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ABSTRACT 
 

The Direct Access File System (DAFS) is a distributed file 
system built on top of direct-access transports (DAT). Direct-
access transports are characterized by using remote direct memory 
access (RDMA) for data transfer and user-level networking. The 
motivation behind the DAT-enabled distributed file system 
architecture is the reduction of the CPU overhead on the I/O data 
path.   

We have created an implementation of DAFS for the 
FreeBSD platform.  In this paper we describe the performance 
evaluation study of DAFS that we have performed using this 
software. The goal of this study is to determine whether the 
architecture of DAFS brings any fundamental performance 
benefits to applications compared to traditional distributed file 
systems, such as NFS.  We perform comparison of DAFS to a 
version of NFS optimized to reduce the I/O overhead. In order to 
thoroughly understand the impact of DAFS on application 
performance, we consider a diverse range of applications 
workloads.   

We conclude that DAFS can accomplish superior 
performance for latency-sensitive applications, outperforming 
NFS by up to a factor of 2. Bandwidth-sensitive applications do 
equally well on both systems, unless they are CPU-intensive, in 
which case they perform better on DAFS. We also found that 
RDMA is a less restrictive mechanism to achieve copy avoidance 
than that used by the optimized NFS. 
 

Categories and Subject Descriptors 
C.4 [Performance Of Systems]: Measurement Techniques; D.4.8 
[Performance]: Modeling and prediction; D.4.3 [File System 
Management]: Distributed file systems 
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1. INTRODUCTION 
 

The Direct Access File System (DAFS) [1] is a new 
distributed file system designed to take advantage of direct-access 
transports (DAT) [13]. Direct-access transports allow for efficient 
and lightweight data transfer between the nodes in a distributed 
system through the use of remote direct memory access 
(RDMA)and user-level networking.  By utilizing direct-access 
transports DAFS aims to increase the performance and efficiency 
of network-attached storage systems. The DAFS protocol is based 
on the Network File System (NFS) protocol version 4 [4], with 
built-in support for RDMA.  
 While DAFS uses new technology to build a distributed file 
system, conventional distributed file systems (such as NFS) have 
evolved as well. The research community has continuously 
addressed performance problems associated with conventional 
network storage systems, and, as a result, these systems have 
improved [6, 9, 10, 11, 12].  In the face of recent improvements in 
the performance of these systems, it is of interest to determine 
whether the DAFS architecture provides any fundamental 
performance benefits to applications compared to conventional 
network storage systems. This is the research question that we 
address in the current work.  
 In collaboration with Duke University we have created and 
made available an open-source implementation of the DAFS 
kernel server and the user-level client for the FreeBSD platform.  
In this paper we report the results of our performance evaluation 
of DAFS.  Our work makes the following contributions: We use 
microbenchmarks to understand the fundamental performance 
characteristics of DAFS.  We conclude that the degree to which an 
application can benefit from DAFS largely depends on the 
characteristics of the application.  We establish these 
characteristics and develop a simple framework that helps reason 
about an application’s performance on DAFS without actually 
running the application. We evaluate the predictive power of our 
framework on a TPC-C database benchmark.  We compare the 
performance of DAFS to an implementation of NFS modified to 
avoid data copies in the kernel (NFS-nocopy). 

 



The rest of the paper is organized as follows: In section 2 
we discuss related work. In sections 3 and 4 we provide an 
overview of DAFS and of NFS-nocopy.  In section 5 we present 
the microbenchmarks.  In section 6 we discuss the application 
characteristics that determine their performance on DAFS, and 
derive the performance-predicting framework.  In section 7 we 
evaluate our framework on the TPC-C benchmark.  We conclude 
in section 8.  
 
2. RELATED WORK 
 

The current work is an extension of a performance 
evaluation study of DAFS performed at Harvard and Duke 
universities [7]. It expands the previous study by experimenting 
with a wider range of more sophisticated application workloads 
and by developing the framework for reasoning about an 
application’s performance on DAFS.  Some of the experiments 
presented in this paper have also appeared in a paper presented at 
the 2002 USENIX conference [7]. We include several of these 
previously published experiments here for completeness and add a 
reference to the original paper next to those figures. 

Recent work has explored performance of database systems 
on direct-access transports. Zhou studied performance of 
Microsoft SQL Server that communicated with a storage system 
over a DAT network [17].  Scott performed a similar study with 
DB2 [18].  This work presents a general study of the file system 
built on top of direct-access transports. 
 
3.  DAFS 
 
 We first give an overview of remote direct memory access 
(RDMA) and user-level networking – the enabling technologies 
behind DAFS. We then proceed to describe their respective roles 
in the DAFS architecture. 
 
3.1. RDMA 
  

RDMA is a direct transfer of data between memory buffers 
on two hosts.  It avoids the copying of data that is normally 
required when sending data over conventional mechanisms such 
as remote procedure call (RPC). RDMA also implies offloading 
the execution of the transport protocol code to the network device. 
RDMA, therefore, decreases host CPU overhead involved in I/O.   

To transfer data with RDMA, a client sends to the server an 
RPC request, telling it what data it needs and the memory address 
where the data should be placed on the client. The server then tells 
its network interface controller (NIC) to initiate the RDMA. The 
NIC takes the data from the server memory and puts it on the wire 
(note no copying or host CPU involvement). When the data 
arrives at the other side of the wire, the NIC on the client machine 
deposits the data directly into the memory buffer that had been 
allocated by the client (again, there is no data copying or host 
CPU involvement). Figure 1 illustrates the difference between the 
DAFS client that uses RDMA and a conventional file system 
client that uses RPC for data transfer.  

Note that to make RDMA available to a file system service, 
some protocol provisions are necessary. In particular, a service 
that is using RDMA must be able to pass the address of a memory 
buffer where the RDMA data should be placed to the remote host. 
Unlike the NFS protocol, the DAFS protocol has such support for 
RDMA. It is this protocol support that makes DAFS DAT-ready, 

and makes the DAFS architecture fundamentally different from 
that of traditional distributed file systems. 
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Figure 1. NFS client vs. DAFS client 

 
3.2 User-level networking 
 

Another characteristic of direct-access transports is user-
level networking.  User-level networking allows the user program 
to interact directly with the network interface controller (NIC), 
bypassing the kernel. The NIC exposes an array of connection 
descriptors to the system’s physical address space.  At connection 
setup time, the kernel NIC driver maps a connection descriptor 
into the process virtual address space, giving the process a direct 
way to communicate with the NIC by simply writing and reading 
the descriptor memory.   

To perform a data transfer using such a NIC, the user 
program must register with the NIC a memory buffer, which will 
serve as the destination for the incoming data.  During registration 
the kernel pins the buffer in physical memory, and the NIC sets up 
a virtual-to-physical translation of the buffer’s address in its 
internal page table. Once the buffer is registered, the RDMA 
transfer can proceed into the buffer without the kernel 
involvement. 

User-level networking reduces CPU overhead for 
applications, by allowing an application to initiate I/O without 
system calls.  

 
3.3. The DAFS architecture 
  

DAFS has been envisioned and specified by a group of 
more than 85 companies led by Network Appliance. Network 
Appliance has released a commercial implementation of DAFS; 
several non-commercial implementations have been developed at 
universities [7]. The DAFS client and server implementations that 
we use have been developed by research groups at Harvard and 
Duke Universities [7, 23]. 

Although DAFS could be implemented in the kernel, just 
like traditional file systems, RDMA and user-level networking 
enable a user-level file system structure for DAFS.  The DAFS 
client that we use is implemented at user-level, and the server is in 
the kernel.  The client has an asynchronous event-driven design 
and implements the full DAFS client API [2], which is similar to 
the POSIX API.  Although the client has been extended to support 

 



caching [8], the version used for the experiments in this paper 
does not include any caching or pre-fetching. 
 RDMA and user-level networking require special support 
on the NIC. The Virtual Interface (VI) architecture [5] defines a 
host interface and API for NICs supporting such features. Our 
DAFS implementation runs on top of a VI-capable NIC (Giganet 
cLAN 1000). 
 The DAFS server is currently a self-contained kernel 
module that does not require any core kernel changes.  It will 
eventually be a part of the FreeBSD kernel distribution and is 
already available in source form as a FreeBSD 4.6 kernel module.  
It works with Myrinet GM 2.0 (alpha release) and VI-GM 1.0, 
which is also open-source software. 
 
4.  NFS-NOCOPY 
 
 NFS-nocopy1 is an implementation of the standard NFS 
protocol modified to reduce the overhead on the I/O data path by 
avoiding data copies.   

In the traditional kernel NFS client, there are two data 
copies that have to be made on the incoming I/O data path: the 
copy between the network stack and the kernel buffer cache, and 
then the copy between the buffer cache and the application buffers 
(see Figure 1). NFS-nocopy avoids these copies by using two 
techniques: header splitting and page flipping. Header splitting 
and page flipping are the traditional methods of copy avoidance, 
variants of which have been used with TCP/IP protocols in the 
past [6, 10, 11, 12].  The idea behind these techniques is to 
arrange for the NIC to deposit the data payload (the file block) 
page-aligned in one or more physical page frames. These pages 
can then be inserted into the kernel buffer cache by reference 
(page flipping). To do this, the NIC first strips off any transport 
headers and the NFS header from each message and places the 
data into a separate page-aligned buffer (header splitting). 
 We use an Alteon Tigon II Gigabit Ethernet NIC whose 
firmware has been modified to perform header splitting for the 
incoming NFS read response messages. Once the data payload has 
been deposited into page-aligned buffers in the kernel buffer 
cache, the data is delivered to the application buffers without 
copying, by simply re-mapping the physical pages into the 
application’s address space (page flipping).  The copy into the 
application buffers can only be avoided if the application has 
provided page-aligned buffers for the data.   

While this approach does not reduce system call overhead, it 
does not require changing or re-linking the applications. It does, 
however, require kernel modification and proper NIC support. We 
picked NFS-nocopy as a system to compare to DAFS because it is 
representative of a conventional network file system with 
overhead-reducing optimizations.   
  
5.  MICROBENCHMARKS 
 

In this section we describe how we used microbenchmarks 
to understand the performance characteristics of DAFS. We begin 
with simple experiments, and then gradually increase the 
complexity of the benchmarks in order to improve our 
understanding of the system. We compare the performance of the 
benchmarks on DAFS and NFS-nocopy.  Since the compared 

systems are targeted at improving performance on the client side, 
we focus on benchmarking the clients. 

                                                 
1 The NFS-nocopy system that we use in our experiments has 
been implemented at Duke University. 

Our system configuration consists of two Pentium III 800 
MHz client and server machines.  The client and the server are 
equipped with 256 MB and 1GB of RAM respectively, on a 133 
MHz memory bus. All systems run patched versions of FreeBSD 
4.3. DAFS uses VI over Giganet cLAN 1000 adapters. NFS uses 
UDP/IP over Gigabit Ethernet, with Alteon Tigon-II adapters. In 
some cases we also compare the systems to regular NFS. 
Experiments with the standard NFS implementation use the 
standard Tigon-II driver and vendor firmware. UDP checksum 
computation is offloaded to the NIC.   

Table 1 shows the raw one-byte roundtrip latency of these 
networks.  The Tigon-II has a higher latency. The bandwidths are 
comparable, but not identical.  Disparity of the interface 
characteristics sometimes makes it difficult to compare the results 
of the experiments. Therefore, whenever appropriate we report the 
results normalized to the maximum bandwidth achievable by the 
underlying interface. In some cases we analytically derive the 
numbers that we would receive if identical networks were used.  It 
would have been desirable to perform the measurements with 
identical networks. This was not possible, because both DAFS 
and NFS-nocopy needed to have special feature support on the 
NIC.  DAFS needed a NIC that supported RDMA and user-level 
networking. NFS-nocopy needed a NIC capable of performing 
header splitting.  We could not get a single NIC that would 
provide all of these features. 

 
Table 1. Baseline network performance 

 

 VI/cLAN UDP/Tigon-II 

Latency 30 µs 132 µs 

Bandwidth 113 MB/s 120 MB/s 
 
 

5.1.  Simple file access 
  
 The key motivation behind the architecture of DAFS is to 
reduce CPU overhead on the I/O data path.  This is likely to 
decrease latency of I/O operations.  Our first goal, therefore, was 
to test this by experimenting with a latency-sensitive workload. A 
latency-sensitive workload is a workload whose running time is 
dominated by the latency of individual I/O operations, rather than 
by the throughput achievable by the link. An example of a 
latency-sensitive workload is an application that reads small 
chunks at random offsets in a file. The significance of using small 
chunks is that the latency of issuing and responding to I/O, rather 
than the time that the data spends on the wire, dominates the 
execution latency of this application.  The significance of random 
access is to make sure that the client file system does not perform 
read-ahead, which could make the workload sensitive to the link 
throughput.  

Some applications, however, are able to hide the latency of 
individual I/Os by performing aggressive read-ahead and using 
large transfer size. Such workloads have a potential to saturate the 
underlying link and become limited by its bandwidth. These are 
bandwidth-sensitive workloads. To determine whether or not such 
workloads would benefit from running on top of DAFS, we also 
evaluate the performance of a bandwidth-sensitive workload.  

Our first set of experiments involves reading a large file 
from the file server. The entire file fits into the server memory, 

 



and we read the file into the server memory prior to running the 
benchmark. Therefore, this experiment measures only the network 
transfer speed that can be achieved using the compared systems.  
We also include results for the non-optimized NFS client.  

 
5.1.1. The latency-sensitive workload 

 
To construct a latency-sensitive scenario we configure a 

benchmark that reads randomly chosen blocks from the file.  We 
vary the transfer block size. When the block size becomes large, 
the workload effectively becomes bandwidth-sensitive. We 
configure the NFS client for maximum performance (the block 
size matches the application block size up to 32 KB, and the read-
ahead is disabled). 
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Figure 2. Read throughput. No read-ahead. [7[ 
 

Figure 2 shows the throughput in MB/s achieved by the 
systems. DAFS outperforms both NFS systems for small block 
sizes. This is due to the lower network latency (see Table 1) and 
lower protocol overhead. Note that since the application provides 
page-aligned read buffers, NFS-nocopy is able to avoid copies 
between the kernel and user space as well as the network to buffer 
cache copy (see discussion in section 4).  The dashed curve above 
the NFS-nocopy curve was derived analytically to demonstrate the 
results that would be achieved if the NIC used with the NFS-
nocopy system had the same latency as the NIC used with DAFS.  
Additionally, recent work has confirmed that DAFS outperforms 
the optimized NFS2 in the latency-sensitive scenario when both 
systems are run on top of identical NICs [22].   

When the block size becomes large, the application is able 
to fill the network pipe with data and saturate the link. At this 
point DAFS and NFS-nocopy become limited by the maximum 
throughput achievable by the underlying network interfaces (113 
MB/s for cLAN and 120 MB/s for Tigon II, see Table 1). Regular 
NFS delivers lower performance because it saturates the local 
CPU due to copying overhead. 
 Figure 3 shows the CPU usage reported as the number of 
milliseconds used per MB of transferred data. The CPU usage for 
non-optimized NFS remains constantly high, saturating the client 
CPU.  With DAFS, the CPU usage falls as the block size 
increases, because fewer network requests are issued. The 
interesting observation here is that for NFS-nocopy the CPU 
usage remains constant with increasing block size. This is due to 
the page-flipping cost, which is a function of the number of pages 
and is independent of the block size. 

                                                 
2 The system used in this work [22] employs different (and likely 
more efficient) copy-avoidance mechanism than NFS-nocopy.   

5.1.2. The bandwidth-sensitive workload 
 

The bandwidth-sensitive scenario involves issuing read-
ahead for the blocks in the file. For NFS, we cause the read-ahead 
to happen in the kernel by requesting sequential file access.  With 
DAFS, the read-ahead is done by the application, using the DAFS 
asynchronous API. We configure the NFS client for maximum 
performance (the read block size is 32 KB, maximum read-ahead 
is enabled).  Figure 4 shows the throughput achieved by the 
systems. The throughput numbers are normalized to the maximum 
throughput achievable by the underlying interface.  

0.00

0.04

0.08

0.12

0.16

0.20

4 8 16 32 64 128 256 512
block size (KB)

C
P

U
 m

s 
pe

r M
B

 

NFS-nocopy

NFS

DAFS

 

Figure 3. CPU ms per MB. No read-ahead. 
 
Both DAFS and NFS-nocopy achieve the wire speed 

bandwidth. Standard NFS delivers lower throughput, because of 
the copying overhead that saturates the local CPU.  Figure 5 
shows the CPU usage in milliseconds per MB of transferred data.  
With DAFS, the CPU usage falls for large block sizes; with NFS-
nocopy it stays constant because of the page-flipping overhead.  
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Figure 4. Normalized read throughput. Read-ahead. [7] 
 
5.1.3. Summary 
 
 In this section we showed that both DAFS and NFS-nocopy 
are able to perform at the wire speed in the bandwidth-sensitive 
scenario, although DAFS uses less CPU in doing so.  Therefore, 
we conclude that bandwidth-sensitive applications can do equally 
well on both systems, unless they are CPU-bound. For the 
latency-sensitive scenario DAFS outperforms NFS-nocopy due to 
lower per-I/O overhead.  

The applications used in this section were quite simple: they 
did not even touch the data that they read. In the next section we 
attempt to repeat the experiments of this section with more 

 



complex applications. We set up a latency-sensitive and a 
bandwidth-sensitive application, expecting to get similar results.  
We find that higher complexity of the applications affects the 
behavior of the experiments, leading us to get the results that we 
did not expect. 
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Figure 5. CPU ms per MB. Read-ahead. 
 

 
5.2. Berkeley DB 
 
 All of the experiments that we describe in subsequent 
sections use Berkeley DB [3]. Therefore we take a moment to 
describe it here.  
 Berkeley DB (db) is an open-source embedded database 
library that provides support for transactional concurrent storage 
and retrieval of key/value pairs.  Db manages its own buffering 
and caching, independent of caching in the underlying file system 
buffer cache. Db can be configured to use a specific page size, a 
unit of caching, locking and I/O (usually 8 KB), and buffer pool 
size.   

In our experiments, db acts as a user application that reads 
files from a remote server either through DAFS or NFS-nocopy. 
We chose db as a workload generator for the experiments because 
it can be easily configured to produce various application 
workloads.  
 
5.3.  Latency-sensitive scenario: a real 
application 
  
 In this experiment we compare db performance over DAFS 
to NFS-nocopy using a synthetic workload composed of read-only 
transactions, each of which accesses one small record uniformly at 
random from a B-tree.  The workload is single-threaded and read-
only, and there is no logging or locking.  In all experiments, after 
warming the db cache we performed a sequence of transactions 
long enough to ensure that each record in the database was 
touched twice on average. The results report throughput in 
transactions per second.  The db is configured with a page size of 
16 KB, so this is the unit of I/O. This is a latency-sensitive 
configuration.  
 We vary the size of the database in order to change the 
bottleneck from local memory, to remote memory and then to 
remote disk I/O. We compare DAFS and NFS-nocopy clients each 
running on a machine with 265 MB of RAM.  In both cases the 
server is configured with 1GB of memory. Since we did not 
expect read-ahead to help in the random access pattern considered 
here, we disable read-ahead for NFS-nocopy and use a transfer 

size of 16 KB. The db user-level cache size is set to the amount of 
physical memory expected to be available for allocation by the 
user process (190 MB). The DAFS client uses about 36 MB for 
communication buffers and statically sized structures leaving 
about 190 MB for the db cache. To facilitate comparison between 
the systems, we configure the cache identically for NFS-nocopy.   

Figure 6 reports throughput in transactions per second.  For 
database sizes up to the size of the db cache (190 MB), the 
performance is determined by local memory access as db satisfies 
the requests entirely from the local cache. Therefore, for this 
segment of the graph both systems achieve identical performance. 

 

 

Figure 6.  Berkeley DB. The effect of double caching and 
remote memory access. [7] 

 
Once the database size exceeds the size of the client cache 

(the 3rd and subsequent data points), performance degrades as both 
systems start accessing remote memory. We expected that DAFS 
would perform slightly better than NFS-nocopy since this is what 
we saw in the latency-sensitive experiment of section 5.1.  

Contrary to what we expected, the throughput achieved with 
DAFS is several times higher. For example, for the dataset size of 
512 MB, DAFS achieves the throughput over 3.5 times higher 
than NFS. The reason lies in the structure of the NFS kernel 
client. With NFS-nocopy, reading through the file system cache 
creates competition for physical memory between the user-level 
and file system caches, which happens because in 4.3 FreeBSD 
the VM cache and buffer cache are unified, meaning that the VM 
system and the buffer cache draw physical pages from the single 
memory pool.  As a result, the file system cache grows and the 
user-level cache is paged out to disk causing future page faults. 
We call this the double caching effect. The DAFS client avoids 
this effect by maintaining a single cache.  Double caching with 
NFS could be avoided if the db cache were pinned in physical 
memory using the mlock() system call. However, most operating 
systems limit how much memory can be pinned.  On FreeBSD, 
we were unable to pin the entire db cache (190 MB) in memory, 
and, therefore, could not re-run this experiment without the 
double caching effect.  The reader should refer to experiments in 
other sections of the paper for performance comparison of DAFS 
and NFS-nocopy when double caching is not present.   

For database sizes larger than 1GB that cannot fit in the 
server cache, both systems are disk I/O bound on the server.  
 We were also interested in measuring the client CPU usage 
of each system. In Figure 7 we report the CPU seconds used per 

 



1000 transactions. As expected, DAFS uses many fewer CPU 
cycles per transaction than NFS-nocopy. 
 This experiment has unexpectedly demonstrated to us a 
benefit of the user-level file system architecture: applications 
running on top of DAFS can disable file system caching when it is 
not needed.  While it is possible to disable caching in the NFS 
kernel client by making a small change to the kernel, this is not a 
general solution. Disabling caching for the NFS client would 
affect all processes that use that system, some of which may want 
caching enabled. While this experiment has demonstrated to us 
the benefits of the user-level file system architecture, it has also 
directed us to think about its limitations.  Consider a scenario of a 
naïve application that does not perform its own caching but could 
benefit from the caching traditionally performed by the file 
system clients. Such an application can suffer from poor 
performance when run on top of a simple DAFS client that does 
not support caching. We demonstrate this scenario in the 
following section.  
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Figure 7. Berkeley DB. CPU seconds per 1000 transactions. 
 
     
5.4.  Flipping the coin: Kernel caching 
  
 In this section we simulate a naïve user application that does 
not perform its own caching, but can potentially benefit from the 
caching performed by the kernel file system client.  The 
application performs a sequence of read-only transactions, each of 
which retrieves a small record from a B-tree selected uniformly at 
random. Db’s logging and locking are disabled. This time we set 
the db cache to a small size of 50 MB. The client machine has 256 
MB of physical RAM.  We use a database of size 191 MB. The 
server has 1 GB of RAM.  We perform several runs, each with an 
increasing number of transactions.  

Figure 8 shows the results. On the x-axis we report the 
number of transactions performed in the run, on the y-axis we 
report the throughput in transactions per second. We start with a 
warm server cache and, a cold db cache, and, in case of NFS, a 
cold client file cache.   

When a small number of transactions is performed, both 
systems have to read data from the server memory. DAFS 
outperforms NFS due to lower per-I/O latency.  Since the client 
machine has plenty of RAM and there is no double caching, we 
are able to repeat the result of the latency-sensitive benchmark in 
section 5.1 where DAFS achieved about twice the throughput of 
NFS-nocopy for 16 KB transfer size.  

As the number of transactions in the run increases, the 
application starts accessing the records that have already been 

accessed. Since the db cache is small in comparison to the 
working set, and the access pattern is random, DAFS performance 
remains the same. However, the NFS-nocopy client benefits from 
the kernel caching on the client, and eventually its performance 
exceeds DAFS as all file requests of the application are satisfied 
from the local buffer cache.    
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Figure 8.  Berkeley DB. The effect of kernel caching. 
 

 The DAFS user-level client can certainly implement its own 
caching [8], however it is difficult to design a user-level cache 
that is shared among separate untrusting processes.  
 
5.5.  Bandwidth-sensitive scenario: a real 
application 
 
 Getting back to our original plan to repeat simple 
experiments of section 5.1 with more complex applications, we 
construct a bandwidth-sensitive application scenario. We 
modified Berkeley DB to perform read-ahead when the 
application access patterns are known.  By issuing read-ahead the 
db application is able to keep a high number of outstanding I/O 
requests, creating a bandwidth-sensitive workload. 

In this experiment an application uses db to compute a 
simple equality join. The result of the join produces a list of keys, 
whose corresponding data records are fetched from the database. 
We have modified db to perform asynchronous pre-fetching on 
this list of keys using DAFS asynchronous API or POSIX aio API 
in the case of NFS-nocopy.  In Figure 9 we compare the 
throughput achieved with DAFS and NFS-nocopy without pre-
fetching  (NO_PREFETCH) and with pre-fetching (PREFETCH).   

The results displayed in Figure 9 demonstrate that, just like 
in the experiment of section 5.2, there is a benefit from 
application-initiated pre-fetching when using either of the 
compared systems. In section 5.2, we also saw that when pre-
fetching both systems achieve similar throughput and achieve 
wire speed performance. This is not the case here. Neither system 
saturates the link because the application we run here uses more 
CPU than the simple bandwidth benchmark.   

Another notable difference is that NFS-nocopy achieves 
lower throughput than DAFS.  There are two reasons for this.  The 
first is that NFS-nocopy uses more CPU cycles than DAFS (see 
section 5.1) and, given the additional CPU requirements of the 
application, CPU becomes the bottleneck, preventing efficient 
link utilization. The second reason, further contributing to the 
CPU bottleneck, is that the application running on top of NFS-
nocopy does not enjoy the full benefits of copy avoidance in this 
experiment, since db reads data into unaligned buffers (see section 

 



4), and it would require non-trivial amount of work to modify db 
to use page-aligned buffers.  This demonstrates that RDMA is a 
more general copy avoidance method for applications than that 
employed by NFS-nocopy.   
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Figure 9. Bandwidth-sensitive application.  
 

In this section we presented an experiment with a 
sophisticated application that was modified to do its own pre-
fetching. It is also interesting to look at a scenario of a naïve 
application does not perform its own pre-fetching, but that could 
benefit from the pre-fetching usually provided by the kernel file 
system clients.  Such an application could suffer from poor 
performance when running on top of a simple DAFS client that 
does not do read-ahead.  We demonstrate such a scenario in the 
next section. 

 
5.6. Flipping the coin: kernel pre-fetching 
  
 The following experiment demonstrates a scenario in which 
the NFS kernel client delivers higher performance than DAFS, in 
this case, due to pre-fetching initiated by the NFS client when the 
sequential file access pattern is detected. The DAFS client does no 
pre-fetching.  
 To trigger kernel pre-fetching, we configure the application 
to use the “queue” data structure available in the db library and 
perform a sequential traversal of the queue, which requires 
sequentially reading the file containing the data structure.  The 
client host is configured with 256 MB of RAM, and the db cache 
is set to 50 KB.  Since we perform a single traversal, touching 
each page in the file exactly once, there is no need for a large 
cache.  We vary the size of the records populating the database, in 
order to vary the amount of computation performed by the 
application.   
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Figure 10. The effect of kernel pre-fetching. 

Figure 10 shows the throughput in MB/s achieved by the 
application depending on the record size. For all record sizes the 
NFS-nocopy delivers higher throughput due to kernel pre-
fetching, but the effect of pre-fetching is small when the 
application is CPU-bound due to the overhead of processing of 
small records.    

While a DAFS client could be easily extended to perform 
pre-fetching like the kernel client, this result demonstrates the 
point that when migrating applications to DAFS, special care must 
be taken to find out exactly what assumptions the application 
makes about the underlying file system and whether or not these 
assumptions are satisfied by the DAFS client. 
  
6.  REASONING ABOUT APPLICATION 
PERFORMANCE    
 
 In the previous section we presented several experiments 
that helped us understand what factors affect the performance of 
applications running on top of DAFS. In this section we 
summarize the results of the experiments and describe a 
framework that helps us reason about the performance of an 
application on DAFS.   

Previous work has looked into building models for 
predicting the exact latency of application execution. Smith 
tackled the problem of predicting application performance on 
local file systems in his Ph.D. thesis [14]. He used a combination 
of vector-based and trace-based techniques developed by M. 
Seltzer and her colleagues [16]. Zhang used similar techniques to 
predict the performance of Java Virtual machines [15].  We 
believe that it would be difficult to directly apply these techniques 
here because, as we will see in the next section, performance of an 
application may depend on the degree of concurrency in the file 
system access exhibited by the application.  Therefore, instead of 
building a model for predicting the exact latency, we simply relate 
the results of the microbenchmarks to the application 
characteristics in a way that helps us reason about how an 
application would perform on DAFS.   

As we saw from the results presented in the previous 
section, the performance of an application on DAFS largely 
depends on the characteristics of the application. Therefore, in 
order to reason about an application’s performance we need to 
categorize applications based on their characteristics. To facilitate 
such categorization in the infinite application space we point out 
three groups of application characteristics are key in determining 
the performance on DAFS: 
 
1) I/O characteristics: Is the application latency-sensitive or 
bandwidth-sensitive? 
 

In the experiments of section 5.2 we saw that a latency-
sensitive application is likely to see a performance benefit from 
the low per-I/O overhead of DAFS. Bandwidth-sensitive 
applications, on the other hand, can achieve comparable 
performance on DAFS and NFS-nocopy, unless they are CPU-
bound.  
 
2) CPU characteristics. Is the application CPU bound? 
 

DAFS uses fewer CPU cycles per I/O operation. This is an 
important consideration for CPU-bound applications, as we saw in 
section 5.5 with the Berkeley DB join application. If an 
application is subject to the CPU bottleneck on the client machine 

 



it may achieve better performance with DAFS, because DAFS 
uses fewer CPU cycles for I/O, leaving more CPU cycles for the 
application.  
 
3) Application structure: Is the application structured in a way that 
allows it to reap the benefits offered by the compared file 
systems?  
 
 Application design aspects that may affect the performance 
include the use of page-aligned buffers, implementation of custom 
caching or lack thereof, and reliance on pre-fetching provided by 
the file system. 
 
 By describing an application’s characteristics with respect 
to the three characteristic groups defined above, we can predict 
how the application will perform on DAFS compared to NFS-
nocopy. 
 Before we proceed with evaluation of our framework, we 
take a moment to point out several limitations imposed on 
applications by the architecture of DAFS. Although these 
limitations do not directly affect performance, they may turn out 
to be important to consider when making decisions about a file 
system choice: 
• When migrating applications to DAFS, they must be 

modified or re-linked.  There is no such need when migrating 
to an optimized NFS client. 

• Since DAFS has a user-level architecture3 it is difficult to 
design a client cache for DAFS that can be shared by 
multiple untrusting processes.  Many high performance 
systems, however, have a single-process architecture that 
does not depend on sharing a file system cache with other 
processes. For such systems the limitations of the user-level 
cache architecture do not present a serious problem.  

• Since the DAFS user-level library is embedded into the 
application address space, a buggy application can 
inadvertently overwrite the memory belonging to the file 
system client.  

• DAFS requires registering the application buffers used for 
I/O with the NIC (see section 3). Registration of the buffers 
means that the buffers are pinned in the physical memory. 
This can result in an unfair use of operating system resources 
by a DAFS application in a multi-process environment. 
 
On a positive note, the DAFS user-level structure offers 

opportunities for the customization of the file client for the 
application-specific needs. 
 
7. TPC-C 
 
 In this section we test the effectiveness of our framework in 
predicting performance of a complex application.  The application 
we use is the TPC-C benchmark. 

TPC-C is a standard database benchmark specified by the 
Transaction Processing Performance Council [19]. It is an online 
transaction processing workload that involves a mixture of read-
only and update intensive transactions that simulate the activities 
of order-processing warehouses. A conventional TPC-C set-up is 
a complex multi-tier system that consists of transaction clients 

that issue transaction requests by sending messages to a message 
server, that eventually forwards these requests to a database 
server (see Figure 11). In our configuration, the database server 
stores its database files on a network-attached storage system 
running either DAFS or NFS file server. Therefore, the database 
server uses either the DAFS or the NFS-nocopy file system client 
to access the files. We were interested in comparing the 
performance of the database server on these two file systems. 

                                                 
3 Although DAFS can also be implemented in the kernel, we 
consider the user-level architecture here, as explained in section 2. 

Sun Microsystems graciously shared with us their database-
benchmarking tool, which implements the database-independent 
part of TPC-C [20]. We ported the Sun’s implementation of TPC-
C for Informix to run on top of Berkeley DB. We implemented 
the database server as a collection of one or more server processes 
that receive transaction requests from the message server and 
execute queries against Berkeley DB. Although we have ported 
the tool in its entirety, in the experiment described here, the 
transaction workload is not generated by transaction clients – it is 
generated locally on the machine running database servers. We do 
this in order to simplify our understanding of the experiment.   

 

Figure 11. Our TPC-C configuration. 
 

Implementing the TPC-C benchmark required careful tuning 
of the database schema and transactions in order to minimize 
database lock contention [21].  In the process of tuning we also 
discovered that we were limited by the inadequate disk I/O system 
that was at our disposal.  We only had regular 10000-RPM SCSI 
disks available to us, while conventionally, the TPC-C benchmark 
is run with powerful RAID storage systems on the back-end that 
achieve hundreds of megabytes in disk throughput [19]. We 
simulate the availability of a more powerful disk I/O system by 
disabling synchronous writes to disk and by configuring the file 
server machine with 1 GB of physical RAM in order to fit the 
entire database in memory.  The client machine hosting the 
database server has enough physical RAM to accommodate the db 
cache, configured to 100 MB (1/7 of the database size). We 
pinned the db cache in memory in order to avoid the undesirable 
double caching effect we described in section 5.3.    
 To apply our framework for predicting the behavior of TPC-
C, we first need to establish the I/O, the CPU, and the application 
structure characteristics of the benchmark that will be important in 
predicting its behavior.   

The I/O characteristic of the TPC-C benchmark depends on 
how many concurrent database server processes are running. 
When only one process is running, the application is latency-
sensitive so we expect it to have better performance on DAFS. 
When multiple server processes are running simultaneously, they 
can issue a number of simultaneously outstanding I/O requests.  

 



This creates a potential for saturating the link and making the 
workload bandwidth-sensitive. As we showed in section 5.2 
bandwidth-sensitive applications do equally well on both systems 
unless they are CPU-intensive. Each TPC-C transaction involves 
traversing several database indices. We, therefore, anticipated that 
the benchmark would be CPU-intensive and expected that it 
would do better on DAFS.  We also expected that TPC-C over 
DAFS would scale better as the number of concurrent server 
processes increased, because of lower CPU requirements of the 
DAFS client.   

The application structure of the benchmark is poorly suited 
for NFS-nocopy because Berkeley DB uses unaligned buffers for 
I/O transfer, preventing NFS-nocopy from completely avoiding 
data copies.  It is, however, well suited for the simple DAFS client 
that we used: since Berkeley DB implements its own caching the 
benchmark’s performance would not suffer from the lack of 
caching in the DAFS client.  Since the access pattern is random, 
we did not expect pre-fetching to be helpful.  

Figure 12 shows the combined throughput (in transactions 
per second) achieved by all the database server processes as the 
function of the number of processes. 

As we expected, DAFS outperform NFS-nocopy in all 
cases. When two database server processes are running 
concurrently, the systems deliver better throughput compared to 
the case when a single server process is used, because of the 
improved utilization of the system resources. When more server 
processes are added, both systems experience negative scaling 
because of the adverse effect of database lock contention.  
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Figure 12. TPC-C: total throughput as a function of a number 
of concurrent server processes. 

 
 DAFS uses CPU more efficiently: both systems achieve the 
same CPU utilization of about 80%, but since DAFS offers higher 
throughput, it uses fewer CPU cycles per transaction. 
 We incorrectly anticipated that the benchmark would be 
CPU-intensive and would therefore scale better with DAFS than 
with NFS-nocopy. Contrary to what we expected, the benchmark 
does not create CPU pressure. Even though we eliminated the disk 
I/O bottleneck and heavy lock contention points, there was still 
some amount of database lock contention that prevented the 
benchmark from saturating the CPU.  Such lock contention is 
expected in the face of concurrent database access.  
  
8. CONCLUSIONS 
  
 In this work we conducted a performance evaluation study 
of DAFS using our open-source implementation for FreeBSD. We 
addressed the question whether the DAFS architecture provides 

any fundamental performance benefits for applications compared 
to conventional network storage systems.  We concluded that the 
DAFS architecture does provide fundamental performance 
benefits, but whether or not and application can enjoy these 
benefits largely depends on the structure of the application. Using 
microbenchmarks we understood the application characteristics 
that determine its performance on DAFS. We summarized the 
important architectural limitations of DAFS and compared DAFS 
to a competing system: NFS-nocopy. We concluded that DAFS 
delivers better performance for latency-sensitive applications and 
for bandwidth-intensive CPU-intensive applications.  

We developed a framework for reasoning about an 
application’s performance on DAFS. Even though our framework 
proved useful for reasoning about the performance of simple 
applications, we found that for complex scenarios we were not 
able to correctly describe the application characteristics, which is 
the pre-requisite for the effective use of our framework. This pre-
requisite is difficult to satisfy when dealing with a complex 
distributed system.  
 
9. SOFTWARE AVAILABILITY 
 
 The DAFS and NFS-nocopy software evaluated in this 
paper is freely available at http://eecs.harvard.edu/vino/fs-
perf/dafs.html and http://www.cs.duke.edu/ari/dafs. 
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