
RAIC: Scaling Storage Availability and Performance
in On-Demand Data Centers

Kostas Magoutis, Murthy Devarakonda, Norbert Vogl, Kaladhar Voruganti

IBM Research

Abstract
Redundant Arrays of Independent Controllers (RAIC) is a new
methodology for increasing the availability and performance of
storage resources in on-demand enterprise data centers. Currently,
large and dynamically-growing data sets, typical in e-business on-
demand workloads, are constrained by the capacity, availability
and performance boundaries of individual RAID controllers.
Simple approaches to extending such data sets over multiple
RAID controllers result in reduced availability guarantees. Some
of the challenges in improving performance by distributing data
sets over many RAID controllers include the heterogeneity in the
underlying storage resources as well as the lack of information
about their characteristics. RAIC is a new methodology to
compose storage objects according to user-specified performance
and availability goals, which may exceed the capabilities of any
single individual RAID controller. RAIC policies ensure that the
capacity of storage objects can be extended while maintaining
performance and availability goals, even in heterogeneous
environments including different types of RAID controllers.

1. Introduction
A key objective in today’s e-business on-demand environments is
to provide applications with uninterrupted access to a large pool
of storage servers over a storage-area network (SAN). The storage
servers in such environments are typically RAID-array controllers.
Storage objects such as file systems or database tables are layered
over virtual-disk abstractions commonly referred to as logical
volumes, which in turn map to storage volumes (otherwise known
as LUNs) exported from storage controllers. An example of this
storage hierarchy is shown in Figure 1. Some enterprise data-
centers consist of homogeneous, often identical, storage
controllers. Such environments are nearly always the result of a
strategic partnership between an enterprise and a storage systems
vendor. Many e-business on-demand environments see such
partnerships as too limiting and thus opt for the flexibility of a
migration path to the vendors that offer the best price/performance
benefits. This is a reason that many of today’s data centers consist
of heterogeneous storage resources, which can be storage
controllers from different vendors or from different generations of
a controller type. Cost tradeoffs as well as rapid technological
advances often result in new generations of a storage controller
coming into service before old generations complete their useful
lifecycle.

Two important challenges in on-demand data centers today are (a)
the mapping of dynamically-growing storage objects to a pool of
heterogeneous storage controllers, in a scalable and seamless

manner, and (b) the reduction in the complexity of managing the
storage resources. In this paper, we present a methodology that
addresses the first challenge. This methodology can be
implemented within a storage virtualization service, which
reduces the complexity of storage management by providing a
common administration interface across heterogeneous storage
resources.

1.1 Storage allocation models
Modern applications using a range of data-management systems,
from file systems to databases, have certain performance and
availability goals such as a certain level of I/O operations per
second, mean-time-to-failure (MTTF) etc., metrics. These
applications require system support for mapping their
performance and availability goals to storage resources with the
appropriate capabilities. A common practice is to assign each data
object (e.g., a file system or a database table-space) of a storage
consumer to a single storage controller as shown in Figure 1. We
refer to this practice as the one-to-one storage allocation model.
The most important benefit of the one-to-one model is its
simplicity: storage characteristics such as performance and
availability of a data object are directly mapped to the well-
defined capabilities of a single storage controller.

Figure 1 Storage volumes that make up a data object (e.g., a file system
or a database table-space), map to a single storage controller in the one-to-
one storage allocation model.

The simple one-to-one storage allocation model however, has two
important drawbacks: First, a data object is constrained by the
single-system limits of the storage controller (e.g. storage

capacity, performance, and availability level). This problem can
be partially addressed by using enterprise-class storage
controllers, which provide large capacity, high performance, and
high availability. A problem with this approach is the high cost of
enterprise-class storage controllers. The second drawback of the
one-to-one model is that unused storage capacity in a group of
storage controllers cannot be combined to create a data object.
This problem of internal fragmentation of storage controller
capacity leads to suboptimal storage utilization.

However, the most significant drawback of the one-to-one model
is its limited scalability for data objects whose storage
requirements grow, eventually exceeding the capabilities of any
single RAID controller in terms of capacity, performance, or
availability. A natural extension is a model that maps data objects
to more than one controller, which we term the one-to-many
model. While this model offers the potential to achieve the desired
scalability characteristics, these characteristics depend on the
performance and availability capabilities of many storage
controllers. This dependence is particularly complex in the case of
heterogeneous controllers. The one-to-many allocation model is
not widely deployed because the only way to manage its
complexity today is manually, by highly-skilled system
administrators.

Besides the issue of storage allocation, another challenge in on-
demand data centers is the lack of a single administrative interface
across heterogeneous controllers. A single management interface
is expected to reduce administration complexity and thus the total
cost of ownership (TCO). A solution that promises to address this
problem and has recently started to be deployed is block-level
storage virtualization.

1.2 Storage Virtualization
Block-level storage virtualization [1] [2] [3] is the aggregation of
storage resources into a single storage pool, managed from a
single administration point. Storage virtualization provides: (a) a
common administrative interface across homogeneous or
heterogeneous storage resources, reducing administration costs;
(b) better resource utilization, by aggregating previously
unconnected storage “islands”, and by consolidating all available
storage volumes across storage controllers; and (c) the
opportunity to implement advanced storage functions such as
point-in-time copying and mirroring over all back-end storage
resources, irrespective of the capabilities of the back-end
controllers. Block-level storage virtualization can be implemented
at various levels in a SAN: on application servers by logical
volume managers (LVMs); in network elements (e.g., intelligent
switches and routers [3]); or in dedicated storage virtualization
controllers [2] [6], as shown in Figure 2.

An overriding concern in the design and implementation of
storage virtualization engines is how to minimize the impact of
virtualization on the performance (e.g., response time) and
availability of back-end storage resources. In other words, the key
challenge they face is to preserve the quality of service of the
back-end storage controllers. For this reason most virtualization
engines today take pains to impose minimal performance
penalties, and ensure that the availability of the virtualizer itself is
not lower than that of the storage controllers it exports.
Techniques used to minimize the performance penalties include
aggressive non-volatile caching for read and write I/O, scalable
clustered designs, and lightweight implementations within

network elements such as host-bus adapters (HBAs) or network
switches. High availability of the virtualization service itself can
generally be achieved with sufficient hardware redundancy and
high-availability software features. A clustered storage
virtualization controller has demonstrated such a highly-available
design [2].

Figure 2 In this example, a storage virtualization controller imports
storage volumes from storage controllers of type A and B into separate
volume groups. Each storage volume exported by the virtualization
controller is carved out of one of these volume groups. Note that this is
equivalent to performing storage allocation using the one-to-one model.

Most deployments of storage virtualization services use the one-
to-one model for storage allocation and management. This means
that storage volumes from each back-end storage controller form a
separate volume group, as shown in Figure 2. In this way, a
volume group is available when the back-end storage controller it
corresponds to is available, and the volume-group performance
approximates the performance of that back-end controller. In
other words, the quality of service of the back-end storage
controllers is preserved. An opportunity to combine the benefits
of virtualization with the strengthening of storage characteristics
exists with stacking RAID layers in a SAN, as described in the
next section.

1.3 Stacking Multiple RAID Levels in a SAN
In principle, it is possible to replace physical disks in the back-
end of a RAID controller with storage volumes imported from
other RAID controllers. In this way, RAID disk (or parity) groups
may be composed out of combinations of heterogeneous disk
resources, including physical disks as well as external storage
volumes, as shown in Figure 3. We use the term Multi-Level
Heterogeneous RAID (MLH-RAID) for this scheme. In MLH-
RAID, each subsequent RAID level can be used to strengthen the
performance and availability provided by its preceding RAID
level. For example, to implement RAID-1 at the second level of a
two-level MLH-RAID hierarchy as the one shown in Figure 3, the
second-level RAID controller will mirror data blocks on two
separate first-level storage volumes, which may in turn be
implemented using RAID-5 over groups of physical disks at the
first-level RAID controllers. There are two key differences

between MLH-RAID and a storage virtualization controller:
RAID controllers are designed to improve on the performance and
availability of back-end disks by taking advantage of disk-spindle
parallelism and opportunities for data redundancy. The downside
of this is that RAID controllers are expected to impose a
performance penalty on the I/O data path due to the complexity of
the RAID scheme. This is a fundamental tradeoff between MLH-
RAID and storage virtualization controllers.

Note that there are a number of shortcomings with a simple-
minded MLH-RAID implementation. First, standard RAID array
implementations lack adaptivity to heterogeneous disk groups and
are unaware of special availability characteristics of the
underlying storage controllers. Second, storage volumes from a
single storage controller are failure-dependent and should be used
in different parity groups; as a result, one would need a significant
number of controllers to match the desired parity-group sizes.

Figure 3 In a multi-layered RAID scheme, higher-level RAID controllers
can create RAID disk (or parity) groups from heterogeneous storage
devices, which may include direct-attached physical disk drives as well as
storage volumes imported from lower-level RAID controllers.

In this paper, we emphasize that combining a storage
virtualization service with an automated method of transforming
the quality of service of a collection of heterogeneous storage
resources by applying the one-to-many allocation model, is the
key to achieving scalability in on-demand data centers. Two road-
blocks to any such storage system implementation today are (a)
the lack of complete information about the characteristics of the
underlying heterogeneous storage resources, and (b) the lack of
system policies to take advantage of this information. Our
proposed system architecture, the Redundant Arrays of
Independent Controllers (RAIC), addresses these shortcomings.
RAIC can be implemented as an extension to an existing storage-
management system that already provides basic virtualization
services. In addition, RAIC enables the composition of storage
volumes that can approximate the desired availability and
performance goals by combining storage resources from a
sufficient number of heterogeneous RAID storage controllers.
RAIC automates the management of one-to-many allocation
policies by collecting knowledge about the characteristics and

capabilities of the underlying RAID controllers, as well as
administrator preferences, and by feeding them to a set of policies
to handle events such as requests for additional storage capacity
or storage controller failures, without downgrading the desired
availability and performance of high-level storage objects.

Our contributions in this paper are the following:

• We describe the RAIC storage management architecture,
which helps existing storage virtualization systems scale
storage capacity, availability, and performance over a
collection of heterogeneous controllers.

• We identify the information that RAIC needs to collect about
storage resources. We also identify policies that RAIC uses
to compose storage objects according to application goals
and to adapt to changing conditions.

• We describe possible implementations of RAIC as part of a
storage virtualization controller or in an MLH-RAID storage
controller. In both cases, the management complexity is
hidden behind the storage virtualization interface.

2. Related Work
Prior research on Redundant Arrays of Inexpensive1 Disks
(RAIDs) [4] [5] proposed ways to improve on the performance
and availability of physical disks by laying out a virtual-disk layer
over a set of physical disks and employing different forms of
redundancy to tolerate the additional failure modes. Note that
although the RAID architecture improves on the performance and
availability of single disks, RAID controllers still face scalability
limits due to single-system capacity and physical packaging
constraints. Today’ s on-demand data centers are equipped with
large numbers of generally heterogeneous RAID controllers.

The RAID abstraction offers three distinct advantages: (a) Block-
level storage virtualization, (b) disk-spindle parallelism, and (c)
data redundancy. In more detail: (a) Storage virtualization at the
block-level is defined as a mapping between a set of low-level
disks to a set of high-level disks, the latter sometimes referred to
as storage volumes. A typical RAID controller is a storage
virtualization engine which, by appropriate choice of the storage
virtualization mapping, can achieve: (b) increased performance
through parallelism, achieved by striping or mirroring a storage
volume over more than one disk; and (c) increased availability
through data redundancy. With striping or mirroring data blocks,
a stream of simultaneous accesses to a storage volume can be
mapped to multiple underlying disk spindles, which can operate
concurrently. RAID controllers typically achieve parallelism by
using block-level striping (RAID levels 0, 5) or mirroring (RAID
levels 1, 10). RAID schemes for data redundancy include a variety
of techniques, such as parity (RAID 5), mirroring at the block
level (RAID 1 and 10), and more recently, erasure codes. Most
RAID schemes to date have been designed with the assumption of
homogeneous underlying storage resources. RAIC, in contrast, is
designed to support adaptation in the face of heterogeneity.

The principles of the RAID architecture have been extended over
network-accessible groups of disks in the Swift/RAID [7] and

1 Because of the restrictiveness of “Inexpensive”, the ‘I’ in RAID is

sometimes said to stand for “Independent” [5].

Zebra [12] systems, which are based on distributed data-striping
and parity-based availability. These projects focused primarily on
scaling storage-system performance in homogeneous distributed
environments. Other projects such as HERA [8] and AdaptRAID
[9] considered heterogeneous environments: The HERA project
proposed a RAID design over a set of heterogeneous disks by
interposing a logical-disk abstraction between the two. HERA
creates a set of homogeneous logical disks from a set of
heterogeneous physical disks and builds the RAID abstraction on
top of these logical disks. HERA considered both performance
and availability of the resulting RAID abstraction; however, one
drawback of the HERA approach is that it is specific to
multimedia applications, which are read-mostly, throughput-
sensitive and use large I/O blocks. AdaptRAID is a more general
approach in that it is geared towards general-purpose workloads
and scientific applications. AdaptRAID proposed a block-
distribution algorithm to build a RAID disk array from
heterogeneous set of disks. AdaptRAID arrays can achieve better
throughput than standard RAID arrays, which typically assume
that all disks have the lowest common capacity and speed.
However, AdaptRAID does not consider availability tradeoffs in
heterogeneous disk groups.

A number of adaptive RAID schemes explored other approaches
to adapting to heterogeneity. AutoRAID [18] is a storage system
that internally performs migration of data blocks between RAID
level 0 (mirrored) and RAID level 5 (parity protected), trading
performance for storage efficiency. AutoRAID is able to internally
and dynamically migrate data when new (and possibly larger-
capacity) disks are added to the array. AutoRAID is able to use all
storage capacity but does not adapt to the performance and
availability differential between disk drives. The WiND [19]
project at Wisconsin explores a number of approaches to adapting
to storage heterogeneity, such as storage-aware caching [24],
exposing storage hints to the file system [26], and graceful
degradation under disk failures in a RAID array controller [27].

Goal-oriented storage system design and management has been
studied in the context of Hippodrome [16] and Stonehenge [15]
projects among others. Hippodrome is a storage design approach
that iteratively approximates a minimal-cost RAID array that is
provisioned for a particular workload. Hippodrome combines
trace-based workload characterization, table-based storage-device
modeling, and an analytical storage-system model solver [17]
based on a randomized multi-dimensional bin-packing algorithm.
Stonehenge aims to enforce user-defined quality-of-service
guarantees over a group of physical disks by using an approach
termed measurement-based admission control (MBAC). While the
general goal of Stonehenge is to guarantee QoS for multiple
attributes of the virtual disks it creates, it currently focuses on
performance and does not yet cover RAID schemes. RAIC is
similar to Stonehenge in that it also aims to approximate multi-
dimensional QoS; RAIC however, follows a simpler, more
practical approach, based on storage system characterization and
administrator-defined policies.

RAID arrays can theoretically achieve impressive availability
levels in terms of MTTF metrics [4] [5]. However, other factors
such as power outages, operator errors, scheduled down-time, etc.,
reduce the operational availability of storage controllers. To
guard against controller unavailability, many enterprise and mid-
range RAID controllers, and more recently, storage virtualization
controllers [6], provide a storage-volume replication (or

mirroring) feature, which operates as shown in Figure 4. The
primary use of volume replication today is for disaster recovery,
as part of a cascaded data backup scheme that replicates data to a
secondary, remote site. In such a cascaded data backup scheme, a
synchronous mirroring relationship or peer-to-peer remote copy
(PPRC) operation is performed between a storage volume and its
mirror within the same site; at the same time, an asynchronous
replication relationship is set up between that site and a remote
backup site.

Figure 4 Volume mirroring is a data-redundancy mechanism provided at the
front-end of RAID storage controllers on top of the redundancy mechanism
(parity, block mirroring) that the RAID controller implements in its storage
back-end. The higher-level mirroring policies (e.g., failover handling, etc.)
must be specified externally by the agent that configures the mirroring
relationship.

Recent research on planning for disaster recovery has focused
primarily on increasing data integrity and availability to minimize
financial penalties associated with data loss or unavailability [13].
An additional part of the financial cost of a solution is the cost of
outlays, i.e., the cost of equipment, such as storage controllers and
channel extenders. This work is closely related to RAIC; our
focus, however, is in partial data center failures such as temporary
storage controller outages, which are potentially more frequent
and less severe than entire-site failures. Use of volume replication
to survive controller failures within a single site has not been
studied in depth and management software that makes extensive
use of such a facility is not an integral part of on-demand
infrastructure processes today.

Automated availability management in a heterogeneous setting
has recently been studied in the context of peer-to-peer systems
[14]. This work is related to ours in that storage consumers can
specify availability goals that the system tries to achieve by using
redundancy techniques (replication and/or erasure coding) on top
of the measured availability characteristics of individual hosts that
are storing data. This work, however, does not take into account
multiple storage attributes (e.g., performance in addition to
availability), it uses availability measures that are more
appropriate for the Internet, and is geared towards environments

with significant “ churn” , i.e., high frequency of storage hosts
entering and departing the system.

Brown and Patterson [10] made the case for characterizing system
availability using a benchmarking methodology. In their
approach, they considered availability as a spectrum rather than a
simple binary metric (“ up” or “ down”) or even an average of the
percentage of time that a system is available. They took into
account various states of degraded performance and rejected the
notion that availability can be defined at a point in time or as a
simple average over time. Instead, they propose examining the
variations in a system’ s quality of service over time, where the
notion of quality of service varies depending on the type of system
studied. For storage systems, as well as for most servers,
performance (e.g., IOs/sec) and degree of fault tolerance (e.g.,
number of failures that can be tolerated) are two obvious metrics.
Brown and Patterson proposed taking availability measurements
while injecting one or more faults and using graphs and numerical
summaries of these time-dependent measurements as system-
availability characterizations.

Existing high-availability specifications such as IBM’ s Highly-
Available Cluster Multi-Processing (HACMP) [21] require either
volume mirroring at the LVM level or RAID data redundancy
within a storage controller to achieve high availability. However,
for large data sets that have to span multiple controllers, possibly
of different characteristics and capabilities, a new methodology
that provides stronger availability guarantees is required. RAIC is
positioned to fill this need.

3. Redundant Arrays of Independent Controllers
Redundant Arrays of Independent Controllers, or RAIC, is a new
storage management architecture that can approximate user-
specified capacity, performance, and availability goals in on-
demand data centers. RAIC distributes storage objects over
groups of underlying storage volumes from one or more
heterogeneous back-end storage controllers. Key tasks of RAIC
are the composition of storage resources from groups of
heterogeneous storage volumes, and the availability and
performance management of these storage resources. RAIC reacts
to dynamic conditions such as requests for additional storage
capacity extensions, or environmental changes, such as transient
or long-term failures of RAID controllers. On each such action,
RAIC policies take into account knowledge about the current state
of the system. For example, detailed on-site classification of the
availability of RAIC controllers, as described in Section 3.2, is
critical in achieving availability goals and rapidly recovering from
planned or accidental controller down-time. RAIC policies can
also include administrator beliefs in the dependability of on-site
storage controllers.

The central component of RAIC, whose architecture is depicted in
Figure 5, is the Volume Manager (VM). The RAIC VM is
responsible for creating RAIC Volume Groups (VGs), which are
collections of storage volumes imported from back-end RAID
controllers and associated with certain capacity, availability and
performance characteristics [22] [23]. Storage consumers that use
RAIC as a storage manager, import storage volumes carved out of
RAIC VGs. The RAIC VM contains policies to create and extend
a VG, and to proactively or reactively handle dynamic state
changes such as transient or long-term underlying storage volume
unavailability.

Figure 5 The RAIC VM composes or extends VGs according to
capacity, performance, and availability goals. RAIC responds to changes
in controller-availability state using availability and performance
classification of RAID controllers as well as administrator input.

The underlying storage volumes managed by RAIC are
characterized by their storage capacity and the identity of their
respective back-end storage controllers. Ideally, these storage
volumes would be associated with specific performance and
availability characteristics, as is currently the case with disk
drives. Such guarantees, however, are hard to achieve for storage
volumes exported from RAID controllers. To account for this lack
of availability and performance guarantees, the RAIC VM collects
and maintains information about the underlying storage volumes
and the back-end controllers that export them. This information is
used along with RAIC policies to best approximate the capacity,
availability, and performance characteristics associated with the
RAIC VGs. The information collected and maintained by the
RAIC VM, as shown in Figure 6, consists of capacity and
implementation characteristics of the underlying storage volumes;
performance and availability characterization of the back-end
storage controllers; and the level of failure-independence between
storage controllers.

3.1 Storage Volume Characteristics
The RAIC VM collects information from back-end storage
controllers regarding the capacity, implementation and access
paths of storage volumes. This information is used to determine
whether any two storage volumes contend for resources, such as
physical-disk spindles (e.g., if they are carved out of the same
RAID disk group on the same controller) or data paths through a
single controller or through the storage-area network. The lower
the level of contention between two storage volumes, the closer
these storage volumes are to being branded performance isolated
[25]. This information becomes particularly important when it is
critical to achieve the performance goals in a VG. Some of this
information can be collected through storage management
interfaces such as SMI-S [28].

Figure 6 Information about storage controllers and storage volumes
collected and maintained by RAIC.

3.2 Storage Controller Availability
The RAIC VM collects and maintains information about back-end
storage controller availability. This information is frequently
updated automatically and also through administrator input, to
reflect the administrator’ s experience and confidence of back-end
storage controller’ s operating behavior. Most of today’ s RAID
controllers that are classified as Highly Available (HA) are built
using redundant hardware components to sustain failure of any
single hardware component. Their effective availability, however,
depends significantly on other factors, such as the design and
behavior of their systems management software with respect to
transient errors, its recovery policies, environmental factors such
as installation issues, operator errors, etc. Our empirical evidence
suggests that the intervals of unavailability of highly-available
controllers as a side effect of operator errors or simply during
heavyweight administrative tasks are not negligible. In addition,
some data centers include mid-range or low-end RAID controllers
that do not offer a high degree of hardware redundancy and as
such, certain types of failures such as transient faults can render
such controllers inaccessible.

The availability of RAID controllers depends in part upon the
reliability of the SAN fabric, the controller hardware and software
components, and its disk drives [5]. Disk drives typically operate
for long time intervals before failing (MTTFs of modern disks are
in the order of 100,000 hours). When they fail, they are almost
always replaced rather than repaired. Sometimes a “ stutter” time
interval precedes failure [20]. Storage controllers on the other
hand, after experiencing a period of unavailability, they are nearly
always repaired rather than replaced. Moreover, controller down-
time is not always due to component failures. Periodic
maintenance and other corrective and preventive actions
contribute to controller down-time, making operational

availability more appropriate as a measure of controller
availability, as expressed in the following equation:

Availability = MTBM / (MTBM + MDT).

The history of a storage controller’ s mean-time-between-
maintenance (MTBM) and mean downtime (MDT) is a good
indicator of its future availability behavior. This information can
be useful and used in addition to MTTF, MTBF, and MTTR
metrics that are usually published by the storage controller
vendor. Finally, additional input in the form of administrator
beliefs about a controller’ s availability, which take into account
environmental factors such installation issues, lack of power-line
redundancy, etc., are also part of a storage controller’ s
characterization.

For the purpose of this paper, we suggest a discrete availability
classification (µ) of storage controllers and leave more details of
this characterization for future work. This availability scale ranges
from 0 to 1, as shown in Figure 7. Note two important points
about this availability classification: First, the mapping of a RAID
storage controller to a certain availability level is dynamic and
periodically re-evaluated; this characterization may change based
on current conditions such as confidence on the systems
management software and operator experience. Second, certain
high availability levels (e.g., µ = 0.99) may not be achievable by
any single RAID controller alone, but only through an external
management system such as RAIC.

Figure 7 A storage controller can dynamically move between availability
levels based on its history and current confidence on its operating
parameters. Achieving arbitrarily high levels of availability (such as µ =
0.99) may only be possible with techniques such as those used by RAIC.

3.3 Storage Controller Failure-Independence
The RAIC VM collects failure-independence measurements
between storage controllers. When including storage volumes
from several back-end storage controllers in a RAIC VG, the
overall availability of the VG depends on the failure-
independence of the back-end storage controllers. Standard
RAID-array availability calculations make the assumption that
back-end disk drives operate with independent failure modes [5].
This assumption does not always hold for storage volumes carved
out of different storage controllers in typical data centers. For
example, in many cases, groups of storage controllers are powered
from the same power line(s) or are accessible from the same SAN
switch, etc. Such storage controllers (and therefore all storage
volumes exported from them) are failure-dependent. RAIC

collects information from administrators about the failure-
dependency of storage controllers and uses it in availability
calculations of VGs.

4. RAIC Implementations
In this paper we describe two possible RAIC implementations.
The first implementation extends the MLH-RAID scheme
described in Section 1.3. In such a setup, the RAIC functionality
adds information and policies, necessary to handle storage
volumes from multiple heterogeneous controllers, to a simple-
minded RAID implementation. For example, additional data
redundancy and stripping over lower-quality disks as well as
storage-aware caching [24] can improve the overall performance
and availability of a heterogeneous parity group. In the second
implementation, RAIC is integrated with a storage virtualization
controller, using externally-implemented mirroring operations to
strengthen data availability guarantees. In the remainder of the
paper, we will refer to such an implementation as RAIC-SVC. We
believe that both implementation options are practically viable
and equally promising. Due to space limitations, in this paper we
focus on the second implementation.

A RAIC-SVC Volume Group is composed of two sets of
underlying storage volumes: an Active Set and a Mirror Set. The
Active Set contains storage volumes from one or more back-end
storage controllers, chosen based on the capacity and performance
goals. The Mirror Set contains storage volumes from one or more
back-end storage controllers that mirror selected storage volumes
from the Active Set. The storage volumes in the Mirror Set are
chosen based on the data availability goals. The RAIC VM is
careful to mirror volume across controllers with independent
failure modes. Data accesses are performed on the Active Set and
updates are reflected to the Mirror Set via the mirroring
relationships set up by RAIC. In the event of controller failure(s),
RAIC maintains data access by failing over to the surviving
storage volume(s).

Figure 8 An example of a RAIC-SVC VG configuration.

Note that RAIC separates the management of storage capacity and
performance (i.e., the composition of the Active Set), from the
management of storage object availability (i.e., the composition of
the Mirror Set and the replication relationships between the
Active and Mirror Sets). In the remainder of this paper we focus
primarily on the management of availability. One reason behind
our choice is that there already exists previous research addressing

the issue of performance over heterogeneous storage volumes [8]
[9] [19]. Another reason is a prevailing belief in the systems
community that availability planning and recovery-oriented
computing are a key priority in systems research today [10] [11].

Next, we describe the policies used in creating and extending
RAIC-SVC VGs, and in proactively or reactively responding to
events that signal a change in the state of a VG.

4.1 Creating a RAIC-SVC Volume Group
When creating volume groups, RAIC-SVC first considers whether
striping over multiple underlying storage volumes is necessary.
This would be the case if the overall performance goal of the VG
exceeds the capabilities of any single back-end RAID controller;
if so, RAIC-SVC will stripe data over multiple volumes. It is
possible that striping may be necessary on only a subset of the
volumes comprising the VG. This subset may be comprised of
lower-performance volumes in a heterogeneous VG. An important
issue is the unit of striping; RAIC will decide on the stripe size
taking into account application workload characteristics.

Figure 9 A realization of the VG configuration of Figure 8.

RAIC-SVC uses the following policies when creating a volume
group: Initially, it attempts to find a single back-end storage
controller that satisfies both the performance and availability
goals of the VG. The reason for doing this is to be able to get as
close as possible to the performance goal with minimal
availability loss. If a single storage controller can be found,
RAIC-SVC tries to allocate all underlying storage volumes in the
VG from that storage controller (greedy approach). RAIC-SVC
also uses guidance policies reflecting business or other goals in
selecting a suitable storage controller. If there is no single storage
controller with the desired capacity, RAIC-SVC looks for
multiple storage controllers with similar characteristics. When
performance is critical in a VG, RAIC-SVC chooses to allocate
performance-isolated storage volumes (Section 3.1).

After it allocates a number of storage volumes that can satisfy the
capacity and approximate the performance goals of the VG, it
adds these volumes to the Active Set. RAIC-SVC then proceeds
to choose a number of storage volumes for the Mirror Set and set
up a sufficient number of mirroring relationships to achieve the
availability goals of the VG. Mirroring will be necessary for two
reasons: (a) a RAIC VG may contain volumes from a single back-

end RAID controller but may have an availability goal that
exceeds the capabilities of the controller, or (b) a RAIC VG may
contain storage volumes from several back-end RAID controllers.

4.1.1 Examples
Next, we will provide examples where mirroring helps achieve the
availability goals of a data set even as the latter grows
dynamically to incorporate storage volumes spanning
heterogeneous (and sometimes lower quality) storage arrays. In all
examples we assume failure-independence between all controllers.

In the example of Figure 10, we assume that the availability of
each individual RAID array is µ = 0.9 (this can be interpreted as
meaning “ the array is available 90% of the time”) but the storage
consumer has set an availability goal of 0.99. By mirroring each
volume of RAID controller A to a volume on RAID controller B,
the overall availability of the system is improved to 0.99 as the
following calculation shows:

Availability = Pr[RAID Array A or RAID Array B available] =

 = 1 – Pr[RAID Array A & RAID Array B unavailable] =

 = 1 – (1 - µ)2 .

For µ = 0.9, the overall availability matches our goal of 0.99. The
above example demonstrates the case where a RAIC-exported
storage volume can achieve higher availability than any of the
underlying storage controllers are individually capable of
providing.

Figure 10 Strengthening availability by mirroring across storage RAID
array controllers. In this example, the two storage controllers are
equivalent and characterized by availability µ. Note that RAIC provides
the failover capability required in case of failure of RAID controller A.

In the example of Figure 11 we show how a storage object which
is allocated or dynamically extended using storage volumes of
different capabilities can compensate for differences in the
availability characteristics of its subcomponents. In this example,
RAIC starts allocating storage volumes for a volume group from

RAID controller A, which matches the VG availability goal of�
µ = 0.90. However, as RAID controller A eventually runs out of
space, a subsequent capacity extension request will have to
allocate storage volumes from RAID controller B, which offers a
lower availability level of µB = 0.80. To be able to match the
availability goal of µ = 0.90, RAIC will decide to mirror each
storage volume of RAID controllers A and B to storage volumes
on RAID controllers C and D, respectively. In the resulting RAID
controller pairs AC and BD, it is sufficient for a single controller
in a pair to be available for the storage volumes in the pair to be
available. The improved availability of the system is calculated as
follows:

Availability = Pr[RAID Pair AC & RAID Pair BD available] =

 = 1 – Pr[RAID Pair AC or RAID Array Pair BD unavailable] =

 = 1 – [(1 - µA) (1 - µC) +

+ (1 - µB)(1 - µD) – (1 - µA)(1 - µB)(1 - µC)(1 - µD)].

For the values of µA=0.90, µB=0.80, µC=0.80, µD=0.80 in this
example, the overall availability is 0.948, which achieves and
slightly exceeds our goal of 0.90.

In the general case, when formulas calculating effective
availability cannot be easily inverted, RAIC-SVC will enumerate
the effective availability resulting out of using a group of RAID
controllers of different characteristics (µi) and will decide on the
appropriate level of redundancy needed by inspection of the
availability (A-µi) point graph.

Figure 11 Maintaining availability goals for a RAIC volume group as
the latter grows and incorporates storage volumes across RAID controllers
of varying capabilities. In this example, primary RAID controllers A and
B are characterized by availability levels µA and µB, respectively.
Secondary RAID controllers C and D are characterized by availability
levels µC and µD, respectively.

4.2 Extending a RAIC-SVC Volume Group
When extending a volume group, as in the initial-allocation
policies, RAIC-SVC picks a storage volume that is as close as

possible in terms of capabilities to the storage volumes already in
the VG. If lower-performance volumes are included in the VG,
additional striping over those volumes may be necessary to
improve performance through spindle parallelism. Similar to the
initial-allocation case, mirroring may be necessary to improve
availability guarantees.

4.3 Reacting to Dynamic State Changes
One of the key tasks of the RAIC-SVC VM is to establish and
maintain the state of a set of volume replication relationships
between underlying storage volumes. It does so transparently to
applications that use the high-level storage volumes exported by
RAIC. To achieve this, RAIC is able to respond to a number of
events that signal a change in the state of a replication relationship
between underlying storage volumes in back-end RAID
controllers. In particular, RAIC policies respond to indications of
storage volume unavailability by taking into account up-to-date
information about the state of each back-end controller; RAIC
dynamically characterizes failures as transient or permanent and
adjusts its response accordingly.

Next, we give an example of how RAIC-SVC responds to the
following events: (a) Failure of the primary volume in a
replication relationship: If RAIC-SVC does not expect rapid
recovery of the primary volume, it will break the replication
relationship; it will then use the secondary volume (mirror) as the
new primary, allocate a new secondary volume, and establish a
new replication relationship. If however it expects that the
primary volume will recover soon (based on past history or hints
provided by a systems administrator), RAIC-SVC will failover to
the secondary volume (to quickly resume operations) but will not
allocate a new secondary volume; instead, it will wait for the
previous primary to re-appear. When this happens, it will re-
establish the mirroring relationship in the reverse direction. This
is expected to significantly reduce the overhead of synchronizing
the two volumes. Another event handled by RAIC-SVC is the (b)
failure of a secondary volume in a replication relationship: This
event signals temporary reduction of the availability guarantees of
the VG; in this case, just like in case (a), RAIC-SVC will either
wait for the secondary volume to re-appear or it will proceed with
setting up a new replication relationship to a new secondary
volume. The tradeoff in both cases is between the duration of the
downgraded availability time window vs. the overhead of setting
up a new replication relationship and synchronizing the two
volumes, which may require significant data movement.

RAIC can handle other dynamic state-change events, in addition
to primary and secondary storage-volume failures. More details
are left for future work.

4.4 Proactive Actions
Besides handling dynamic events that require an immediate
response, such as controller failures, RAIC includes policies that
proactively modify the state of the system in anticipation of such
events. One example is taking early failover action or reversing a
replication relationship when a storage controller hosting one or
more primary storage volumes is deemed to be imminently failing
or scheduled to soon be taken out of service. RAIC decides that a
controller’ s availability is declining either by consulting with
measurements showing that its performance is degrading (a sign
of imminent failure, similar to disk drives [20]) or by explicitly
being informed by an administrator through policy. A key benefit

of proactive action is significant overall reduction in recovery
time.

5. Conclusions
In this paper we argue that, in today’ s on-demand data centers,
there is a need to scale the storage capacity, availability, and
performance of data objects (e.g., file systems or database table-
spaces) beyond the boundaries of a single storage controller.
Distributing data objects over multiple controllers requires use of
data-redundancy techniques to account for the additional failure
modes. A problem with achieving such data distribution is the
lack of information, such as the characteristics of storage volumes,
the expected availability of storage controllers, and the failure-
independence between storage controllers. Our proposed system
architecture, the Redundant Arrays of Independent Controllers
(RAIC), collects this information through a variety of sources:
storage administration interfaces; past history of controller
availability; administrator input about installation and planning
issues that can affect future availability and dependence on
controllers. This information is used by RAIC to approximate
availability and performance goals of application data objects. In
addition, it is used by RAIC policies to adapt to dynamic state-
changes, such as scheduled or accidental storage controller down-
time. We are currently in the process of implementing a RAIC
prototype and plan to report our experience in a future paper.

6. REFERENCES
[1] E. Lee, C. Thekkath, “ Petal: Distributed Virtual Disks” , in

Proc. of 7Ith International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Cambridge, MA, October 1996.

[2] J. S. Glider, C. F. Fuente, W. J. Scales, “ The Software
Architecture of a SAN Storage Control System” , in IBM
Systems Journal, 42(2):232-249, 2003.

[3] HP Storage Virtualization Strategy,
ftp://ftp.compaq.com/pub/products/storageworks/HPVirtuali
zationStrategy.pdf

[4] D. Patterson, G. Gibson, and R. Katz, “ A Case for
Redundant Arrays of Inexpensive Disks (RAID)” , in
Proceedings of the 1988 ACM SIGMOD International
Conference on Management of Data, Chicago, IL, June
1988.

[5] P. Chen, E. Lee, G. Gibson, R. Katz, D. Patterson, “ RAID:
High-Performance, Reliable Secondary Storage” , in ACM
Computing Surveys, 26(2):145–185, June 1994

[6] IBM TotalStorage SAN Volume Controller and SAN
Integration Server,
http://www.redbooks.ibm.com/redbooks/pdfs/sg246423.pdf

[7] D.D.E. Long, B. R. Montague, and L. F. Cabrera,
"Swift/RAID: A distributed RAID system", in Computing
Systems, 3(4), Summer 1994.

[8] R. Zimmermann, S. Ghandeharizadeh, “ HERA:
Heterogeneous Extension to RAID” , in Proc. of 2000
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), Las
Vegas, NV, 2000.

[9] T. Cortes, J. Labarta, “ Extending Heterogeneity to RAID
Level 5” , in Proc. of 2001 USENIX Annual Technical
Conference, Boston, MA, June 2001.

[10] A. Brown and D. Patterson, “Towards Availability
Benchmarks: A Case Study of Software RAID Systems”, in
Proc. of USENIX Annual Technical Conference, San Diego,
CA, June 2000.

[11] D. Patterson, and others, “ Recovery Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case
Studies” , in UC Berkeley CS Technical Report UCB//CSD-
02-1175, March 15, 2002.

[12] J. Hartman, J. Ousterhout, “ The Zebra Striped Network File
System” , in ACM Transactions on Computer Systems
(TOCS), 13(3):274-310, August 1995.

[13] K. Keeton, C. Santos, D. Beyer, J. Chase, J. Wilkes,
“Designing for Disasters”, in Proc. of USENIX Conference
on File and Storage Technologies (FAST’04), San Francisco,
CA, March 2004.

[14] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, G. Voelker,
“ Total Recall: System Support for Automated Availability
Management” , in Proc. of USENIX Conference on
Networked Systems Design and Implementations’04, San
Francisco, CA, March 2004.

[15] L. Huang, G. Peng, T. Chiueh, “ Multi-Dimensional Storage
Virtualization” , in Proc. of SIGMETRICS –
PERFORMANCE 2004, New York, NY, June 2004.

[16] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal, A.
Veitch, “ Hippodrome: Running Circles Around Storage
Administration” , in Proc. of Conference on File and Storage
Technologies (FAST'02), Monterey, CA, January 2002.

[17] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan, and
Q. Wang, “ Ergastulum: Quickly Finding Near-Optimal
Storage System Designs” , HP Laboratories SSP Technical
Report HPL-SSP-2001-05, June 2002.

[18] J. Wilkes, R. Golding, C. Staelin, T. Sullivan, “ The HP
AutoRAID Hierarchical Storage System” , in ACM
Transactions on Computer Systems (TOCS), 14(1):108-136,
February 1996.

[19] A. Arpaci-Dusseau, R. Arpaci-Dusseau, J. Bent, B. Forney,
F. Popovici, S. Muthukrishnan, O. Zaki, “ Manageable
Storage via Adaptation in WiND” , in Proc. of the 2001 IEEE

Symposium on Cluster Computing and the GRID
(CCGrid’01), Brisbane, Australia, May 2001.

[20] R. Arpaci-Dusseau and A. Arpaci-Dusseau, “ Fail-stutter
Fault Tolerance” , In Proc. of Workshop on Hot Topics in
Operating Systems, Schloss Elmay, Germany, May 2001.

[21] AIX High Availability/Cluster Multi-Processing
Specification, Planning and Installation Guide, Document
No. SC23-4861-0

[22] J. Wilkes, “ Traveling to Rome: QoS Specifications for
Automated Storage System Management” , in Proc. of
International Workshop on Quality of Service (IWQoS-
2001), Karlsruhe, Germany, June 2001.

[23] M. Devarakonda, D. Chess, I. Whalley, A. Segal, P. Goyal,
A. Sachedina, K. Romanufa, E. Lassettre, W. Tetzlaff, W.
Arnold, “ Policy-Based Autonomic Storage Allocation” , in
Proc. of 14th IFIP/IEEE Int. Workshop on Distributed
Systems: Operations and Management (DSOM 2003): Self-
Managing Systems, Heidelberg, Germany, October 2003.

[24] B. Forney, A. Arpaci-Dusseau, R. Arpaci-Dusseau, “ Storage-
aware Caching: Revisiting Caching for Heterogeneous
Storage Systems” , in Proc. of First USENIX Conference on
File and Storage Technologies (FAST 2002), Monterey, CA,
January 2002.

[25] C. Lumb, A. Merchant, G. Alvarez, “ Façade: Virtual Storage
Devices with Performance Guarantees” , in Proc. of Second
USENIX File and Storage Conference (FAST), San
Francisco, CA, March 2003.

[26] T. Denehy, A. Arpaci-Dusseau, R. Arpaci-Dusseau,
“ Bridging the Information Gap in Storage Protocol Stacks“ ,
in Proc. of 2002 USENIX Annual Technical Conference,
Monterey, CA, June 2002.

[27] M. Sivathanu, V. Prabhakaran, A. Arpaci-Dusseau, R.
Arpaci-Dusseau, “ Improving Storage System Availability
with D-GRAID“ , in Proc. of Third USENIX Conference on
File and Storage Technologies (FAST 2004), San Francisco,
CA, March 2004.

[28] Systems Management Interface-Storage (SMI-S)
Specification, v.1.0.2,
http://www.snia.org/smi/tech_activities/smi_spec_pr/spec/S
MIS_1_0_2_final.pdf

