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We calculate by the Lanczos method the density of spin 
wave states, and its fluctuation properties on the infinite 
percolating cluster of a randomly site-dilute Heisenberg 
ferromagnet. Our results demonstrate that the averaged 
density follows the fracton laws with spectral dimension 
values d~= 1.32 and d~= 1.30 in two and three dimen- 
sions, respectively, and is smooth at the magnon-fracton 
crossover. Similar laws are also shown in the case of 
continuous disorder on the bonds of the clusters. The 
density fluctuations are studied via the nearest energy- 
level-spacing distribution function P (S), which is shown 
to obey the Wigner surmise with level-repulsion far from 
the percolation threshold Pc and an almost Poisson law 
with uncorrelated spectrum at Pc. The localization prop- 
erties of excitations are investigated by considering the 
density of states fluctuations and also via the participa- 
tion ratio of the eigenvector amplitudes. It is seen that 
the fracton states are sharply localized. Our results are 
further discussed in connection to previous theories and 
numerical data. 

1. Introduction 

Many disordered systems possess fractal scaling, at least 
up to a certain length scale [ 1 ]. One of the most studied 
examples is the random percolating cluster [2] realized 
on d-dimensional lattices, in which a fraction p of sites 
are randomly occupied and 1 - p  are empty. When p in- 
creases the mean cluster size increases and there is a 
critical percolation concentration Pc for d > 1 above which 
an infinite percolating cluster is formed. Exactly at the 
critical point the infinite percolating cluster is fractal. A 
characteristic percolation correlation length ~p exists, 
which is finite for p below and above Pc and diverges for 
p=pc via a dimensionality-dependent exponent v. The 
probability that a given site belongs to the infinite per- 
colating cluster P (p) vanishes as p--*p+ with an exponent 
ft. The percolating cluster is a self-similar fractal object 

in the statistical sense, characterized up to the correlation 
length ~p by a fractal dimension d f = d - f l / v  [1-3]. Es- 
timates for the geometrical exponents v, fl and the fractal 
dimension d F can be found in [3] for the various space 
dimensions d > 1. 

The developments in this subject, during the last dec- 
ade, concern not only the purely geometrical static, but 
also the dynamical properties of percolating structures. 
The most important results are summarized in the pres- 
ence of anomalous slow diffusion and the introduction 
of the concept of fractons [4]. This is known as the dy- 
namical scaling approach and these findings are directly 
relevant for the corresponding problem of the quantum 
eigensolutions arising from the Schrodinger equation de- 
fined on fractal structures. For one-magnon excitations 
[5] the scaling theory implies for p =Pc a universal law 
for the density of states (DOS) 

(pf~ (E) )oc Eas/2-1, (1) 

when E is small, where the exponent d s is the fracton 
dimension [4]. If  equation (1) is compared to the usual 
magnon DOS 

(Ping (E))  oc E a/2-1, (2) 

d s replaces the space dimension d. The Alexander-Orbach 
conjecture in any Euclidean dimension d >  2 [4] further 
predicts ds~-4/3; that is, d s approximately takes a value 
close to its mean-field value. The phonon DOS is ob- 
tained if E = - 0 )  2 and the expressions corresponding to 
(1) and (2) a r e  oQ0) a s - I  and oc0) a-I  respectively. 

For concentrations p above Pc the DOS consists of a 
small-E (long wavelength) magnon regime separated by 
a crossover region around a characteristic energy Ec, from 
a larger-E (shorter wavelength) fracton regime. The 
crossover between the two regimes was found in numer- 
ical calculations [6, 7] to be smooth, unlike the original 
predictions of effective medium treatments for the exis- 
tence of a peak at E c [8]. The spin-wave studies should 
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also apply to the problem of vibrations [9] and classical 
diffusion [3] in disordered media, where most experi- 
mental data can be found [10, 11]. 

The localization properties of excitations when the 
underlying lattice is the percolating cluster, have also at- 
tracted considerable interest [12-14]. It is natural to ex- 
pect that the topological disorder, due to the percolating 
cluster geometry, will drastically affect not only the spec- 
tral but also the transport properties of magnons, in a 
way similar to what disorder does to electron in metals. 
The localization phenomenon for electronic systems im- 
plies a drastic departure from the conventional Bloch 
theory, and mobility edges may appear in the electronic 
spectrum separating extended states, having constant am- 
plitude on the average, from localized states that usually 
decay exponentially. However, it turns out that locali- 
zation on percolating clusters is more intricate, since the 
"disorder" is due to the presence of self-similar fractal 
geometry. Strong localization on special parts of the per- 
colating cluster was first found on the related quantum 
percolation model [13] and recently it was shown that 
super-localization [ 14], with decay faster than exponen- 
tial, may- occur, at least for typical samples before aver- 
aging. 

The concern of this paper is the study of the DOS 
and the localization properties of magnons (or phonons) 
in percolating clusters generated in 2- and 3-dimensions. 
Our aim is to study the properties of fractons, also by 
going beyond an averaged picture, i.e. by considering the 
corresponding statistics of the eigensolutions. This is 
achieved via the introduction of a random matrix ensem- 
bles consisting of sparse Hamiltonian matrices which is 
appropriate to discuss fractons. The random matrices for 
the problem considered in this paper are short-ranged 
and very sparse, i.e. with most of the matrix elements 
being identically zero. 

Exactly solvable random matrix ensembles have been 
introduced a long time ago by Wigner and Dyson, in the 
context of nuclear physics [ 15]. They consist of matrices 
with all their matrix elements being independent Gaus- 
sian random variables. For Gaussian ensembles the 
averaged DOS takes a simple semicircular form. The cor- 
responding DOS-fluctuations are usually estimated by 
the distribution function P (S) of the nearest-eigenvalue 
spacings S, which is the simplest measure of the fluctu- 
ations. For the Gaussian ensembles P(S)ocS, for small 
S, which implies strongly correlated eigenvalues repelling 
their closest neighbours [15]. The exact result for P(S) 
from the Wigner-Dyson theory (see (5) below) is known 
as the Wigner surmise [15]. Within the same theory the 
statistics of the eigenvector amplitude components can 
be also found [ 15]. The eigenstates are always extended 
(delocalized) and their statistics is characterized by the 
squared gaussian ;g2-distribution law. 

From the previous discussion the Wigner surmise and 
the level-repulsion can be associated with the delocalized 
part of the spectrum in the presence of disorder. This is 
a consequence of the fact that the Gaussian matrix en- 
sembles correspond to high-dimensionality lattice sys- 
tems where no localization is found. The Wigner-Dyson 
statistics also turns out to be responsible for the meso- 

scopic physics fluctuation phenomena which occur in 
small metallic samples [16]. On the other hand for low- 
dimensionality localized states exist and the level spacings 
are distributed according to a Poissonian law which per- 
mits clustering of eigenvalues [15]. From these observa- 
tions it follows that the spectral fluctuation properties for 
disordered systems of intermediate dimensions can be 
used to distinguish between the two kinds of states. 
Therefore, the DOS fluctuations studies should permit 
the identification of the Anderson transition and the de- 
termination of mobility edges in the spectrum. 

Since analytical solutions do not exist for disordered 
2- and 3-dimensional systems we have used the Lanczos 
method [17] for computing numerically the eigenvalues 
and eigenvectors in our matrix ensembles. Firstly, we 
considered the question of fracton and magnon-fracton 
DOS for the percolating cluster at Pc and above Pc, re- 
spectively. Then the level-spacing distribution function 
P(S) is determined so that the transport properties are 
directly estimated from the corresponding DOS-fluctua- 
tions. We present results which demonstrate two different 
kinds of behavior for the spectral fluctuations refering to 
uncorrelated and correlated spectra, respectively. A study 
of fracton mode amplitudes has also been carried out in 
order to measure their spatial extend. Finally, in order 
to simulate more realistic situations continuous disorder 
is added on the cluster bonds. Our findings are discussed 
in connection to previous studies and conclusions are 
drawn in Sect. 5. 

2. The model and the method of calculation 

We start from the familiar magnon equations of motion 
[5] corresponding to a single spin deviation on the incip- 
ient percolating cluster. They are 

( E - Z  Jr, r ' )  ~r'tr = Z Jr,r '  ~tr" , (3)  
r ~ r' 

where r labels the percolating cluster sites on the d-di- 
mensional lattice, E is the magnon energy and when E is 
an eigenvalue ~ is the corresponding wavefunction am- 
plitude on site r. J is the exchange constant and the sum- 
mations are performed over all available sites r ' ,  nearest- 
neighbours of r. The exchange couplings Jr.," can be con- 
veniently chosen to be 1, which sets the energy scale, 
except at Sect. 4, where the J's for every pair of sites are 
chosen to be uniformly distributed independent random 
variables. 

From Eq. (3) the dynamical matrix H can be defined 
in the chosen orthogonalized site basis representation. H 
has off-diagonal matrix elements (bond strengths) 1 or 
0, when nearest neighbour sites are present or absent, 
respectively. The diagonal elements (site energies) are 
equal to the number of nearest-neighbor sites of r present, 
ranging from 1 to 2d. The model has a special form of 
correlation between diagonal and off-diagonal disorder 
and can be derived from a general tight-binding Hamil- 
tonian. The resulting gapless spectrum consists of strictly 
positive energies in the range 0 _< E <  12. The E =  0 mode 
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must be extended for p >Pc, due to the continuous de- 
generacy of the ground state. 

In our calculations the infinite percolating cluster at 
a given value of the concentration p was generated on 
large square L • L in d = 2, and cubic L • L • L lattices 
in d =  3. We used the algorithm described in [18, 19] with 
periodic boundary conditions imposed in all directions. 
At the critical concentration Pc the clusters contained only 
a small fraction of  the total number of lattice sites and 
the corresponding one-magnon Hamiltonians are set-up 
and diagonalized numerically. The statistical ensemble 
consists of  large real, symmetric sparse matrices, i.e. each 
row or column has at most 5 non-zero elements in d = 2 
and 7 elements in d =  3. 

For  the numerical diagonalization it is convenient to 
employ the Lanczos algorithm of Parlett and Reid [17] 
by making use of the matrices sparse nature. Using this 
method we compute part of the eigensolutions (eigen- 
values and eigenvectors) which lie in a given energy in- 
terval. The method is repeated so it can cover the eigen- 
solutions in the whole energy domain. The Lanczos 
method has been successfully used in similar kind of prob- 
lems [20, 21]. A related method based on a reassessment 
of the original algorithm can be used only for the ap- 
proximate determination of  the locN DOS and has be- 
come known as the recursion or tridiagonalization method 
[22]. For  the DOS a most convenient and very accurate 
alternative computational technique can be used. It is 
known as the Gaussian elimination or triangularization 
method and was introduced in [6]. 

The main advantage of the Lanczos method is econ- 
omy of storage, since H need not be stored. The storage 
requirements increase linearly with the matrix size N, 
since the computer memory contains only the non-zero 
matrix elements. In fact the product of  H with an arbi- 
trary vector u is all what is needed in the algorithm. It is 
also possible within the Lanczos method, after eigen- 
values have converged, to evaluate the corresponding 
eigenvectors, which have also been computed within our 
approach. Although, the Lanczos method is superior to 
all other standard methods, as well as the variants which 
exploit the sparse matrix nature, it suffers from certain 
drawbacks. The most serious is the danger of duplicate 
eigenvalues. This is avoided in our routine which is based 
on the Harwell version of the algorithm. Unfortunately, 
as a consequence the method fails to distinguish between 
degenerate eigenvalues. Although, the problem considered 
in this paper contains many degenerate eigenvalues, e.g. 
in d =  3 at p =Pc almost 17% of the total number of ei- 
genvalues lie at E =  0. This difficulty does not affect our 
results which concern only the continuous part of the DOS. 

A sufficient explanation for the origin of the special 
degenerate states is given in [ 13] on the related quantum 
percolation model. They correspond to "molecular states" 
localized in special parts of the infinite percolating cluster 
and they give rise to prominent f-funct ion peaks in the 
DOS which lie at E = 0 ,  1, ]/2, etc. They can be easily 
enumerated so that their degeneracy ratio can be deter- 
mined [13, 21]. Our calculations do not include these 
states, but focus instead on the continuous features of 
the DOS related to magnons and fractons. 

3. Calculations and discussion of the results 

3.1. Densities of  states (DOS) 

The calculation of  the DOS for a particular value of p 
proceeds as follows: We collect all the eigenvalues in 
energy bins (in histogram form) for many different, ran- 
domly generated clusters, so that the average ( p  (E) )  can 
be determined. The sources of error in this type of cal- 
culation are twofold: Firstly, due to the finite number of  
samples making up our statistical ensemble a statistical 
error exists. This can be estimated from the scatter of the 
number of  eigenvalues in a given energy bin. From or- 
dinary statistics it is expected that for an energy bin con- 
taining n states we must have a statistical uncertainty 

of the order of ]fin. In fact if the mean number of eigen- 
values in a given bin of width E is (n (E) )  then the var- 
iance ((fin (E) 2) = ((n (E)) 2) -- (n (E) )  a is proportional 
to the mean (n (E) ) .  This is a result of ordinary Poisson 
statistics which corresponds to localized states and the 
DOS fluctuations are very large. For  delocalized states 
instead ( f n  (E) 2) is much lower than (n (E) ) ,  varying 
logarithmically with (n (E ) ) ,  as a result of  the Wigner- 
Dyson theory [23]. 

In Ref. 23 the variance ((fin (E)) 2) is found to be equal 
to (n (E) )  when the states in the bin are localized, much 
smaller than (n (E) )  when are delocalized, and propor- 
tional to (n (E) )  but with a proportionality index less 
than 1 ( ~ 1/2) when the states are critical. Therefore, this 
statistical error is significant only for the localized fracton 
states and has been minimized by taking a rather large 
number of samples. 

The second kind of error is due to the finite size of 
the chosen sample which results in a limited number of 
sites in a given energy bin. The average level spacing is 
oc((p ( E ) ) N ) - 1 ,  where N is the total number of eigen- 
values, so that when N is not large enough the spectrum 
will show pronounced discreteness. This kind of  error 
also limits us to extend the calculation down to very small 
energies. For  the system sizes considered we have found 
large number of  eigenvalues for E >  0.001. Both types of  
error have been monitored in our calculations by choos- 
ing large enough and many random clusters so that the 
combined error remains no more than within a few per- 
cent. 

We report numerical results for the DOS at various p's 
above Pc in Figs. 1 and 2 for d =  2 and d =  3, respectively. 
It can be seen that for p =Pc according to (1) the fracton 
singularity is seen for small E. For higher p values the low- 
energy regime corresponds to magnons (Eq. (2)) and 
a smooth magnon-fracton crossover around an energy E C 
must be seen. Since the fracton edge E C values are very 
close to zero and the magnon regime is not fully visible 
in Figs. 1, 2 we choose to plot the averaged integrated 
density of states (IDOS) against E by including a range 
of  small energies. In the double logarithmic plot of Fig. 3 
at p =Pc the fracton law of eq. (1) implies that the data 
should be straight lines with gradient d J2 .  Despite the 
sources of error the data of  Fig. 3 lie rather accurately 
on a straight line. A least-squares fit gave a gradient from 
which the exponent d S is estimated as 1.32+0.02 and 
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Fig. 1. Plot of the averaged DOS (p (E)) in 40 • 40, 2-dimensional 
lattice for three different values of p: (A)p =pc = 0.5931 from 100 
clusters, (B)p=0.69 from 100 clusters and (C)p=0.85 from 20 
clusters 
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Fig. 3. Plot of the averaged integrated density of states (IDOS) 
(N(E)) vs Energy E at p=pc for d=2, 3 in a log-tog paper. The 
extracted values for the fracton exponent are: ds= 1.32 and 1.30 in 
d= 2, 3, respectively. The capital D on the figure are simply the 
dimensionalities 
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Fig. 2. The same as Fig. 1 but for 20 • 20 • 20 lattice in d= 3: 
(A)p =pc= 0.3117 from 40 clusters, (B)p=0.40 from 10 clusters 
and (C)p=0.55 from 20 clusters 
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Fig. 4. The same as Fig. 3 but for p values above Pc. For d= 2, 
p = 0.69, average over 100 clusters, and for d= 3, p = 0.40, average 
over 10 clusters. The capital D on the figure are simply the dimen- 
sionalities 

1.30 4- 0.02 in d =  2, 3, respetively. We have also consid- 
ered systems of  smaller size which allowed us to estimate 
the corresponding finite size errors, which for the above 
values are about  4-0.02. Fo r  no t  very large values o f p  
above Pc, the two excitation regimes magnon  and fracton 
are obtained in Fig. 4 for d =  2, 3. The corresponding 
exponents f rom Eqs. (1,2) are approximately d/2 (for 
magnons)  and ds/2 (for fractons).  This gives 2/2,  3 /2  for 
d = 2 ,  3 for magnons,  and 2 /3  for fractons. It  can be 
clearly seen that our  results displayed in Fig. 4 indicate 
the absence o f  a peak at the crossover, as it was firstly 
shown in numerical  calculations for d =  2 in [6]. 

The previous results confirm the dynamical  scaling 
approach  o f  Alexander-Orbach [4], as summarized by 
(1), (2). A dispersion law different f rom quadrat ic  Eoc k 2 
is implied for fractons, at Pc, i.e. 

Eock d*, k~p--+O. (4) 

F r o m  the condit ion k ~p-~ 0 which gives E c oc ~p  a,o we can 
determine the crossover region. Therefore, the crossover 
energy E c should scale as ( p - p c )  vd'~ giving approxi-  
mately [10] Ec--0.03 at p = 0 . 6 9  in d - - 2 ,  and Ec~-0.08 at 
p = 0.40 in d = 3, values appropria te  for Fig. 4. Our  find- 
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ings for the magnon exponents are 0.98 and 1.18 instead 
of d/2= 1 and 1.5, in d =  2, 3, respectively. These devi- 
ations can be understood as arising from the numerical 
difficulties due to the very small energy values corre- 
sponding to the magnon regime. 

The independent estimates for d w which come from 
decimation and simulation data give approximately the 
best known values [3] as dw~-2.87 in d = 2  and dw-~3.68 
in d = 3 .  Using also the known fractal dimensions 
dy= 91/48 and dz= 2.53 in d =  2, 3, respectively, we arrive 
f rom d~ = 2 dl /d  w at the values of  the fracton exponent 
ds~ 1.32 and ds ~ - 1.38 in d =  2, 3 respectively. It  can be 
concluded that our independent directly obtained data 
confirm both these estimates and also the universal value 
of 4/3, at least approximately. Our ds values are found 
to be systematically slightly less in d = 3 than in d = 2 (see 
also Sect. 5) but support  the Alexander-Orbach conjec- 
ture within the reported error bounds. 

3.2. Level spacing distribution function P (S) 

For  localized states the corresponding spectra are un- 
correlated and obey normal statistics while for delocal- 
ized states the Wigner-Dyson statistics is expected with 
smooth, correlated spectrum exhibiting level-repulsion 
and spectral rigidity. We considered the most  common 
spectral fluctuation measure, the nearest-level spacing 
distribution function P(S). For  the Wigner-Dyson sta- 
tistics in the case of  real and symmetric random matrices 
(orthogonal ensemble) the well-known Wigner surmise 
law for delocalized states is 

P (S) = (r~S/2) exp ( - zrS2/4), (5) 

which is in contrast to the usual Poisson law 

P(S)  = exp ( - S ) ,  (6) 

expected for localized states. 
We have studied the distribution function P (S) of  the 

nearest-energy-level spacings Sn = En + 1 - E,  for various 
p values. The calculations are done by obtaining the ei- 
genvalues for many  random runs; the total number  being 
approximately 70 000 and subsequently deconvoluting the 
spectrum [24], in order to retain a constant DOS. This 
is equivalent to studying the distribution of the difference 

(-///'(En+ l) > -- <~f  (En) > =(En+l-En) ? E  ( S ' ( E ) > ,  

where ( JK (E) )  is the averaged IDOS at energy E. The 
results in d =  3 for P=Pc and p =0.70 are displayed in 
Fig. 5. For  p = 0.70 they compare reasonably well with 
the corresponding Wigner surmise (Eq. (5)) suggesting 
that all states have become delocalized at this concentra- 
tion. This is also consistent with a quantum percolation 
threshold pq value smaller than 0.70 in d = 3. The fracton 
states at Pc instead follow a distribution rather close to 
a Poisson (Eq. (6)). The agreement, especially for the 
localized fracton case, would possibly be improved if more 
samples are included. 
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Fig. 5. The calculated level-spacing distribution function in d= 3 
for p = Pc (x's) and p = 0.70 (circles). The data are for 100 clusters 
in the full energy-range. The horizontal line is in units of the local 
mean-level spacing and the solid curves are the Wigner surmise and 
the Poisson law, respectively 
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Fig. 6. The same as in Fig. 5 but for p = 0.45 in 15 • 15 • 15 lattices. 
The x's concern statistics on the energy range [0, 1], the crosses on 
[3, 4] and the circles on [6, 7] 

In Fig. 6 we examine in d =  3 an intermediate p case 
in an at tempt to locate the mobility edge by studying 
energy-level statistics for three different parts of  the spec- 
trum. The obtained results for p = 0.45 suggest that a 
mobility edge must lie between E = 4.0 and 6.0. Since the 
fracton edge at this concentration lies at a much lower 
energy value (Ec~-0.40) the estimated mobility edge 
clearly does not coincide with the fracton edge. The frac- 
ton states which should exist in the intermediate energy 
region between E c and 6.0 appear as having localization 
lengths larger than the system size. In this calculation 
only the states near the tail of  the spectrum have reached 
convergent localization lengths. These results imply the 
invalidity of  the dynamic scaling theory accompanied by 
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the absence of fracton modes for p much larger than Pc. 
In this case the geometrical disorder, estimated from the 
deviation o f p  from the pure limit p = 1, is just too weak 
to localize the excitations apart from the states which lie 
near the tail of  the DOS. 

3.3. Properties o f  eigenvectors 

The localization properties can be directly probed by 
studying the eigenvector corresponding to the j-th eigen- 
value. A common localization measure is the inverse par- 
ticipation ratio (IPR)[25] ,  defined as 

N 

I P R ( E j ) =  ~, [ ~ / } j ) [ 4  (7) 
r = l  

for the normalized eigenvector ~ J  ) corresponding to the 
eigenvalue Ej. If a state is localized on m sites then the 
IPR takes a value of  order 1/m. Therefore, when the IPR 
is significantly larger than 1 IN ,  where N is the total num- 
ber of sites of  the cluster considered, then the state is 
localized. The scaling theory [4] predicts the existence of  
a single averaged localization length for fractons. This 
implies that for a given system size the average <IPR> 
should vary with E as E d'72. 

The variations of IPR with energy near E = 0 at Pc are 
shown on a logarithmic paper in Fig. 7. It can be seen 
that the fracton states are strongly localized but with 
localization lengths increasing as the energy lowers. 
Moreover, the IPR is not a self-averaging quantity [25] 
dominated by large fluctuations. The straight line on 
Fig. 7 is the fracton scaling law with a value d,-~ 1.12, 
which demonstrates the scaling behaviour for the aver- 
aged values. 
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Fig. 7. Logarithmic plot of the IPR against energy near E :  0 for 
fracton states in 20•  20x  20 lattices at p=p,. Values of IPR for 
five eigenstates are superimposed. These states are localized, since 
IPR >= 1180 i where 1180 is the total averaged number of sites. The 
straight line implies a fracton scaling law with d~-~ 1.12 
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Fig. 8. The same as in Fig. 7 but for the PR in a linear scale 

The participation ratio (PR) plotted versus energy E 
on Fig. 8 denotes the ratio of the number of sites with 
significant amplitude to the total number of sites. Our 
results of this section are not incompatible with the frac- 
ton scaling prediction although we must stress the fact 
that the mean values do not characterize the system due 
to the presence of  large fluctuations, already apparent in 
Figs. 7 and 8. 

We have also briefly addressed the more difficult 
question of super-localization, firstly proposed in [14]. It 
was argued that the wavefunction amplitude will decay 
with distance as exp ( - c (E) .  r am ), where d e is larger than 
1. There exists a current debate whether d e = 1 (which 
implies ordinary localization) or d e > 1 (super-localiza- 
tion) with the most thorough investigation made by [26]. 
It was shown there that the ensemble averaged individual 
wavefunction amplitude realization decays with an ex- 
ponent d e ~2.3, a value larger than theoretical estimates. 
The constant c (E) is the inverse localization length raised 
to the power d e which turns out to satisfy closely the 
proportionality relation E d* ds/(2 dl) and also implies scal- 
ing according to the fracton dispersion law [4]. We have 
not being able to answer the question of super-localiza- 
tion although we observed very sharp decay properties 
of  the fracton amplitudes for particular realizations, in- 
dicating "molecular states" [26]. Moreover, by following 
the IPR for such modes and varying the system size we 
found very little size-dependence, which also implies 
strong localization. 

4. Percolating clusters with random bonds 

We have also considered a more general situation by 
including continuous randomness on the off-diagonal 
matrix elements. This should represent a more realistic 
situation; an extension corresponding to a percolating 
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Fig. 9a, b. Plot of the averaged DOS(p (E)) in 40• 2-dimen- 
sional lattice for added continuous disorder of strength a W= 1, 
bW=10 

cluster with added bond-disorder. The fundamental ques- 
tion in this case is whether the fracton scaling laws will 
persist, despite the added non-geometrical disorder. 

We chose the bond strengths from a uniform distri- 
bution between [ - W/2, W/2] and worked a tp  =Pc, both 
in d = 2 ,  3, for two values of disorder: W= 1 and 10. The 
results are shown in Fig. 9 and 10 and confirm the pres- 
ence of the fracton laws even in the case of combined 
topological and usual disorder in the magnon equations 
of motion. It is clear that in this model the states are even 
more localized, except for the E ~ 0  modes. 

5. Conclusions 

We have considered in this paper only spin-wave exci- 
tations but our results should also apply unchanged to 
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energy E atp =Pc for d= 2, 3 in a log-log paper and W= 1, 10. The 
extracted values for the fracton exponents when W= 1 are: d, = 1.20 
and 1.16 in d=2, 3 and for W=I0: d,= 1.31 and 1.27 in d=2, 3, 
respectively. The capital D on the figure are the dimensionalities 

phonons ( E = - o 9  2) and classical diffusion (E= io ) ) .  
Relevant experimental data for the vibrational problem 
are snmmarized in [9-11 ]. These experimental facts were 
the main motivation for initiating studies of the dynamics 
in fractal structures. Our results are in favour of  the frac- 
ton description in both two and three dimensions. The 
localization of fractons has been examined also by con- 
sidering the DOS-fluctuations. 

In summary, we have considered the eigensolutions of 
the infinite percolating cluster of  a site-dilute 2- and 3- 
dimensional Heisenberg ferromagnet for a range of values 
of the bond concentration p. The method of  Lanczos was 
used to obtain the eigensolutions, being very economical 
mostly in computer storage requirements. The results ob- 
tained are summarized below: 

(i) The DOS satisfies closely the Alexander-Orbach scal- 
ing, also by including continuous randomness on the 
bonds of  the percolating cluster and the magnon-fracton 
crossover can also be seen to be smooth, without the 
presence of  a peak. 
(ii) The level-statistics of  fracton modes reveal a distri- 
bution close to exponential (Poisson) which implies strong 
localization. From the level-statistics in the upper part of 
the spectrum we find that the fracton modes disappear 
for concentrations above p = 0.45 in d =  3, invalidating 
the scaling picture. 
(iii) The fracton amplitudes are seen to have strong de- 
cay properties consistent with a scaling description for 
the averaged values but also accompanied by very large 
fluctuations. Our results indicate the unusual localization 
properties of fractons. Future studies will lie on two 
fronts: First, to distinguish superlocalization from local- 
ization and second to determine the crucial mobility edge 
versus concentration p phase diagram. 
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