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Abstract— Extensive research on system support for enabling
I/O-intensive applications to achieve performance close to the
limits imposed by the hardware suggests two main approaches:
Low overhead I/O protocols and the flexibility to customize
I/O policies to the needs of applications. One way to achieve
both is by supporting user-level access to I/O devices, enabling
user-level implementations of I/O protocols. User-level networking
is an example of this approach, specific to network interface
controllers (NICs). In this paper, we argue that the real key to
high-performance in I/O-intensive applications is user-level file
caching and user-level network buffering, both of which can be
achieved without user-level access to NICs.

Avoiding the need to support user-level networking carries
two important benefits for overall system design: First, a NIC
exporting a privileged kernel interface is simpler to design and
implement than one exporting a user-level interface. Second, the
kernel is re-instated as a global system resource controller and
arbitrator. We develop an analytical model of network storage
applications and use it to show that their performance is not
affected by the use of a kernel-based API to NICs.

I. INTRODUCTION

The need to reduce networking overhead in system-area
networks in the early 1990’s motivated a flurry of research on
user-level networking protocols. Projects such as SHRIMP [2],
Hamlyn [4], and U-Net [36] proposed user-level access to a
network interface controller (NIC) as an approach that offered
two primary benefits: First, it enabled host-based implemen-
tations of new, lightweight networking protocols with lower
overhead compared to kernel-based TCP/IP protocol stacks.
Second, for applications requiring use of the TCP/IP protocol
stack, there is a potential for application-specific customization
of user-level libraries. In recent years, the need for scalable
and more manageable services, such as HTTP servers and
network storage systems, leads to increased amounts of data
transferred through the network. This trend links overall I/O
performance to the efficiency of the network subsystem and
makes network interface controllers (NICs) a key system I/O
device. The large-scale deployment of high-speed (1 Gb/s and
soon 10 Gb/s) Ethernet networks stimulated interest in the
design of systems that offload TCP/IP to a new generation of
NICs [27] and can transfer data directly between the network
and application buffers. Many such TCP-offload NICs are
currently being designed to export user-level interfaces to host
applications.

In this paper, we show that a user-level interface to NICs
offering transport offload is not necessary. A kernel host
interface to the NIC in combination with NIC support for re-

mote direct data placement (RDDP) [16] enables an operating
system (OS) structure that supports user-level file caching [25]
and user-level network buffering [3]. User-level caching of-
fers full control over I/O policies, an essential requirement
for resource-intensive applications, such as databases. This
paper describes such an OS structure that blends ideas from
traditional and novel/radical OS architectures: In accordance
with standard OS principles, resource abstractions, such as
files and network sockets, and global system policies, are
implemented in the kernel. However, similarly in spirit to
more radical system designs, such as the Exokernel [20], full
control over application-specific I/O policies is possible with
caching implemented in user space. This caching, however,
is performed over the file or network socket abstractions
rather than over the raw hardware. The key advantages of this
approach over Exokernel’s are improved security and safety
due to a larger common kernel code-base, support for global
resource policies, and improved portability.

In summary, the main arguments presented in this paper
are: First, NICs exporting a user-level host interface pose
implementation challenges not present in NICs exporting an
interface to a trusted host entity such as the kernel. Second,
with the transport protocol offloaded to the NIC, the key to
lowering networking overhead is remote direct data placement.
RDDP enables a new OS structure that supports user-level file
caching and user-level network buffering. The performance of
a user-level API to file and network services should be similar
to the performace of a kernel-based API, since the difference is
only in user-kernel boundary crossing, which is not a dominant
cost. Third, kernel involvement is necessary in order to enforce
global policies. Systems that advocate implementing all system
policies in user-space libraries [20] do not offer a solution to
the problem of implementing global policies without involving
a privileged server. In addition, security and safety are other
benefits of our proposed design: For example, common kernel-
based networking code may be more robust against attacks
than a multitude of user-level networking stacks. A benefit of
user-level networking is better portability due to bypassing the
OS. However, a kernel interface that is simple to implement
should be rapidly incorporated into most mainstream operating
systems.

The layout of this paper is as follows: In Section III we
compare the benefits of user-level networking to those of a
kernel interface to a NIC offering transport offload and RDDP.
In Section IV we describe an OS structure that takes advantage



of RDDP to support user-level file caching and user-level
network buffering. In Section V we develop an analytical
model of network storage applications to study the effect of the
user-kernel protection boundary crossing on performance. Our
motivation to use an analytical model backed by experimental
measurements of key parameters, instead of a full experimental
system comparison, is based on the fact that the latter depends
significantly on the quality of the implementations and focuses
on a particular point of the design space. An analytical model
enables the examination of the entire design space, provides
significant qualitative results, and points to the key parameters
affecting system performance. Earlier studies of operating
system structure, such as the classical work by Lauer and
Needham [21], have also used analytical modeling to reason
about system performance. Finally, in Section VI we present
experimental results.

II. RELATED WORK

Support for user-level networking was first offered in su-
percomputers such as the Thinking Machines CM-5 [22],
Meiko CS-2 [17], and IBM SP-2 [35], and later introduced
in commodity networks by U-Net [36], Application Device
Channels (ADC) [13], Hamlyn [4], SHRIMP [2], DART [31]
and others. User-level networking was recently standardized
with the Virtual Interface [9] (VI) and InfiniBand [18] architec-
tures. In addition to the ability for user-level access to the NIC,
which is the defining feature of user-level NICs, most of these
projects also advocated a new host programming interface to
the NIC. This programming interface is based on a queue-pair
abstraction and requires pre-posting of receive buffers [3, 9]. It
is important to note that this new programming interface is not
a defining feature of user-level NICs and can be implemented
without special NIC support [5]. In contrast, user-level access
to the NIC necessarily requires special NIC support, increasing
the complexity of NIC design, as explained in Section III-A.

A key motivation for user-level networking is the reduction
of I/O overhead. This reduction, however, is the result of three
orthogonal factors: (a) new lightweight network protocols,
(b) new host programming interfaces to the NIC offering
support for remote direct data placement, and (c) avoidance
of the user-kernel protection domain crossing to perform I/O.
Recent experimental evidence points to (a) and (b) as the
key factors affecting performance. For example, Zhou and her
colleagues [37] found that a kernel-based implementation of a
storage client offering block access over a VI network interface
performs comparably to a user-level implementation of the
same client in microbenchmarks and TPC-C database bench-
mark configurations. This evidence supports our argument that
it is primarily the API to the NIC rather than user-level access
to it that are key to achieving high performance.

Frequent crossing of the user-kernel protection boundary is
often associated with high cache and TLB miss overheads.
For example, early microkernels enforcing protection using
hardware address spaces were observed to exhibit such high
overheads [7]. This behavior, however, was mainly attributed
to their larger memory footprints, which is an implementation

artifact, rather than to the use of hardware address space pro-
tection. Research on systems such as L4 [23] and Pebble [14]
showed that the overhead of switching protection domains
could be as low as 150 machine cycles, allowing for efficient
modular designs using hardware address spaces. In addition,
we believe that increased cache and TLB sizes in modern
CPUs will help to alleviate cache and TLB miss overheads.

Another significant factor contributing to network overhead
is hardware interrupts, as shown in a recent study of network
protocol performance over high speed networks [6]. Detecting
I/O completions by polling is an alternative that is offered by
many user-level networking protocols [9, 36]. This mechanism
can reduce network overhead in network storage applications
as shown by Zhou and her colleagues [37]. Polling I/O
completions, however, does not necessarily depend on user-
level access to the NIC and is equally applicable within the
kernel.

User-level NICs enable the construction of user-level op-
erating system libraries1 (libOSes) such as proposed by Ex-
okernel [15, 20]. In the same spirit, the Direct Access File
System [25] (DAFS) is an example of a network attached
storage system that proposes a user-level file system client.
Just like in Exokernel, application-specific extensibility was
one of the main motivations behind user-level networking. For
example, application-specific customization of the networking
stack in a user-level networking system was shown to be
beneficial by enabling application-controlled flow control and
feedback [36]. As the debate on extensibility technologies
eventually pointed out, however, the key is often in finding
the right API to kernel services rather than supporting user-
level implementations of kernel subsystems. In many cases,
parametrized kernel interfaces are sufficient from a perfor-
mance standpoint [12].

Another motivation for user-level networking was the ob-
servation that kernel implementations of legacy protocols are
constrained by having to rely on general-purpose or buggy
kernel components. For example, a user-level implementation
of UDP and TCP/IP over U-Net [36] achieved better perfor-
mance than the standard kernel implementation, as the latter
was constrained by its reliance on the BSD mbuf buffering
system, which is not suited for high-speed networks [36]. In
this case, however, the alternative of enhancing or replacing
the underperforming kernel implementations promises similar
performance benefits.

Finally, another recent trend in networking has been that
of offloading TCP/IP processing to the NIC [32]. While the
networking community has resisted such attempts in the past,
it appears that use of TCP offload as an enabling technology
for remote direct memory access (RDMA) finally makes it
worthwhile [27]. One difference of a TCP offload NIC from
other high-performance NICs offering RDMA capability (such
as Myrinet [28] and InfiniBand [18]) is that TCP offload NICs
are optimized for throughput rather than latency. In addition,
offloaded TCP/IP implementations are harder to customize.

1At least for the network and network-storage subsystems.
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For these reasons, this paper’s argument against user-level
NICs is particularly applicable to TCP offload NICs.

III. USER-LEVEL VS. KERNEL NICS

Traditional NICs are designed to be directly accessible by
a single trusted entity, typically the kernel. User-level applica-
tions perform I/O by interacting with higher-level abstractions,
such as files and network sockets. When these abstractions
are implemented in the kernel, the latter ensures that NICs
and other devices can be safely shared by multiple processes.
Devices exporting a user-level host interface, as shown in
Figure 1 (a), cannot rely on the kernel for safe multiplexing
between user-level processes. For this reason, a user-level
NIC has to implement and export higher-level abstractions,
such as virtual connection endpoints, and to maintain per-
process and per-connection state. Such a NIC should be
provisioned with sufficient resources to manage a large number
of connections, which is a factor increasing NIC complexity
as will be explained in Section III-A. In addition, the NIC
should maintain a table to store translations of user-space
virtual addresses to use in memory transactions on the system
bus.

A NIC that implements the network transport and exports a
remote direct data placement [16] mechanism through a kernel
host programming interface can match two important benefits
of user-level networking:

� Copy avoidance through direct transfers between the
network and application address space buffers

� Control over I/O policy, which can be achieved by per-
forming file caching and network buffering in application
address space.

It can also offer two other benefits of user-level networking:
� Low per-I/O latency of interaction with the NIC. A user-

level access to the NIC bypasses the kernel. Crossing the
user-kernel interface, however, need not be an expensive
operation, as shown in Section VI-A.

� Customization of the networking protocol, possible
through a parametrized interface, e.g., socket options.

In practice, the only performance difference between a user-
level and a kernel interface to a NIC is the user-kernel protec-
tion boundary crossing inherent in a kernel-based system-call
API. In Section V we show that this performance difference
does not significantly affect application performance in most
network storage applications. It is important to note here that
although user-level NICs bypass the kernel for regular I/O
operations (e.g., send, receive), they cannot avoid involving
the kernel for connection management (e.g., setup, teardown).
For this reason, user-level NICs are not expected to offer any
advantage in workloads with short-lived network connections.

Direct data transfers between the network and application-
space buffers through either a user-level or a kernel interface
require that the applications buffers are registered with the
NIC, i.e., pinned in physical memory and their VM translations
known to the NIC for the duration of the I/O operation. Reg-
istration involves the kernel and can be performed either per-
I/O or less frequently, by caching registrations. Pre-registering
large amounts of memory is sometimes possible but results
in underutilization of physical memory in multiprogramming
workloads.

A. Complexity of NIC Design

The requirements for user-level networking increase the
complexity of NIC design. In particular, each virtual connec-
tion endpoint is associated with at least the following NIC
resources [36]:

� A NIC memory region to store the context of virtual
connection endpoints.

� A NIC memory region for NIC-host communication (e.g.,
doorbells and other events). This region is mapped in
process address space on the host.

� One or more memory regions for queues (e.g., send and
free queues as in U-Net [36]), also mapped in process
address space on the host.

� Virtual to physical address translations for user-space
addresses of I/O descriptors and other metadata.
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The aggregate size of these resources increases linearly with
the number of simultaneously open connections, which may be
quite high for certain server applications (e.g., Web servers).
Achieving scalable access to the user-level NIC has been
recognized as a significant challenge in the past [36, Section
4.2.4]. One possible solution proposed by von Eicken and his
colleagues [36] is to provide a memory resource management
mechanism that enables the NIC to cooperate with the kernel
in order to dynamically allocate NIC memory and DMA
address space. Implementation of such a mechanism, however,
is likely to compromise the efficiency and simplicity of user-
level NICs.

A significant advantage of a kernel-based API to a NIC
is that the NIC need not store virtual to physical address
translations of user I/O buffers used in messaging operations
(i.e., send and receive [3]). This is because the kernel is always
on the I/O path and loads only physical buffer addresses on the
NIC. In addition, a kernel NIC does not need to traverse data
structures mapped in user-space, avoiding the need to store
virtual to physical address translations for such structures. On
the other hand, RDMA operations pose the same requirements
to both user-level and kernel NICs: They require that NICs
store virtual address translations for exported user I/O buffers,
because these user-level addresses are used by the RDMA
protocol to target remote memory buffers2.

IV. OS STRUCTURE FOR EFFICIENT I/O

Mainstream operating systems, such as UNIX, implement
abstractions such as files (FS), address spaces (VM), and
network connections (Net) in the kernel, as shown in Figure 2
(a). Applications in these systems have limited control over I/O
policies and often experience high communication overhead
due to data movement between software layers. Some exten-
sible operating systems, such as VINO and SPIN, preserve this
structure and address these issues by enabling safe execution
of kernel extensions. An alternative to extensible operating
systems, the Exokernel, structured as shown in Figure 2 (c),
enables construction of all OS abstractions in user space. This
paper describes an alternative OS structure, Hybrid OS3, which

2They are transported on the wire and are translated on-the-fly by the NIC.
3Exemplified by the Direct Access File System [25] (DAFS)

is depicted in Figure 2 (b). Hybrid OS combines features
from (a) and (c). Like mainstream OS structures, Hybrid OS
places all OS abstractions in the kernel. Following trends
towards scalable network storage, it assumes that applications
access storage using file access over a network attached storage
protocol, such as NFS. Hybrid OS exposes all file I/O policies
to user-space applications by moving file caching to user space
using RDDP for file data transfers. Network transfers are also
performed using direct transfers between the network and user-
space buffers. In this model, the kernel is still responsible for
VM management, CPU scheduling, and most important, global
resource allocation decisions.

The need for memory registration with the NIC requires
involvement of the kernel. This is true for Hybrid OS, as
well as for user-level networking systems. Some amount of
registration caching is desirable to reduce the frequency of
interaction with the NIC and to avoid VM page faults on
the network data path. This implies that some fraction of the
system physical memory would be pinned on behalf of the
application and be unavailable to other system tasks. To ensure
that there is enough unpinned physical memory to be shared
by new system tasks, some amount of per-I/O registration is
necessary. This is a cost that was not taken into account by
user-level networking research [36], which assumed a limited
buffer pool. Per-I/O registration opens up the possibility that
user-level file accesses result in page faults in the absence
of any coordination between the application and the VM
system. Some form of application control over virtual memory
management over the region used by the user-level cache or
adaptation [1] to changing memory demands is necessary to
avoid or reduce such page faults.

V. ANALYTICAL PERFORMANCE MODELING

In this section, we examine the effect of protection do-
main crossing on application performance in kernel-based
file system implementations with a system-call API. This
study is based on an analytical model that draws from earlier
work [10, 34] and assumes that (a) applications saturate
the host CPU when performing I/O using relatively small
block sizes (e.g., 4KB-64KB), and (b) the NIC supports
transport protocol offload and an RDDP mechanism, which
eliminates the network protocol, memory copy and checksum



Source of Host
Overhead

Without
Offload/ RDDP

With Offload/
RDDP

System Call Per-I/O Per-I/O

File System Per-I/O Per-I/O

Interrupts Per-Packet Per-I/O

Device Interaction Per-Packet Per-I/O

Network Protocol Per-Packet -

Memory Copies Per-Byte -

Checksums Per-Byte -

TABLE I

Sources of file system client overhead and their type. Most of the sources

of overhead are eliminated with a NIC offering transport offload and RDDP.

overheads listed in Table I. We assume that the NIC itself
never becomes a performance bottleneck4, except for adding
a latency component in the I/O data path. With the assumption
of transport protocol offload and the availability of an RDDP
mechanism, the only host overheads remaining are the system-
call, file system, device interaction, and interrupt processing
costs, all incurred on a per-I/O basis. As will be shown later,
the real difference between a user-level and a kernel-based
implementation of a file client is the cost of the system-call
protection domain crossing. Next, we examine the effect of
this cost on I/O throughput and latency, based on analysis of
the operations to issue and complete I/Os (Table III).

A. Throughput

For the purpose of this section we focus on throughput-
intensive applications that perform I/O using asynchronous
operations at the speed of the host CPU. The reason that
we focus on this domain is because the effect of additional
overhead due to the system calls is expected to be maximal
when the CPU is saturated. In Table III we estimate the per-
I/O overhead, assuming that each I/O involves two operations,
one to issue the I/O and another to complete it. The differ-
ence between the ”Best Case” and ”Worst Case” columns is
that the latter assumes that the check for I/O completion is
unsuccessful and the application has to block waiting on the
I/O. Blocking on I/O typically involves a system call and an
interrupt for notification. Interrupts can be avoided in most
cases in throughput-intensive workloads. This is possible either
because polling in user or kernel space is always successful,
as is the case when small blocks are used on a fast network
and with a sufficient amount of asynchronous I/Os, or because
the cost of per-I/O interrupts is amortized, as is the case when
large blocks are used.

Looking at the ”Best Case” column in Table III, it becomes
evident that the only difference between the user-level and the

4This assumption does not always hold. For example, the NIC can limit
I/O throughput when its processing speed significantly lags behind the host
CPU [33, 34] or when using very small message sizes.

Parameter Description

� Application CPU consumption per record of
data (s). The inverse of � is the application’s
record processing rate.

� Gap per byte (s/MB). The inverse of
�

is the
peak network bandwidth for large messages.

������� Network file system overhead (s) per record,
when record size is b.

TABLE II

Summary of model parameters.

kernel-based API, assuming the same file system implementa-
tion, is the overhead of two system calls in each I/O. Next, we
estimate the degradation in application performance caused by
the system-call overhead in a kernel-based API, compared to
the performance achievable with the same implementation and
a user-level API. Using a simple model with the parameters
described in Table II we can express the throughput (in terms
of number of I/O operations per second) achievable for a
particular block size 	 as follows:

Throughput(b) 
 min �
� 	��

�
����� ��	�� �

I/O���
(1)

For the purpose of this section we consider block sizes	 for which the host can achieve its peak throughput
��� 

when performing raw communication5. Note that the network
throughput for very small blocks (e.g., of the order of one to a
few tens of bytes) may be limited by the NIC to less than the
asymptotic bandwidth

��� 
of the network6. The application

processing � and overhead � ��	�� are expressed in units of time-
per-I/O operation. The overhead incurred by the host CPU per
unit of time increases with decreasing block sizes. In the case
of a kernel-based API, the overhead of the two system calls
is an additional factor that contributes to the load on the host
CPU. Next, we focus on the following two questions:

� Under what conditions does the performance difference
between the user-level and the kernel-based API become
noticeable in throughput-intensive applications that have
small computational requirements (i.e., small � )?

� What is the effect of the system-call overhead when the
application involves significant data processing (i.e., large� ) and is therefore heavily CPU-bound?

The performance degradation (PD) using a kernel-based API
compared to a user-level API can be expressed as:

5In the Myrinet (Lanai9.2) network we use in this paper, this is possible for
4KB or larger blocks as can be shown with a simple benchmark performing
raw communication using Myrinet’s native GM commnuication library.

6This limit stems from the latency incurred in setting up the NIC DMA
engines for sending and receiving very small messages. This limitation is
captured in the gap (g) parameter of the LogP model [10].



Issue & Complete I/O

API Issue I/O Complete I/O
Best Case Worst Case

User-level Interaction with the
NIC

User-level NIC polling, or
System Call + (possible)

interrupt
Two NIC interactions

System call + two NIC
interactions + interrupt

Kernel-based
System-call +

Interaction with the
NIC

System call + NIC polling +
(possible) interrupt

Two system calls + two
NIC interactions

Two system calls + two
NIC interactions +

interrupt

TABLE III

Estimating the total per-I/O overhead for a user-level and for a kernel-based API. The file system overhead is the same in all cases and therefore

omitted here. The kernel-based API impementation incurs an additional overhead for implementing global policies, which is also not shown here. The ”Best

Case” is based on the assumption that polling for I/O completion is always successful. The NIC supports transport protocol offload and RDDP in both cases.

PD(%) 
 Throughput��������� Throughput �	�
������
Throughput�����
�


 min � �� �
�

�����	�������	 �!#" �$� min � �� �
�

�����	�����#% !&"�'(!�) �
min � �� �

�
���*������� �	 �!&" �



�

�����	�������	 �!#" �
�

���*�������#% !#"�'+!&)
�

�����	����� �	 �!#"


 � ��	�� �	�
������ � � ��	�� �����
�� ��� ��	�� �	�
������



,
����� ��	�� �	�
������

�
(2)

Where the overhead parameter
,

is defined as:

, 
 User-kernel Crossing � Parameter Checking� Global Policy
�

(3)

This parameter captures the fact that besides the overhead
of the user-kernel crossing, a kernel-based API incurs the
overhead of parameter checking, which may involve the cost
of traversing the page table in case of validating memory
addresses, and that of implementing global policies. The effect
of the system-call overhead becomes maximal when the host
CPU is close to its saturation point. Equation 2 therefore
becomes most interesting in the region of I/O block sizes for
which the host is CPU-bound. This excludes block sizes for
which performance may be limited (a) by the NIC, or (b) by
the network link. A close look at Equation 2 points to answers
to the questions posed earlier:

For throughput-intensive applications with small computa-
tional requirements (i.e., small a), the degradation depends on
the ratio:

,
� ��	�� �	���-��
� 


,
, �/. (4)

where the overhead parameter . is defined as:

. 
 File System and Device Interaction Overhead
�

(5)

The decomposition of the kernel API overhead to user-
kernel crossing cost (

,
) and file system and device interaction

overhead ( . ), is based on the assumptions about NIC support
outlined earlier, i.e., transport protocol offload and RDDP. It is
also based on the fact that the cost of interrupts can be made
negligible by successful polling.

For file system and device interaction overhead much larger
than the user-kernel crossing cost ( .10 ,

), Equation 4
becomes

PD(%) 

,
. (6)

With a 0.5 2
�

system-call cost on the Pentium III (measured
in Section VI-A) and with file system and device interaction
overhead in the tens of 2

�
, this ratio is expected to be roughly

somewhere between 1-5%. In practice, the 5% upper bound
should be a conservative estimate if one accounts for the
additional non-negligible overhead of application-level I/O li-
braries such as Berkeley DB [30]. In the future, improvements
in processor techology are expected to reduce the cost of the
user-kernel crossing and file system processing but will not
affect the overhead of interaction with the NIC, which is a
function of the I/O bus technology.

For applications performing significant data processing (i.e.,
large � ), there is practically negligible performance degrada-
tion, since Equation 2 is no longer sensitive to the user-kernel
crossing cost.

B. Response Time

The effect of the system-call interface in I/O latency is
minimal. For example, the additional latency imposed by two
system calls, one to issue the I/O and one to complete it, is
about one microsecond on the 1GHz Pentium III platform used
in our experiments (as measured in Section VI-A). This is less
than 1% of the latency to fetch a 4KB file block from server
memory, as measured on the same setup in a related study
[26, Table 3]

Applications sensitive to messaging latency, such as dis-
tributed scientific applications with frequent synchronous com-
munication using small messages, may still see a benefit from
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Fig. 3. Emulation of a kernel-based networking library. Each call into the
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using a user-level NIC, as indicated by the latency mea-
surements in Section VI-B. However, recent trends towards
optimizing networks for throughput rather than latency suggest
that the user-kernel protection boundary crossing will still be
a small fraction of the overall I/O latency in these cases as
well.

VI. EXPERIMENTAL RESULTS

In this section, we report measurements of (a) system-call
cost on the Pentium architecture, (b) latency and throughput
for small messages, and (c) network file access performance.
Some network file system and I/O library overhead estimates
that were used earlier in the paper were drawn from our earlier
work [25, 26].

A. System Call Cost

To quantify the cost of crossing the user-kernel boundary,
we measured the system-call cost on a Pentium III CPU
clocked at 1GHz with FreeBSD 4.6. Using the perfmon(4)
interface to the Pentium cycle counters we found that a call
to the getpid system service takes about 500 cycles (500ns).
This result is corrected for counter manipulation overhead.

Earlier work measuring system-call invocation overhead
under different operating systems on the Pentium found that
low overhead access to system functionality is possible with
mainstream operating systems such as BSD UNIX and Win-
dows [8]. In addition, new low-overhead system call mecha-
nisms, such as the Pentium ”Fast System Call” facility, part of
which are the SYSENTER/SYSEXIT instructions [19], have
recently been incorporated into mainstream operating systems
(e.g., the Linux vsyscall API), resulting in significant reduction
of the system-call overhead. In the following experiments,
however, system calls are implemented using the standard int
0x80 mechanism [19] and none of the above optimizations.

B. Latency and Small Message Throughput

Previous work on user-level networking underlined the
importance of low per-message communication overhead in

achieving low end-to-end latency and high throughput for
small messages over high-speed system-area networks [36].
Myrinet [28] is an example of a network infrastructure that
offers a user-level NIC programming interface via its GM
communication library. In this section, we use experimental
measurements from a Myrinet platform to show that similar
benefits are possible with a kernel implementation of the GM
programming interface.

We used two single-processor PCs with 1GHz Pentium III
CPUs, 66MHz/64-bit PCI buses, and the ServerWorks LE
chipset, connected via a 2Gb/s Myrinet switch using LANai
9.2 NICs. The user-level networking library we used was
Myricom’s GM version 2.0.7 over FreeBSD 4.9. We measured
the latency and unidirectional bandwidth achieved between our
two hosts using the standard gm allsize benchmark, which is
part of the GM software distribution. The latency measure-
ment involves roundtrip of a one-byte message without any
process blocking at either end. The bandwidth measurement
involves a sender that tries to keep the network fully utilized
by asynchronously transmitting messages at a certain rate
and a receiver pulling messages out of the network without
blocking. Absence of blocking at both ends implies nearly zero
interrupt overhead as we verified by examining the breakdown
of the CPU time collected by a kernel profiler during the
experimental runs.

We used two configurations of the gm allsize benchmark:
(a) the standard (unmodified) form, which uses the user-level
GM interface, and (b) a configuration that emulates use of a
kernel-based GM interface. The latter is based on (a) with the
following addition: Each function call into the GM library is
followed by a null system call as shown in Figure 3. These
system calls have the same number and type of arguments
as the equivalent GM calls and typically include a memory
pointer to a user-level buffer. Besides the cost of copying-in the
argument list, each system call performs an additional copy-in
of 16 bytes from the user-level buffer and returns. To avoid
(unfairly) benefiting from caching effects, different buffers
were used at each invocation of the system calls. This way we
ensure that the overall cost of the system calls approximated
or exceeded their cost in a true kernel-based GM library.

A true kernel-based GM library is expected to perform at
least as good as our approximation for two reasons: First,
the only difference between a true kernel-based GM library
and our approximation is that the former would execute code
and access data in the kernel instead of a user-level address
space. This, however, should not impede performance in any
way. Actual kernel-based performance should be better due to
privileges enjoyed by the kernel address space, such as wired
page mappings. Second, our approximation may perform more
than one system calls when checking for I/O completion if it
eventually needs to block: one system call to check for I/O
completion and another to block the process. A true kernel-
based implementation would perform both within a single
system call.

Our latency measurements show that the kernel-based ap-
proximation increases the one-byte roundtrip latency from
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Fig. 4. Emulation of kernel-based network file system client. Each call
into the file system client (e.g., dap read, dap io done [11]) is followed by a
null system call.

15.2 2
�

with the user-level configuration, to 24.3 2
�
. This

increase can be attributed to the use of expensive system calls
in the critical communication path. Improvements in system
call overhead with the techniques mentioned in Section VI-A
are expected to reduce this latency.

The throughput measurements show that both the user-level
and the kernel-based configurations perform identically for
message sizes ranging from a few bytes up to a few tens of
KBs (e.g. 32KB). For very small message sizes, performance
is limited by the NIC and is independent of the user or kernel
implementation. For larger message sizes (e.g., � 4KB), the
limiting factor is the network link, which is saturated by both
configurations. This is possible because there are spare CPU
cycles to absorb the additional system call overhead of the
kernel-based configuration without reducing the achievable
bandwidth. Note here that a significant factor in this exper-
iment is the absence of interrupts, which if present, may have
biased the results in favor of the user-level implementation, as
can be seen in the next experiment.
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Fig. 5. User-level vs. emulated kernel-based DAFS client performance
in streaming file access. The kernel structure is about 5% slower for small
(4KB and 8KB) blocks and performs similar to the user-level structure for
large blocks.

C. Network File Access Performance

In this section, we show that a network file system client can
be implemented equally efficiently in user or kernel address
space. We compare a user-level DAFS client (which we refer
to as DAFS) to an implementation emulating a kernel-based
DAFS client (kDAFS). The latter is derived by modifying the
user-level DAFS client to perform a null system call7 at each
function entry (e.g., at I/O issue and completion), as shown
in Figure 4. A true kernel-based DAFS client is expected to
perform similar to kDAFS for the reasons mentioned in the
previous section.

Two factors differentiate this experiment from the simpler
throughput experiment of Section VI-B: (a) the increased
overhead of a file system client compared to the overhead of
the networking library alone; and (b) the additional overhead
of interrupts for small transfers (even though the DAFS client
is configured to poll when possible), which are due to the
VI-GM implementation described below.

In this experiment we used the same setup as in the pre-
vious experiment except that the GM and FreeBSD software
were based on versions 2.0-alpha1 and 4.6, respectively. The
DAFS client [25] used in this experiment is implemented
over VI-GM [29], Myricom’s host-based VI implementation
over GM. The DAFS server [24] is implemented in the
FreeBSD kernel and uses our kernel version of VI-GM. One
important implementation issue with VI-GM is that its event
notification mechanism uses a dedicated thread (internal to VI-
GM) to translate GM events to VI events. One problem with
this implementation is the possibility of that thread blocking
to wait for GM events (and thus incurring an interrupt on
wakeup) even though the application thread intends to avoid
interrupts by polling on the VI descriptor. This behavior results
in additional interrupt overhead in certain cases.

Figure 5 shows that DAFS and kDAFS are equally effective
in reducing communication overhead in a simple streaming
workload where a client reads a 1GB file that is cached in
server memory, using block sizes varying from 4KB to 512KB.
The only performance difference occurs for small (4KB and
8KB) blocks, where communication overhead is highest and
the effect of the system-call overhead becomes maximal. Even
in this case, however, kDAFS is within 5% of the performance
of the fully user-level client.

VII. CONCLUSIONS

In this paper, we argued that flexibility and good perfor-
mance can be achieved with application-level file caching and
buffering, both of which can be achieved without user-level
access to NICs, simplifying NIC design and implementation.
There is a commonly-held belief, however, that kernel APIs
hurt performance due to the overhead of protection domain
crossing. In this paper, we show that this overhead is rarely
a problem for I/O-intensive network storage applications. To
demonstrate this, we use an analytical model backed by

7Note that this system call has an empty argument list and is therefore not
as heavyweight as the system calls used in the previous experiment.



experimental measurements and show that performance in
such applications is dominated by other overheads, such as
those of the file system and the host interaction with the NIC,
which are incurred on a per-I/O basis.
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