array B unavailable] = 

       = 1 – (1 - µ)2 . 

 

For µ = 0.9, the overall availability matches our goal of 0.99. The 
above example demonstrates the case where a RAIC-exported 
storage volume can achieve higher availability than any of the 
underlying storage controllers are individually capable of 
providing. 

 

 

 

Figure 10 Strengthening availability by mirroring across storage RAID 
array controllers. In this example, the two storage controllers are 
equivalent and characterized by availability µ. Note that RAIC provides 
the failover capability required in case of failure of RAID controller A. 

 

In the example of Figure 11 we show how a storage object which 
is allocated or dynamically extended using storage volumes of 
different capabilities can compensate for differences in the 
availability characteristics of its subcomponents. In this example, 
RAIC starts allocating storage volumes for a volume group from 

RAID controller A, which matches the VG availability goal of� 
µ = 0.90. However, as RAID controller A eventually runs out of 
space, a subsequent capacity extension request will have to 
allocate storage volumes from RAID controller B, which offers a 
lower availability level of µB = 0.80. To be able to match the 
availability goal of µ = 0.90, RAIC will decide to mirror each 
storage volume of RAID controllers A and B to storage volumes 
on RAID controllers C and D, respectively. In the resulting RAID 
controller pairs AC and BD, it is sufficient for a single controller 
in a pair to be available for the storage volumes in the pair to be 
available. The improved availability of the system is calculated as 
follows: 

 

Availability = Pr[RAID Pair AC & RAID Pair BD available] =  

   = 1 – Pr[RAID Pair AC or RAID Array Pair BD unavailable] = 

   = 1 – [(1 - µA) (1 - µC) + 

+ (1 - µB)(1 - µD) – (1 - µA)(1 - µB)(1 - µC)(1 - µD)]. 

 

For the values of µA=0.90, µB=0.80, µC=0.80, µD=0.80 in this 
example, the overall availability is 0.948, which achieves and 
slightly exceeds our goal of 0.90. 

In the general case, when formulas calculating effective 
availability cannot be easily inverted, RAIC-SVC will enumerate 
the effective availability resulting out of using a group of RAID 
controllers of different characteristics (µi) and will decide on the 
appropriate level of redundancy needed by inspection of the 
availability (A-µi) point graph. 

 

 

 

Figure 11 Maintaining availability goals for a RAIC volume group as 
the latter grows and incorporates storage volumes across RAID controllers 
of varying capabilities. In this example, primary RAID controllers A and 
B are characterized by availability levels µA and µB, respectively. 
Secondary RAID controllers C and D are characterized by availability 
levels µC and µD, respectively. 

 

4.2 Extending a RAIC-SVC Volume Group 
When extending a volume group, as in the initial-allocation 
policies, RAIC-SVC picks a storage volume that is as close as 



possible in terms of capabilities to the storage volumes already in 
the VG. If lower-performance volumes are included in the VG, 
additional striping over those volumes may be necessary to 
improve performance through spindle parallelism. Similar to the 
initial-allocation case, mirroring may be necessary to improve 
availability guarantees. 

4.3 Reacting to Dynamic State Changes 
One of the key tasks of the RAIC-SVC VM is to establish and 
maintain the state of a set of volume replication relationships 
between underlying storage volumes. It does so transparently to 
applications that use the high-level storage volumes exported by 
RAIC. To achieve this, RAIC is able to respond to a number of 
events that signal a change in the state of a replication relationship 
between underlying storage volumes in back-end RAID 
controllers. In particular, RAIC policies respond to indications of 
storage volume unavailability by taking into account up-to-date 
information about the state of each back-end controller; RAIC 
dynamically characterizes failures as transient or permanent and 
adjusts its response accordingly. 

Next, we give an example of how RAIC-SVC responds to the 
following events: (a) Failure of the primary volume in a 
replication relationship: If RAIC-SVC does not expect rapid 
recovery of the primary volume, it will break the replication 
relationship; it will then use the secondary volume (mirror) as the 
new primary, allocate a new secondary volume, and establish a 
new replication relationship. If however it expects that the 
primary volume will recover soon (based on past history or hints 
provided by a systems administrator), RAIC-SVC will failover to 
the secondary volume (to quickly resume operations) but will not 
allocate a new secondary volume; instead, it will wait for the 
previous primary to re-appear. When this happens, it will re-
establish the mirroring relationship in the reverse direction. This 
is expected to significantly reduce the overhead of synchronizing 
the two volumes. Another event handled by RAIC-SVC is the (b) 
failure of a secondary volume in a replication relationship: This 
event signals temporary reduction of the availability guarantees of 
the VG; in this case, just like in case (a), RAIC-SVC will either 
wait for the secondary volume to re-appear or it will proceed with 
setting up a new replication relationship to a new secondary 
volume. The tradeoff in both cases is between the duration of the 
downgraded availability time window vs. the overhead of setting 
up a new replication relationship and synchronizing the two 
volumes, which may require significant data movement. 

RAIC can handle other dynamic state-change events, in addition 
to primary and secondary storage-volume failures. More details 
are left for future work. 

4.4 Proactive Actions 
Besides handling dynamic events that require an immediate 
response, such as controller failures, RAIC includes policies that 
proactively modify the state of the system in anticipation of such 
events. One example is taking early failover action or reversing a 
replication relationship when a storage controller hosting one or 
more primary storage volumes is deemed to be imminently failing 
or scheduled to soon be taken out of service. RAIC decides that a 
controller’ s availability is declining either by consulting with 
measurements showing that its performance is degrading (a sign 
of imminent failure, similar to disk drives [20]) or by explicitly 
being informed by an administrator through policy. A key benefit 

of proactive action is significant overall reduction in recovery 
time. 

5. Conclusions 
In this paper we argue that, in today’ s on-demand data centers, 
there is a need to scale the storage capacity, availability, and 
performance of data objects (e.g., file systems or database table-
spaces) beyond the boundaries of a single storage controller. 
Distributing data objects over multiple controllers requires use of 
data-redundancy techniques to account for the additional failure 
modes. A problem with achieving such data distribution is the 
lack of information, such as the characteristics of storage volumes, 
the expected availability of storage controllers, and the failure-
independence between storage controllers. Our proposed system 
architecture, the Redundant Arrays of Independent Controllers 
(RAIC), collects this information through a variety of sources: 
storage administration interfaces; past history of controller 
availability; administrator input about installation and planning 
issues that can affect future availability and dependence on 
controllers. This information is used by RAIC to approximate 
availability and performance goals of application data objects. In 
addition, it is used by RAIC policies to adapt to dynamic state-
changes, such as scheduled or accidental storage controller down-
time. We are currently in the process of implementing a RAIC 
prototype and plan to report our experience in a future paper. 
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