
Application Performance on the Direct Access File
System

Alexandra Fedorova

Harvard University

 fedorova@
eecs.harvard.edu

 Margo Seltzer
Harvard University

 margo@

eecs.harvard.edu

 Kostas Magoutis
Harvard University

 magoutis@
eecs.harvard.edu

Salimah Addetia
Harvard University

 addetia@
eecs.harvard.edu

ABSTRACT

The Direct Access File System (DAFS) is a distributed file
system built on top of direct-access transports (DAT). Direct-
access transports are characterized by using remote direct memory
access (RDMA) for data transfer and user-level networking. The
motivation behind the DAT-enabled distributed file system
architecture is the reduction of the CPU overhead on the I/O data
path.

We have created an implementation of DAFS for the
FreeBSD platform. In this paper we describe the performance
evaluation study of DAFS that we have performed using this
software. The goal of this study is to determine whether the
architecture of DAFS brings any fundamental performance
benefits to applications compared to traditional distributed file
systems, such as NFS. We perform comparison of DAFS to a
version of NFS optimized to reduce the I/O overhead. In order to
thoroughly understand the impact of DAFS on application
performance, we consider a diverse range of applications
workloads.

We conclude that DAFS can accomplish superior
performance for latency-sensitive applications, outperforming
NFS by up to a factor of 2. Bandwidth-sensitive applications do
equally well on both systems, unless they are CPU-intensive, in
which case they perform better on DAFS. We also found that
RDMA is a less restrictive mechanism to achieve copy avoidance
than that used by the optimized NFS.

Categories and Subject Descriptors
C.4 [Performance Of Systems]: Measurement Techniques; D.4.8
[Performance]: Modeling and prediction; D.4.3 [File System
Management]: Distributed file systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
WOSP 04, January 14-16, 2004, Redwood City, CA.
Copyright 2004 ACM 1-58113-673-0/04/0001 ...$5.00.

General Terms
Performance, Experimentation

Keywords
Direct Access File System, Performance Measurement, RDMA,
Distributed File Systems.

1. INTRODUCTION

The Direct Access File System (DAFS) [1] is a new
distributed file system designed to take advantage of direct-access
transports (DAT) [13]. Direct-access transports allow for efficient
and lightweight data transfer between the nodes in a distributed
system through the use of remote direct memory access
(RDMA)and user-level networking. By utilizing direct-access
transports DAFS aims to increase the performance and efficiency
of network-attached storage systems. The DAFS protocol is based
on the Network File System (NFS) protocol version 4 [4], with
built-in support for RDMA.
 While DAFS uses new technology to build a distributed file
system, conventional distributed file systems (such as NFS) have
evolved as well. The research community has continuously
addressed performance problems associated with conventional
network storage systems, and, as a result, these systems have
improved [6, 9, 10, 11, 12]. In the face of recent improvements in
the performance of these systems, it is of interest to determine
whether the DAFS architecture provides any fundamental
performance benefits to applications compared to conventional
network storage systems. This is the research question that we
address in the current work.
 In collaboration with Duke University we have created and
made available an open-source implementation of the DAFS
kernel server and the user-level client for the FreeBSD platform.
In this paper we report the results of our performance evaluation
of DAFS. Our work makes the following contributions: We use
microbenchmarks to understand the fundamental performance
characteristics of DAFS. We conclude that the degree to which an
application can benefit from DAFS largely depends on the
characteristics of the application. We establish these
characteristics and develop a simple framework that helps reason
about an application’s performance on DAFS without actually
running the application. We evaluate the predictive power of our
framework on a TPC-C database benchmark. We compare the
performance of DAFS to an implementation of NFS modified to
avoid data copies in the kernel (NFS-nocopy).

The rest of the paper is organized as follows: In section 2
we discuss related work. In sections 3 and 4 we provide an
overview of DAFS and of NFS-nocopy. In section 5 we present
the microbenchmarks. In section 6 we discuss the application
characteristics that determine their performance on DAFS, and
derive the performance-predicting framework. In section 7 we
evaluate our framework on the TPC-C benchmark. We conclude
in section 8.

2. RELATED WORK

The current work is an extension of a performance
evaluation study of DAFS performed at Harvard and Duke
universities [7]. It expands the previous study by experimenting
with a wider range of more sophisticated application workloads
and by developing the framework for reasoning about an
application’s performance on DAFS. Some of the experiments
presented in this paper have also appeared in a paper presented at
the 2002 USENIX conference [7]. We include several of these
previously published experiments here for completeness and add a
reference to the original paper next to those figures.

Recent work has explored performance of database systems
on direct-access transports. Zhou studied performance of
Microsoft SQL Server that communicated with a storage system
over a DAT network [17]. Scott performed a similar study with
DB2 [18]. This work presents a general study of the file system
built on top of direct-access transports.

3. DAFS

 We first give an overview of remote direct memory access
(RDMA) and user-level networking – the enabling technologies
behind DAFS. We then proceed to describe their respective roles
in the DAFS architecture.

3.1. RDMA

RDMA is a direct transfer of data between memory buffers
on two hosts. It avoids the copying of data that is normally
required when sending data over conventional mechanisms such
as remote procedure call (RPC). RDMA also implies offloading
the execution of the transport protocol code to the network device.
RDMA, therefore, decreases host CPU overhead involved in I/O.

To transfer data with RDMA, a client sends to the server an
RPC request, telling it what data it needs and the memory address
where the data should be placed on the client. The server then tells
its network interface controller (NIC) to initiate the RDMA. The
NIC takes the data from the server memory and puts it on the wire
(note no copying or host CPU involvement). When the data
arrives at the other side of the wire, the NIC on the client machine
deposits the data directly into the memory buffer that had been
allocated by the client (again, there is no data copying or host
CPU involvement). Figure 1 illustrates the difference between the
DAFS client that uses RDMA and a conventional file system
client that uses RPC for data transfer.

Note that to make RDMA available to a file system service,
some protocol provisions are necessary. In particular, a service
that is using RDMA must be able to pass the address of a memory
buffer where the RDMA data should be placed to the remote host.
Unlike the NFS protocol, the DAFS protocol has such support for
RDMA. It is this protocol support that makes DAFS DAT-ready,

and makes the DAFS architecture fundamentally different from
that of traditional distributed file systems.

Conventional NFS client DAFS client

User
space

OS
kernel

NIC

User applications

I/O library

VFS/VM buffer cache

NFS

TCP/IP stack

Network Driver

Network Adapter

User applications

DAFS library

Network Driver

Network Adapter

DMA

DMAcopy

copy

Figure 1. NFS client vs. DAFS client

3.2 User-level networking

Another characteristic of direct-access transports is user-
level networking. User-level networking allows the user program
to interact directly with the network interface controller (NIC),
bypassing the kernel. The NIC exposes an array of connection
descriptors to the system’s physical address space. At connection
setup time, the kernel NIC driver maps a connection descriptor
into the process virtual address space, giving the process a direct
way to communicate with the NIC by simply writing and reading
the descriptor memory.

To perform a data transfer using such a NIC, the user
program must register with the NIC a memory buffer, which will
serve as the destination for the incoming data. During registration
the kernel pins the buffer in physical memory, and the NIC sets up
a virtual-to-physical translation of the buffer’s address in its
internal page table. Once the buffer is registered, the RDMA
transfer can proceed into the buffer without the kernel
involvement.

User-level networking reduces CPU overhead for
applications, by allowing an application to initiate I/O without
system calls.

3.3. The DAFS architecture

DAFS has been envisioned and specified by a group of
more than 85 companies led by Network Appliance. Network
Appliance has released a commercial implementation of DAFS;
several non-commercial implementations have been developed at
universities [7]. The DAFS client and server implementations that
we use have been developed by research groups at Harvard and
Duke Universities [7, 23].

Although DAFS could be implemented in the kernel, just
like traditional file systems, RDMA and user-level networking
enable a user-level file system structure for DAFS. The DAFS
client that we use is implemented at user-level, and the server is in
the kernel. The client has an asynchronous event-driven design
and implements the full DAFS client API [2], which is similar to
the POSIX API. Although the client has been extended to support

caching [8], the version used for the experiments in this paper
does not include any caching or pre-fetching.
 RDMA and user-level networking require special support
on the NIC. The Virtual Interface (VI) architecture [5] defines a
host interface and API for NICs supporting such features. Our
DAFS implementation runs on top of a VI-capable NIC (Giganet
cLAN 1000).
 The DAFS server is currently a self-contained kernel
module that does not require any core kernel changes. It will
eventually be a part of the FreeBSD kernel distribution and is
already available in source form as a FreeBSD 4.6 kernel module.
It works with Myrinet GM 2.0 (alpha release) and VI-GM 1.0,
which is also open-source software.

4. NFS-NOCOPY

 NFS-nocopy1 is an implementation of the standard NFS
protocol modified to reduce the overhead on the I/O data path by
avoiding data copies.

In the traditional kernel NFS client, there are two data
copies that have to be made on the incoming I/O data path: the
copy between the network stack and the kernel buffer cache, and
then the copy between the buffer cache and the application buffers
(see Figure 1). NFS-nocopy avoids these copies by using two
techniques: header splitting and page flipping. Header splitting
and page flipping are the traditional methods of copy avoidance,
variants of which have been used with TCP/IP protocols in the
past [6, 10, 11, 12]. The idea behind these techniques is to
arrange for the NIC to deposit the data payload (the file block)
page-aligned in one or more physical page frames. These pages
can then be inserted into the kernel buffer cache by reference
(page flipping). To do this, the NIC first strips off any transport
headers and the NFS header from each message and places the
data into a separate page-aligned buffer (header splitting).
 We use an Alteon Tigon II Gigabit Ethernet NIC whose
firmware has been modified to perform header splitting for the
incoming NFS read response messages. Once the data payload has
been deposited into page-aligned buffers in the kernel buffer
cache, the data is delivered to the application buffers without
copying, by simply re-mapping the physical pages into the
application’s address space (page flipping). The copy into the
application buffers can only be avoided if the application has
provided page-aligned buffers for the data.

While this approach does not reduce system call overhead, it
does not require changing or re-linking the applications. It does,
however, require kernel modification and proper NIC support. We
picked NFS-nocopy as a system to compare to DAFS because it is
representative of a conventional network file system with
overhead-reducing optimizations.

5. MICROBENCHMARKS

In this section we describe how we used microbenchmarks
to understand the performance characteristics of DAFS. We begin
with simple experiments, and then gradually increase the
complexity of the benchmarks in order to improve our
understanding of the system. We compare the performance of the
benchmarks on DAFS and NFS-nocopy. Since the compared

systems are targeted at improving performance on the client side,
we focus on benchmarking the clients.

1 The NFS-nocopy system that we use in our experiments has
been implemented at Duke University.

Our system configuration consists of two Pentium III 800
MHz client and server machines. The client and the server are
equipped with 256 MB and 1GB of RAM respectively, on a 133
MHz memory bus. All systems run patched versions of FreeBSD
4.3. DAFS uses VI over Giganet cLAN 1000 adapters. NFS uses
UDP/IP over Gigabit Ethernet, with Alteon Tigon-II adapters. In
some cases we also compare the systems to regular NFS.
Experiments with the standard NFS implementation use the
standard Tigon-II driver and vendor firmware. UDP checksum
computation is offloaded to the NIC.

Table 1 shows the raw one-byte roundtrip latency of these
networks. The Tigon-II has a higher latency. The bandwidths are
comparable, but not identical. Disparity of the interface
characteristics sometimes makes it difficult to compare the results
of the experiments. Therefore, whenever appropriate we report the
results normalized to the maximum bandwidth achievable by the
underlying interface. In some cases we analytically derive the
numbers that we would receive if identical networks were used. It
would have been desirable to perform the measurements with
identical networks. This was not possible, because both DAFS
and NFS-nocopy needed to have special feature support on the
NIC. DAFS needed a NIC that supported RDMA and user-level
networking. NFS-nocopy needed a NIC capable of performing
header splitting. We could not get a single NIC that would
provide all of these features.

Table 1. Baseline network performance

 VI/cLAN UDP/Tigon-II

Latency 30 µs 132 µs

Bandwidth 113 MB/s 120 MB/s

5.1. Simple file access

 The key motivation behind the architecture of DAFS is to
reduce CPU overhead on the I/O data path. This is likely to
decrease latency of I/O operations. Our first goal, therefore, was
to test this by experimenting with a latency-sensitive workload. A
latency-sensitive workload is a workload whose running time is
dominated by the latency of individual I/O operations, rather than
by the throughput achievable by the link. An example of a
latency-sensitive workload is an application that reads small
chunks at random offsets in a file. The significance of using small
chunks is that the latency of issuing and responding to I/O, rather
than the time that the data spends on the wire, dominates the
execution latency of this application. The significance of random
access is to make sure that the client file system does not perform
read-ahead, which could make the workload sensitive to the link
throughput.

Some applications, however, are able to hide the latency of
individual I/Os by performing aggressive read-ahead and using
large transfer size. Such workloads have a potential to saturate the
underlying link and become limited by its bandwidth. These are
bandwidth-sensitive workloads. To determine whether or not such
workloads would benefit from running on top of DAFS, we also
evaluate the performance of a bandwidth-sensitive workload.

Our first set of experiments involves reading a large file
from the file server. The entire file fits into the server memory,

and we read the file into the server memory prior to running the
benchmark. Therefore, this experiment measures only the network
transfer speed that can be achieved using the compared systems.
We also include results for the non-optimized NFS client.

5.1.1. The latency-sensitive workload

To construct a latency-sensitive scenario we configure a

benchmark that reads randomly chosen blocks from the file. We
vary the transfer block size. When the block size becomes large,
the workload effectively becomes bandwidth-sensitive. We
configure the NFS client for maximum performance (the block
size matches the application block size up to 32 KB, and the read-
ahead is disabled).

0.00

40.00

80.00

120.00

4 8 16 32 64 128 256 512

block size (KB)

re
ad

 b
an

dw
id

th
 (M

B
/s

)

DAFS

NFS-nocopy

NFS

Figure 2. Read throughput. No read-ahead. [7[

Figure 2 shows the throughput in MB/s achieved by the
systems. DAFS outperforms both NFS systems for small block
sizes. This is due to the lower network latency (see Table 1) and
lower protocol overhead. Note that since the application provides
page-aligned read buffers, NFS-nocopy is able to avoid copies
between the kernel and user space as well as the network to buffer
cache copy (see discussion in section 4). The dashed curve above
the NFS-nocopy curve was derived analytically to demonstrate the
results that would be achieved if the NIC used with the NFS-
nocopy system had the same latency as the NIC used with DAFS.
Additionally, recent work has confirmed that DAFS outperforms
the optimized NFS2 in the latency-sensitive scenario when both
systems are run on top of identical NICs [22].

When the block size becomes large, the application is able
to fill the network pipe with data and saturate the link. At this
point DAFS and NFS-nocopy become limited by the maximum
throughput achievable by the underlying network interfaces (113
MB/s for cLAN and 120 MB/s for Tigon II, see Table 1). Regular
NFS delivers lower performance because it saturates the local
CPU due to copying overhead.
 Figure 3 shows the CPU usage reported as the number of
milliseconds used per MB of transferred data. The CPU usage for
non-optimized NFS remains constantly high, saturating the client
CPU. With DAFS, the CPU usage falls as the block size
increases, because fewer network requests are issued. The
interesting observation here is that for NFS-nocopy the CPU
usage remains constant with increasing block size. This is due to
the page-flipping cost, which is a function of the number of pages
and is independent of the block size.

2 The system used in this work [22] employs different (and likely
more efficient) copy-avoidance mechanism than NFS-nocopy.

5.1.2. The bandwidth-sensitive workload

The bandwidth-sensitive scenario involves issuing read-
ahead for the blocks in the file. For NFS, we cause the read-ahead
to happen in the kernel by requesting sequential file access. With
DAFS, the read-ahead is done by the application, using the DAFS
asynchronous API. We configure the NFS client for maximum
performance (the read block size is 32 KB, maximum read-ahead
is enabled). Figure 4 shows the throughput achieved by the
systems. The throughput numbers are normalized to the maximum
throughput achievable by the underlying interface.

0.00

0.04

0.08

0.12

0.16

0.20

4 8 16 32 64 128 256 512
block size (KB)

C
P

U
 m

s
pe

r M
B

NFS-nocopy

NFS

DAFS

Figure 3. CPU ms per MB. No read-ahead.

Both DAFS and NFS-nocopy achieve the wire speed

bandwidth. Standard NFS delivers lower throughput, because of
the copying overhead that saturates the local CPU. Figure 5
shows the CPU usage in milliseconds per MB of transferred data.
With DAFS, the CPU usage falls for large block sizes; with NFS-
nocopy it stays constant because of the page-flipping overhead.

0.00

0.20

0.40

0.60

0.80

1.00

4 8 16 32 64 128 256 512

block size (KB)

no
rm

al
iz

ed
 th

ro
ug

hp
ut

NFS

DAFS

NFS-nocopy

Figure 4. Normalized read throughput. Read-ahead. [7]

5.1.3. Summary

 In this section we showed that both DAFS and NFS-nocopy
are able to perform at the wire speed in the bandwidth-sensitive
scenario, although DAFS uses less CPU in doing so. Therefore,
we conclude that bandwidth-sensitive applications can do equally
well on both systems, unless they are CPU-bound. For the
latency-sensitive scenario DAFS outperforms NFS-nocopy due to
lower per-I/O overhead.

The applications used in this section were quite simple: they
did not even touch the data that they read. In the next section we
attempt to repeat the experiments of this section with more

complex applications. We set up a latency-sensitive and a
bandwidth-sensitive application, expecting to get similar results.
We find that higher complexity of the applications affects the
behavior of the experiments, leading us to get the results that we
did not expect.

0.00

0.04

0.08

0.12

0.16

0.20

4 8 16 32 64 128 256 512
block size (KB)

C
P

U
 m

s
pe

r M
B

NFS-nocopy

NFS

DAFS

Figure 5. CPU ms per MB. Read-ahead.

5.2. Berkeley DB

 All of the experiments that we describe in subsequent
sections use Berkeley DB [3]. Therefore we take a moment to
describe it here.
 Berkeley DB (db) is an open-source embedded database
library that provides support for transactional concurrent storage
and retrieval of key/value pairs. Db manages its own buffering
and caching, independent of caching in the underlying file system
buffer cache. Db can be configured to use a specific page size, a
unit of caching, locking and I/O (usually 8 KB), and buffer pool
size.

In our experiments, db acts as a user application that reads
files from a remote server either through DAFS or NFS-nocopy.
We chose db as a workload generator for the experiments because
it can be easily configured to produce various application
workloads.

5.3. Latency-sensitive scenario: a real
application

 In this experiment we compare db performance over DAFS
to NFS-nocopy using a synthetic workload composed of read-only
transactions, each of which accesses one small record uniformly at
random from a B-tree. The workload is single-threaded and read-
only, and there is no logging or locking. In all experiments, after
warming the db cache we performed a sequence of transactions
long enough to ensure that each record in the database was
touched twice on average. The results report throughput in
transactions per second. The db is configured with a page size of
16 KB, so this is the unit of I/O. This is a latency-sensitive
configuration.
 We vary the size of the database in order to change the
bottleneck from local memory, to remote memory and then to
remote disk I/O. We compare DAFS and NFS-nocopy clients each
running on a machine with 265 MB of RAM. In both cases the
server is configured with 1GB of memory. Since we did not
expect read-ahead to help in the random access pattern considered
here, we disable read-ahead for NFS-nocopy and use a transfer

size of 16 KB. The db user-level cache size is set to the amount of
physical memory expected to be available for allocation by the
user process (190 MB). The DAFS client uses about 36 MB for
communication buffers and statically sized structures leaving
about 190 MB for the db cache. To facilitate comparison between
the systems, we configure the cache identically for NFS-nocopy.

Figure 6 reports throughput in transactions per second. For
database sizes up to the size of the db cache (190 MB), the
performance is determined by local memory access as db satisfies
the requests entirely from the local cache. Therefore, for this
segment of the graph both systems achieve identical performance.

Figure 6. Berkeley DB. The effect of double caching and
remote memory access. [7]

Once the database size exceeds the size of the client cache

(the 3rd and subsequent data points), performance degrades as both
systems start accessing remote memory. We expected that DAFS
would perform slightly better than NFS-nocopy since this is what
we saw in the latency-sensitive experiment of section 5.1.

Contrary to what we expected, the throughput achieved with
DAFS is several times higher. For example, for the dataset size of
512 MB, DAFS achieves the throughput over 3.5 times higher
than NFS. The reason lies in the structure of the NFS kernel
client. With NFS-nocopy, reading through the file system cache
creates competition for physical memory between the user-level
and file system caches, which happens because in 4.3 FreeBSD
the VM cache and buffer cache are unified, meaning that the VM
system and the buffer cache draw physical pages from the single
memory pool. As a result, the file system cache grows and the
user-level cache is paged out to disk causing future page faults.
We call this the double caching effect. The DAFS client avoids
this effect by maintaining a single cache. Double caching with
NFS could be avoided if the db cache were pinned in physical
memory using the mlock() system call. However, most operating
systems limit how much memory can be pinned. On FreeBSD,
we were unable to pin the entire db cache (190 MB) in memory,
and, therefore, could not re-run this experiment without the
double caching effect. The reader should refer to experiments in
other sections of the paper for performance comparison of DAFS
and NFS-nocopy when double caching is not present.

For database sizes larger than 1GB that cannot fit in the
server cache, both systems are disk I/O bound on the server.
 We were also interested in measuring the client CPU usage
of each system. In Figure 7 we report the CPU seconds used per

1000 transactions. As expected, DAFS uses many fewer CPU
cycles per transaction than NFS-nocopy.
 This experiment has unexpectedly demonstrated to us a
benefit of the user-level file system architecture: applications
running on top of DAFS can disable file system caching when it is
not needed. While it is possible to disable caching in the NFS
kernel client by making a small change to the kernel, this is not a
general solution. Disabling caching for the NFS client would
affect all processes that use that system, some of which may want
caching enabled. While this experiment has demonstrated to us
the benefits of the user-level file system architecture, it has also
directed us to think about its limitations. Consider a scenario of a
naïve application that does not perform its own caching but could
benefit from the caching traditionally performed by the file
system clients. Such an application can suffer from poor
performance when run on top of a simple DAFS client that does
not support caching. We demonstrate this scenario in the
following section.

0

0.07

0.14

0.21

0.28

12
8

20
0

24
0

35
0

50
0

70
0

90
0

working set (MB)

C
P

U
 (s

ec
/1

00
0

tx
n)

DAFS
NFS

Figure 7. Berkeley DB. CPU seconds per 1000 transactions.

5.4. Flipping the coin: Kernel caching

 In this section we simulate a naïve user application that does
not perform its own caching, but can potentially benefit from the
caching performed by the kernel file system client. The
application performs a sequence of read-only transactions, each of
which retrieves a small record from a B-tree selected uniformly at
random. Db’s logging and locking are disabled. This time we set
the db cache to a small size of 50 MB. The client machine has 256
MB of physical RAM. We use a database of size 191 MB. The
server has 1 GB of RAM. We perform several runs, each with an
increasing number of transactions.

Figure 8 shows the results. On the x-axis we report the
number of transactions performed in the run, on the y-axis we
report the throughput in transactions per second. We start with a
warm server cache and, a cold db cache, and, in case of NFS, a
cold client file cache.

When a small number of transactions is performed, both
systems have to read data from the server memory. DAFS
outperforms NFS due to lower per-I/O latency. Since the client
machine has plenty of RAM and there is no double caching, we
are able to repeat the result of the latency-sensitive benchmark in
section 5.1 where DAFS achieved about twice the throughput of
NFS-nocopy for 16 KB transfer size.

As the number of transactions in the run increases, the
application starts accessing the records that have already been

accessed. Since the db cache is small in comparison to the
working set, and the access pattern is random, DAFS performance
remains the same. However, the NFS-nocopy client benefits from
the kernel caching on the client, and eventually its performance
exceeds DAFS as all file requests of the application are satisfied
from the local buffer cache.

0

5000

10000

0 500 1000

1000 of transactions

th
ro

ug
hp

ut
 (t

xn
/s

)

DAFS

NFS-nocopy

Figure 8. Berkeley DB. The effect of kernel caching.

 The DAFS user-level client can certainly implement its own
caching [8], however it is difficult to design a user-level cache
that is shared among separate untrusting processes.

5.5. Bandwidth-sensitive scenario: a real
application

 Getting back to our original plan to repeat simple
experiments of section 5.1 with more complex applications, we
construct a bandwidth-sensitive application scenario. We
modified Berkeley DB to perform read-ahead when the
application access patterns are known. By issuing read-ahead the
db application is able to keep a high number of outstanding I/O
requests, creating a bandwidth-sensitive workload.

In this experiment an application uses db to compute a
simple equality join. The result of the join produces a list of keys,
whose corresponding data records are fetched from the database.
We have modified db to perform asynchronous pre-fetching on
this list of keys using DAFS asynchronous API or POSIX aio API
in the case of NFS-nocopy. In Figure 9 we compare the
throughput achieved with DAFS and NFS-nocopy without pre-
fetching (NO_PREFETCH) and with pre-fetching (PREFETCH).

The results displayed in Figure 9 demonstrate that, just like
in the experiment of section 5.2, there is a benefit from
application-initiated pre-fetching when using either of the
compared systems. In section 5.2, we also saw that when pre-
fetching both systems achieve similar throughput and achieve
wire speed performance. This is not the case here. Neither system
saturates the link because the application we run here uses more
CPU than the simple bandwidth benchmark.

Another notable difference is that NFS-nocopy achieves
lower throughput than DAFS. There are two reasons for this. The
first is that NFS-nocopy uses more CPU cycles than DAFS (see
section 5.1) and, given the additional CPU requirements of the
application, CPU becomes the bottleneck, preventing efficient
link utilization. The second reason, further contributing to the
CPU bottleneck, is that the application running on top of NFS-
nocopy does not enjoy the full benefits of copy avoidance in this
experiment, since db reads data into unaligned buffers (see section

4), and it would require non-trivial amount of work to modify db
to use page-aligned buffers. This demonstrates that RDMA is a
more general copy avoidance method for applications than that
employed by NFS-nocopy.

0

2000

4000

6000

8000

DAFS NFS-nocopy

th
ro

ug
hp

ut
 re

cs
/s

ec

NO-PREFETCH
PREFETCH

Figure 9. Bandwidth-sensitive application.

In this section we presented an experiment with a
sophisticated application that was modified to do its own pre-
fetching. It is also interesting to look at a scenario of a naïve
application does not perform its own pre-fetching, but that could
benefit from the pre-fetching usually provided by the kernel file
system clients. Such an application could suffer from poor
performance when running on top of a simple DAFS client that
does not do read-ahead. We demonstrate such a scenario in the
next section.

5.6. Flipping the coin: kernel pre-fetching

 The following experiment demonstrates a scenario in which
the NFS kernel client delivers higher performance than DAFS, in
this case, due to pre-fetching initiated by the NFS client when the
sequential file access pattern is detected. The DAFS client does no
pre-fetching.
 To trigger kernel pre-fetching, we configure the application
to use the “queue” data structure available in the db library and
perform a sequential traversal of the queue, which requires
sequentially reading the file containing the data structure. The
client host is configured with 256 MB of RAM, and the db cache
is set to 50 KB. Since we perform a single traversal, touching
each page in the file exactly once, there is no need for a large
cache. We vary the size of the records populating the database, in
order to vary the amount of computation performed by the
application.

0.00

20.00

40.00

60.00

80.00

64 128 256 512 1024 2048

record size (bytes)

 th
ro

ug
hp

ut
 M

B/
s NFS-nocopy

DAFS

Figure 10. The effect of kernel pre-fetching.

Figure 10 shows the throughput in MB/s achieved by the
application depending on the record size. For all record sizes the
NFS-nocopy delivers higher throughput due to kernel pre-
fetching, but the effect of pre-fetching is small when the
application is CPU-bound due to the overhead of processing of
small records.

While a DAFS client could be easily extended to perform
pre-fetching like the kernel client, this result demonstrates the
point that when migrating applications to DAFS, special care must
be taken to find out exactly what assumptions the application
makes about the underlying file system and whether or not these
assumptions are satisfied by the DAFS client.

6. REASONING ABOUT APPLICATION
PERFORMANCE

 In the previous section we presented several experiments
that helped us understand what factors affect the performance of
applications running on top of DAFS. In this section we
summarize the results of the experiments and describe a
framework that helps us reason about the performance of an
application on DAFS.

Previous work has looked into building models for
predicting the exact latency of application execution. Smith
tackled the problem of predicting application performance on
local file systems in his Ph.D. thesis [14]. He used a combination
of vector-based and trace-based techniques developed by M.
Seltzer and her colleagues [16]. Zhang used similar techniques to
predict the performance of Java Virtual machines [15]. We
believe that it would be difficult to directly apply these techniques
here because, as we will see in the next section, performance of an
application may depend on the degree of concurrency in the file
system access exhibited by the application. Therefore, instead of
building a model for predicting the exact latency, we simply relate
the results of the microbenchmarks to the application
characteristics in a way that helps us reason about how an
application would perform on DAFS.

As we saw from the results presented in the previous
section, the performance of an application on DAFS largely
depends on the characteristics of the application. Therefore, in
order to reason about an application’s performance we need to
categorize applications based on their characteristics. To facilitate
such categorization in the infinite application space we point out
three groups of application characteristics are key in determining
the performance on DAFS:

1) I/O characteristics: Is the application latency-sensitive or
bandwidth-sensitive?

In the experiments of section 5.2 we saw that a latency-
sensitive application is likely to see a performance benefit from
the low per-I/O overhead of DAFS. Bandwidth-sensitive
applications, on the other hand, can achieve comparable
performance on DAFS and NFS-nocopy, unless they are CPU-
bound.

2) CPU characteristics. Is the application CPU bound?

DAFS uses fewer CPU cycles per I/O operation. This is an
important consideration for CPU-bound applications, as we saw in
section 5.5 with the Berkeley DB join application. If an
application is subject to the CPU bottleneck on the client machine

it may achieve better performance with DAFS, because DAFS
uses fewer CPU cycles for I/O, leaving more CPU cycles for the
application.

3) Application structure: Is the application structured in a way that
allows it to reap the benefits offered by the compared file
systems?

 Application design aspects that may affect the performance
include the use of page-aligned buffers, implementation of custom
caching or lack thereof, and reliance on pre-fetching provided by
the file system.

 By describing an application’s characteristics with respect
to the three characteristic groups defined above, we can predict
how the application will perform on DAFS compared to NFS-
nocopy.
 Before we proceed with evaluation of our framework, we
take a moment to point out several limitations imposed on
applications by the architecture of DAFS. Although these
limitations do not directly affect performance, they may turn out
to be important to consider when making decisions about a file
system choice:
• When migrating applications to DAFS, they must be

modified or re-linked. There is no such need when migrating
to an optimized NFS client.

• Since DAFS has a user-level architecture3 it is difficult to
design a client cache for DAFS that can be shared by
multiple untrusting processes. Many high performance
systems, however, have a single-process architecture that
does not depend on sharing a file system cache with other
processes. For such systems the limitations of the user-level
cache architecture do not present a serious problem.

• Since the DAFS user-level library is embedded into the
application address space, a buggy application can
inadvertently overwrite the memory belonging to the file
system client.

• DAFS requires registering the application buffers used for
I/O with the NIC (see section 3). Registration of the buffers
means that the buffers are pinned in the physical memory.
This can result in an unfair use of operating system resources
by a DAFS application in a multi-process environment.

On a positive note, the DAFS user-level structure offers

opportunities for the customization of the file client for the
application-specific needs.

7. TPC-C

 In this section we test the effectiveness of our framework in
predicting performance of a complex application. The application
we use is the TPC-C benchmark.

TPC-C is a standard database benchmark specified by the
Transaction Processing Performance Council [19]. It is an online
transaction processing workload that involves a mixture of read-
only and update intensive transactions that simulate the activities
of order-processing warehouses. A conventional TPC-C set-up is
a complex multi-tier system that consists of transaction clients

that issue transaction requests by sending messages to a message
server, that eventually forwards these requests to a database
server (see Figure 11). In our configuration, the database server
stores its database files on a network-attached storage system
running either DAFS or NFS file server. Therefore, the database
server uses either the DAFS or the NFS-nocopy file system client
to access the files. We were interested in comparing the
performance of the database server on these two file systems.

3 Although DAFS can also be implemented in the kernel, we
consider the user-level architecture here, as explained in section 2.

Sun Microsystems graciously shared with us their database-
benchmarking tool, which implements the database-independent
part of TPC-C [20]. We ported the Sun’s implementation of TPC-
C for Informix to run on top of Berkeley DB. We implemented
the database server as a collection of one or more server processes
that receive transaction requests from the message server and
execute queries against Berkeley DB. Although we have ported
the tool in its entirety, in the experiment described here, the
transaction workload is not generated by transaction clients – it is
generated locally on the machine running database servers. We do
this in order to simplify our understanding of the experiment.

Figure 11. Our TPC-C configuration.

Implementing the TPC-C benchmark required careful tuning
of the database schema and transactions in order to minimize
database lock contention [21]. In the process of tuning we also
discovered that we were limited by the inadequate disk I/O system
that was at our disposal. We only had regular 10000-RPM SCSI
disks available to us, while conventionally, the TPC-C benchmark
is run with powerful RAID storage systems on the back-end that
achieve hundreds of megabytes in disk throughput [19]. We
simulate the availability of a more powerful disk I/O system by
disabling synchronous writes to disk and by configuring the file
server machine with 1 GB of physical RAM in order to fit the
entire database in memory. The client machine hosting the
database server has enough physical RAM to accommodate the db
cache, configured to 100 MB (1/7 of the database size). We
pinned the db cache in memory in order to avoid the undesirable
double caching effect we described in section 5.3.
 To apply our framework for predicting the behavior of TPC-
C, we first need to establish the I/O, the CPU, and the application
structure characteristics of the benchmark that will be important in
predicting its behavior.

The I/O characteristic of the TPC-C benchmark depends on
how many concurrent database server processes are running.
When only one process is running, the application is latency-
sensitive so we expect it to have better performance on DAFS.
When multiple server processes are running simultaneously, they
can issue a number of simultaneously outstanding I/O requests.

This creates a potential for saturating the link and making the
workload bandwidth-sensitive. As we showed in section 5.2
bandwidth-sensitive applications do equally well on both systems
unless they are CPU-intensive. Each TPC-C transaction involves
traversing several database indices. We, therefore, anticipated that
the benchmark would be CPU-intensive and expected that it
would do better on DAFS. We also expected that TPC-C over
DAFS would scale better as the number of concurrent server
processes increased, because of lower CPU requirements of the
DAFS client.

The application structure of the benchmark is poorly suited
for NFS-nocopy because Berkeley DB uses unaligned buffers for
I/O transfer, preventing NFS-nocopy from completely avoiding
data copies. It is, however, well suited for the simple DAFS client
that we used: since Berkeley DB implements its own caching the
benchmark’s performance would not suffer from the lack of
caching in the DAFS client. Since the access pattern is random,
we did not expect pre-fetching to be helpful.

Figure 12 shows the combined throughput (in transactions
per second) achieved by all the database server processes as the
function of the number of processes.

As we expected, DAFS outperform NFS-nocopy in all
cases. When two database server processes are running
concurrently, the systems deliver better throughput compared to
the case when a single server process is used, because of the
improved utilization of the system resources. When more server
processes are added, both systems experience negative scaling
because of the adverse effect of database lock contention.

0

200

400

600

800

1000

1 2 3 4 5

number of server processes

th
ro

ug
hp

ut
 (t

x/
s)

 DAFS
NFS-nocopy

Figure 12. TPC-C: total throughput as a function of a number
of concurrent server processes.

 DAFS uses CPU more efficiently: both systems achieve the
same CPU utilization of about 80%, but since DAFS offers higher
throughput, it uses fewer CPU cycles per transaction.
 We incorrectly anticipated that the benchmark would be
CPU-intensive and would therefore scale better with DAFS than
with NFS-nocopy. Contrary to what we expected, the benchmark
does not create CPU pressure. Even though we eliminated the disk
I/O bottleneck and heavy lock contention points, there was still
some amount of database lock contention that prevented the
benchmark from saturating the CPU. Such lock contention is
expected in the face of concurrent database access.

8. CONCLUSIONS

 In this work we conducted a performance evaluation study
of DAFS using our open-source implementation for FreeBSD. We
addressed the question whether the DAFS architecture provides

any fundamental performance benefits for applications compared
to conventional network storage systems. We concluded that the
DAFS architecture does provide fundamental performance
benefits, but whether or not and application can enjoy these
benefits largely depends on the structure of the application. Using
microbenchmarks we understood the application characteristics
that determine its performance on DAFS. We summarized the
important architectural limitations of DAFS and compared DAFS
to a competing system: NFS-nocopy. We concluded that DAFS
delivers better performance for latency-sensitive applications and
for bandwidth-intensive CPU-intensive applications.

We developed a framework for reasoning about an
application’s performance on DAFS. Even though our framework
proved useful for reasoning about the performance of simple
applications, we found that for complex scenarios we were not
able to correctly describe the application characteristics, which is
the pre-requisite for the effective use of our framework. This pre-
requisite is difficult to satisfy when dealing with a complex
distributed system.

9. SOFTWARE AVAILABILITY

 The DAFS and NFS-nocopy software evaluated in this
paper is freely available at http://eecs.harvard.edu/vino/fs-
perf/dafs.html and http://www.cs.duke.edu/ari/dafs.

10. REFERENCES

[1] DAFS Collaborative. Direct Access File System Protocol,

Version 0.90, June 2001, http://www.dafscollaborative.org.

[2] DAFS Collaborative. DAFS API, Version 0.6, June 2001,

http://www.dafscollaborative.org.

[3] Olson, M., Bostic, K., Seltzer, M. “Berkeley DB”, In
 Proceedings of USENIX 1999 Annual Technical

Conference, June 1999.

[4] Shepler, S. et al. NFS Version 4 Protocol. RFC 3010,

December 2000.

[5] Compaq, Intel, Microsoft, Virtual Interface Specification,

Version 1.0, December 16, 1997.

[6] J. S. Chase, K. G. Yocum, and A. J. Gallatin. “End-System

Optimizations for High-Speed TCP”, IEEE
Communications Special Issue on TCP Performance in
Future Networking Environments, 39(4):68-74, April 2001.

[7] Magoutis, K., Addetia, S., Fedorova, A., Seltzer, M., Chase,

J., Kisley, R., Gallatin, A., Wickremesinghe, R., Gabber, E.
“Structure And Performance Of Direct Access File System”,
In Proceedings of USENIX 2002 Annual Technical
Conference, Monterey, CA, June 2002.

[8] Addetia, S. User-level Client-side Caching for DAFS.

Technical Report, Harvard University TR-14-01, March
2002.

[9] Anderson, D., Chase, J., Gadde, S., Gallatin, A., Yocum, K.
 “Cheating the I/O Bottleneck: Network Storage With

Trapeze/Myrinet”, Proceedings of USENIX 1998 Annual
Technical Conference, June 1998.

[10] Brustoloni, J., “Interoperation of Copy Avoidance in

Network and File I/O”, In Proc. Of 18th IEEE Conference
on Computer Communications (INFOCOM’99), New York,
NY, March 1999.

[11] Chu, J. “Zero-copy TCP in Solaris”, In Proceedings of

USENIX 1996 Annual Technical Conference, San Diego,
CA, January 1996.

[12] Thadani, M., Khalidi, Y. “An Efficient Zero-copy I/O

Framework for UNIX”, Technical Report, SMLI TR95-39,
Sun Microsystems Lab, Inc., May 1995.

[13] DAT Collaborative, http://www.datcollaborative.org.

[14] Smith, K. “Workload-Specific File System Benchmarks”,

Ph.D. Thesis, Harvard University, Cambridge, MA, January
2001.

[15] Zhang, X., Seltzer, M. “Hbench:Java: An Application-

Specific Benchmarking Framework for Java Virtual
Machines”, In Proceedings of the ACM Java Grande 2000
Conference, pp. 62-70, San Francisco, CA, June 2000.

[16] Seltzer, M., Krinsky, D., Smith, K., Zhang, X. “The Case

for Application-Specific Benchmarking”, In Proceedings of
the 7th Workshop on Hop Topics in Operating Systems
(HOTOS-VII), pp. 102-107, Rico Rio, AZ, March 1999.

[17] Zhou, Y., Bilas, A., Jagannathan, S., Dubnicki, C., Philbin,

J., Li. K. “Experiences with VI Communication for
Database Storage”, In Proceedings of the 29th International
Symposium on Computer Architecture (ISCA), May 2002.

[18] Scott, H., “User-level I/O for Database Management

Systems”, Master’s Thesis, Queen’s University, Kingston,
Ontario, Canada, March 2001.

[19] Transaction Processing Performance Council, “TPC
Benchmark C”, Standard Specification, Revision 5.0,
Februrary 26, 2001, http://www.tpc.org.

[20] Sun Microsystems, “Dbbench – Database Benchmarking

Tool – Version 2.4 Manual”, 1994.

[21] Fedorova, A., Seltzer, M. Personal Communication on

Optimizing Transactions and Data Structures in Berkeley
DB, Harvard University, October 2002.

[22] Magoutis, K, Addetia, S., Fedorova, A., Seltzer, M.,

“Making the Most out of Direct Access Network-Attached
Storage”, To appear In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies (FAST ’03),
San Francisco, CA, 2003.

[23] Magoutis, K., "Design and Implementation of a Direct

Access File System (DAFS) Kernel Server for FreeBSD", In
Proceedings of USENIX BSDCon 2002 Conference, San
Franscisco, CA, February 11-14, 2002.

