
Towards 100 Gbit/s Ethernet:
Multicore-based Parallel Communication Protocol Design

Stavros Passas, Kostas Magoutis, and Angelos Bilas†

Institute of Computer Science (ICS)
Foundation for Research and Technology - Hellas (FORTH)

N. Plastira 100, Vassilika Vouton, Heraklion GR-70013, Greece
{stabat,magoutis,bilas}@ics.forth.gr

ABSTRACT

Ethernet line rates are projected to reach 100 Gbits/s by as
soon as 2010. While in principle suitable for high perfor-
mance clustered and parallel applications, Ethernet requires
matching improvements in the system software stack. In
this paper we address several sources of CPU and mem-
ory system overhead in the I/O path at line rates reaching
80 Gbits/s (bi-directional), using multiple 10 Gbit/s links
per system node. Key contributions of our work are the de-
sign of a parallel high-performance communication protocol
that uses context-independent page-remapping to (a) reduce
packet processing overheads; (b) reduce thread management
and synchronization overheads; and (c) address affinity is-
sues in NUMA multicore CPUs. Our design result in the
full 40 Gbits/s of available one-way Ethernet bandwidth
and in 57.6 Gbits/s (72%) of the 80 Gbits/s maximum bi-
directional throughput (limited only by the memory sys-
tem), while leaving ample CPU cycles for application pro-
cessing.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network com-
munications

General Terms

Design, Performance

Keywords

Multicore CPUs, 100 Gbit/s Ethernet, Communication Pro-
tocol Design, Performance Evaluation

1. INTRODUCTION
Historically, high performance applications satisfy their

communication needs through the use of specialized (and ex-
pensive) interconnection networks that offer high-bandwidth,
low-latency communication [2, 11]. However, recent im-
provements in Ethernet technologies promise link rates in
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the range of 40-100 Gbits/s [10], matching those of tra-
ditional high-performance interconnects. While in princi-
ple suitable for the needs of clustered and parallel applica-
tions, Ethernet is typically associated with CPU and mem-
ory system overhead over protocols such as TCP/IP. Packet
protocol processing, device interrupt handling, and mem-
ory copies for data movement are potential consumers of
CPU and memory bandwidth, reducing the effective net-
work bandwidth seen by applications.

A flurry of recent work on overhead reduction technolo-
gies that are applicable to Ethernet networks includes ap-
plication programmer interface (API) and protocol improve-
ments via remote direct memory access (RDMA) [18]; pro-
tocol offloading [15]; and new network interface card (NIC)
designs [25]. While these approaches have been successful in
demonstrating efficient data transfer over 1-10 Gbits/s data
rates, improved capabilities of next-generation Ethernet net-
works demand new techniques that can leverage increasing
network bandwidth while simultaneously freeing processor
resources.

This paper explores the possibility of leveraging Ether-
net as a cost-effective solution for high-performance com-
munication in the 10-100 Gbits/s range. Our aim in expect-
ing no special support from the network, either at the core
(switches, routers, etc.) or at the edge (NICs), is to take
advantage of economies of scale in standard Ethernet infras-
tructure. Given technology trends in network, CPU, and
memory systems we believe that higher network speeds can
be sustained at the application level by leveraging process-
ing power in emerging multicore processors and by reducing
memory bandwidth used for protocol processing.

This paper extends earlier work [12, 17] describing a non-
parallel version of our Ethernet network transport protocol,
named MultiEdge, which has the following characteristics:

• API support for RDMA.

• Support for in-order and out-of-order message delivery.
The out-of-order mode suits RDMA transport seman-
tics particularly well and is thus the common case in
RDMA-intensive workloads.

• Lightweight flow-control optimized for intra-domain to-
pologies.

• Transparent aggregation of multiple physical links as
a single channel for data transmission.
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The system we present in this paper implements the above
characteristics, and additionally contributes:

• An efficient parallelization of the transport protocol
over multiple CPUs and cores on modern processors;

• A novel copy reduction technique based on execution
of VM page remapping operations outside the context
of the target process; we refer to this technique as
context-independent page remapping;

• A broader identification of challenges in parallel com-
munication protocol design in non-uniform memory ac-
cess (NUMA) multicore processors.

Our results show that a baseline non-parallel protocol
that uses traditional (context-dependent) page-remapping
achieves a maximum one-way throughput of 27.9 Gbits/s out
of ideal 40 Gbits/s, whereas two-way throughput increases
to 37.3 Gbits/s out of ideal 80 Gbit/s. Parallelization of
the transport protocol and the use of context-independent
remapping improves one-way aggregate bandwidth to 38.9
Gbits/s while leaving 62.5% of the total processor cycles (5
out of a total 8 cores) available for application processing.
In terms of bidirectional throughput, our protocol achieves
57.6 Gbits/s (74% of ideal) at 50% of total CPU utilization.

The rest of this paper is organized as follows. Section 2
provides background on our Ethernet-based communication
protocol and on standard copy avoidance mechanisms. Sec-
tion 3 presents our networking protocol parallelization on
multiple cores of a modern multiprocessor. Sections 4 and 5
present and discuss our experimental platform and results.
We discuss related work in Section 6. Finally, we draw our
conclusions in Section 7.

2. BACKGROUND
This work extends MultiEdge [12, 17], a high-performance

communication protocol geared towards high-speed Ethernet-
based local-area networks. MultiEdge offers reliable transfer
semantics using window-based flow control with positive and
negative acknowledgments, and packet retransmits in case of
packet loss, similar to TCP/IP [21]. MultiEdge additionally
supports framing, with a choice of in-order or out-of-order
delivery, and the simultaneous utilization of multiple physi-
cal links, features found in more advanced transport proto-
cols such as SCTP [19]. MultiEdge is an end-to-end protocol
that does not require any support from the network core and
runs over standard Ethernet protocol.

In a departure from traditional socket (send/receive) based
APIs over Ethernet, MultiEdge presents applications with a
remote read/write memory API [18]. The initiator of the
operation identifies the remote buffer using either a remote
virtual memory address or a buffer id and an offset within
this buffer. Both should be registered explicitly by the appli-
cation through a system call. Once registered a buffer may
be used in multiple communication operations. It is impor-
tant to note that the API of MultiEdge does not require
any hardware support for RDMA and is implemented over
standard Ethernet NIC hardware, without scatter-gather ca-
pabilities.

We assume the reader is familiar with the function and op-
eration of the network I/O path in traditional implementa-
tions of kernel-level communication protocols [21]. Such im-
plementations typically require a number of memory copies

during protocol processing and when crossing the user-kernel
boundary in the send and receive paths. Several techniques
to mitigate the cost of copying have been proposed in the
past, a prominent one being virtual memory (VM) page
remapping [3, 6]. Based on this technique, data movement
between two buffers can be achieved through the use of vir-
tual to physical address translation, page pinning, and page
remapping in the operating system VM structures. In our
current prototype we use specially-adapted VM page remap-
ping and associated techniques to eliminate memory copies
in sending and receiving data and discuss the implementa-
tion of each direction separately.

A key challenge in the send path is transferring data di-
rectly from application buffers. Using a user-level buffer
for communication requires that the buffer be pinned in
physical memory throughout the duration of the I/O oper-
ation. Previous approaches have implemented such pinning
as part of a copy-on-write operation during each write sys-
tem call [3]. To reduce the per-I/O overhead associated with
this mechanism we chose to instead expose the pinning op-
eration through a system call and perform it either by the
application as part of an initialization procedure or through
an I/O library. Our mechanism works for both synchronous
and asynchronous I/O semantics. In the former case, the
system call does not return before the I/O is complete. In
the latter case, the semantics of asynchronous I/O already
deal with application accesses to user buffer before I/O com-
pletion.

In the receive path, the goal of any copy avoidance mech-
anism is to achieve direct deposit of the incoming data to its
destination user buffer without intermediate copies. Previ-
ous research on programmable NICs [2, 14, 18] showed that
enabling application pre-posting of receive buffers directly
with the NIC offers such a mechanism. However this capa-
bility requires extensive NIC support and is expensive. Our
mechanism, which does not require special NIC support, re-
lies on initially appropriately depositing incoming packets
to kernel buffers and subsequently using page remapping to
trade the physical pages underlying the kernel buffer with
those of the targeted user-level buffer.

3. PROTOCOL PARALLELIZATION
The control flow in our communication protocol, which is

designed to offer reliable transfer semantics, window-based
flow control with positive and negative acknowledgments,
and packet retransmits in case of loss, is shown in Figure 1.
The protocol send path is parallelizable in a straightforward
manner as user contexts (threads or processes) that initi-
ate communication operations can be mapped to different
CPUs, cores, and NICs for the duration of the operation.
Parallelization of the receive path is more challenging as in-
coming packets arrive at an arbitrary NIC and must compete
for shared resources during protocol processing. In more de-
tail, the receive path involves the following steps:

• Incoming packets are deposited in host memory buffers
managed by (per-NIC) Ethernet rings. In general,
each ring contains packets destined for different con-
nections.

• Packets are moved from the Ethernet ring to another
ring associated with the target connection.
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Figure 1: Protocol control flow diagram.

• Depending on delivery order semantics, there are two
options:

(a) With out-of-order message delivery, packets are
processed immediately upon arrival. Processing in-
volves performing all protocol bookkeeping and remap-
ping message buffers to the application address space.

(b) With in-order message delivery, the receiver en-
sures that all preceding packets have been received
prior to processing the currently arrived packet.

• If the processed packet is the last segment of a message
carrying a notification, a signal is sent to the applica-
tion process.

• Occasionally (based on delivery semantics and system
thresholds) an acknowledgment is sent back to the
sender.

• Following packet handling, the processing context should
poll the NICs for newly arrived packets and start over.

In typical implementations of the above described steps
(Figure 2), moving packets from Ethernet to connection
rings occurs in per-NIC threads that are woken up by NIC
interrupts at packet arrival. Higher-level (connection-specific)
packet processing occurs in per-connection threads that have
access to application virtual memory structures for page-
remapping purposes. For scalability, the system needs to
employ multiple per-NIC as well as per-connection proto-
col threads, which must synchronize for packet movement
between Ethernet and connection rings. The above require-
ments result in (a) large number of threads; (b) synchro-
nization for packet processing in the common path; and (c)
complex affinity characteristics between thread scheduling
and protocol metadata placement.

Our parallel protocol design aims to address the above
issues. A key challenge is to perform page-remapping di-
rectly by the network threads: These threads have no default
knowledge of application VM structures and essentially need
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Figure 2: Flow diagram using per-connection
threads.

to assume a different ”personality”for each packet. With this
ability, however, packet processing can be performed end-to-
end by network threads alone, eliminating per-connection
process threads. This, in turn, eliminates several synchro-
nization points in out-of-order delivery, which is the common
case for RDMA-intensive workloads, and simplifies affinity
issues to some extent.

The main structures and operations of our parallel pro-
tocol are shown in Figure 3. Solid lines correspond to out-
of-order processing mode and dashed lines correspond to
in-order processing. In out-of-order mode, network threads
remove packets from Ethernet rings independently, directly
remap them to user buffers, and mark the packet as deliv-
ered in the connection ring. In-order delivery requires first
placing packets in the connection ring and then processing
packets of single messages concurrently with other threads
in the ring.

In the following sections we discuss our handling of syn-
chronization issues in concurrent access to shared protocol
state by network threads, our use of context-independent
VM page remapping to reduce data movement overhead,
and finally, our handling of memory alignment issues.

3.1 Thread Synchronization
Concurrent threads executing our communication proto-

col need to synchronize over access to shared state at specific
points in the control flow diagram of Figure 1. We employ
wait-free synchronization in all cases using either trylocks
before entering a critical section, or atomic instructions to
perform state variable updates. In the former case, a thread
manages to enter the critical section while all others continue
with executing other protocol paths, such as servicing new
incoming packets. In the latter case, updates to shared state
such as protocol counters are implemented with atomic in-
structions that are typically available in modern processors.

The synchronization points in our parallel communication
protocol are summarized in Table 1 and described below:

• (State 1) For each transmitted packet, a lock ensures
that a single transmission completion event is signaled
prior to the packet’s buffer being reclaimed for reuse.
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State Description

1 Signaling transmission completions
2a Scanning the rings in-order
2b Transmission of explicit acks
5a Retransmissions due to nacks
7 Buffer entry accesses
9 Memory page accesses

Table 1: Description of synchronization points.
State numbers correspond to control flow states in
Figure 1.

• (State 2a) In the case of in-order delivery, a lock en-
sures that packets are processed in order by a single
thread while the remaining threads are free to process
other pending work.

• (State 2b) Positive or negative (nack) acknowledgment
processing and transmission is protected by a per-con-
nection lock.

• (State 5a) Retransmission of a range of packets in re-
sponse to receipt of a nack is protected by a lock per
entry (i.e., per packet) on the connection transmit ring.

• (State 7) To avoid concurrent processing of duplicate
packets, a lock per entry protects each entry on the
receive ring.

• (State 9) To avoid concurrent remapping of pages be-
longing to overlapping memory buffers a lock protects
each page of the registered to the protocol memory
ranges.

• Finally, concurrent scanning of the ring is made possi-
ble using an atomic addition operation.

Synchronization costs are expected to be minimal in the
common case scenario of out-of-order, lossless data trans-
fer in RDMA applications over high-performance Ethernet
interconnects.

3.2 Context-Independent Page Remapping
VM page remapping is a procedure by which data move-

ment between two buffers (in our case, a kernel and an appli-
cation buffer) takes place through exchange of the physical
pages backing the buffers. Traditional implementations of
page remapping are implemented as follows: For simplicity
and without loss of generality we assume that both buffers
are page-sized and page-aligned. The procedure typically
starts by performing a walk through the target process page
table (PT) and identifying the entries that describe the ap-
plication buffer. This is typically performed in the context of
the target process, thus we qualify this procedure as context-
dependent page remapping. Following the PT walk-through,
the physical pages of the target buffer are traded with those
of the source buffer and the TLB entries for the application
buffer pages are flushed. Finally, if the application pages
were pinned in physical memory, the new pages are pinned
as well. If the source buffer is part of a buffer pool used for
communication, its physical pages are returned to that pool.

In our parallel communication protocol design we intro-
duce a novel implementation of VM page remapping where
the context of execution of the remapping actions can be a
kernel thread unrelated to the context of the target appli-
cation process. We call this technique context-independent
page remapping. To enable kernel threads involved in net-
work processing to manipulate the virtual address space of
the target applications, at the time of NIC initialization by
the application we store a pointer to the kernel memory
manager structure associated with the application. Dur-
ing packet processing we restore the corresponding memory
manager when the need arises to access a process’s user ad-
dress space. For x86/x86 64 architectures it suffices to point
the cr3 register to the PT of the process we need to access
and modify certain system variables to bring the system to
a consistent state.

As a further optimization, each time the application ex-
plicitly registers a buffer we cache the corresponding kernel
PT structure (including different levels of PT entries if nec-
essary). During VM page remapping we use the cached PT
structures to manually locate the PT entry that points to
the old page and replace it with the new page. Finally, after
every page remapping we update our cached PT structures
to keep our data consistent with the kernel PTs.

3.3 Memory Alignment
The use of VM page remapping in a network communi-

cation protocol requires special attention to memory align-
ment issues, particularly when considering the restrictions
imposed by standard NIC interfaces. In our work we have
addressed the following issues:

Dealing with packet headers. VM page remapping
requires that memory buffers be aligned in page boundaries.
This poses a challenge for incoming packet processing as
it requires depositing the payload (i.e., packet contents af-
ter striping all protocol headers) from the NIC right into
a page-aligned kernel buffer. This requirement cannot be
enforced in a straightforward manner as packet headers are
not identifiable by commodity Ethernet NICs and cannot
be separated from the payload to two page-aligned memory
buffers by separate DMA operations. The solution we im-
plement, which is similar in spirit to the technique proposed
in [3], works as follows:
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Assuming header size H bytes and payload size N bytes
for a given message, the sender transmits the header bytes
first (H), followed by payload bytes H+1 to N, followed by
payload bytes 1 through H, as shown in Figure 4. The re-
ceiver places the entire message (header plus payload) page-
aligned to a number of page-sized buffers (4 KBytes in our
case). The header bytes are subsequently copied to a sepa-
rate small buffer while payload bytes 1 through H are copied
to the beginning of the message overwriting the header. The
payload thus turns out to be page-aligned and therefore ap-
propriate for VM page remapping.

Application buffer alignment and large-message
handling. To efficiently handle the case where either the
source or the destination (or both) buffers are not page-
aligned, our protocol works as follows: The sender takes
into account the alignment of the receiver buffer and splits
the transfer such that the first packet consists of the data
until the next page boundary on the receiver buffer. At
the receive side this packet will be delivered to the appli-
cation using copying. Subsequent packets are MTU-sized
and consist of H bytes of protocol headers (48 bytes in our
implementation, including the Ethernet header) followed by
the payload (up to 8 KBytes in our implementation, which is
twice the VM page size, when using 9000 byte Jumbo Ether-
net frames). Our header handling ensures that the payload
is suitably aligned in memory for VM page remapping. A
small part of the payload (smaller than a page) at the be-
ginning or at the end (or both) of the packet may require
copying to the application buffer.

4. EXPERIMENTAL PLATFORM
Our experimental platform consists of two systems con-

nected back-to-back with multiple NICs. Both nodes have
two, quad core, Opteron 2354 CPUs running at 2.2 GHz
and a Tyan S2915 motherboard. The operating system is
the 64-bit version of Debian testing with Linux kernel ver-
sion 2.6.18.8, compiled with GCC version 4.1.2. Each node
is equipped with four Myricom 10G-PCIE-8A-C cards. Each
card is capable of about 10 Gbits/s throughput in each direc-
tion for a full-duplex throughput of about 80 Gbits/s. Each
Opteron 2354 CPU has a TLB size of 1024 entries and per
core L1, L2, and shared L3 caches, with sizes of 4x32 KBytes,
4x512 KBytes and 1x2 MBytes respectively. Each proces-
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Figure 5: Internal data paths in each system node

sor is equipped with 4 DIMMs of 512 MByte DDR-667 for
a total of 4 GBytes of main memory. Linux is configured
with NUMA features enabled. Figure 5 shows a schematic
of the internal data paths in each node from various memo-
ries to network links and the maximum throughput in each
component of the path.

We conduct experiments using MTU size of 9000 bytes
(Ethernet Jumbo frames). This MTU size is widely used in
high-performance systems and is in line with current tech-
nology trends.

4.1 Methodology
We evaluate the system using three micro-benchmarks:

one-way, where one of the two nodes reliably sends messages
back to back using remote writes without waiting for any re-
sponse from the receiver. This benchmark exercises the send
path at the sending and the receive path at the receiving
node. two-way, where both nodes simultaneously transmit
data back to back using remote writes. The throughput in
this case reflects all traffic in the system, including both sent
and received data. ping-pong is a request-reply benchmark
using remote write. Both request and reply are of the same
size.

To understand system behavior, we use the following met-
rics: (a) Throughput, which is calculated over the amount of
application data that has been delivered to the remote node;
(b) One-way, end-to-end latency; and (c) CPU utilization
breakdowns. CPU utilization is approximate as we cannot
account for the time between the moment a NIC issues an
interrupt and until the interrupt handler executes on the
host CPU and consists of the following components: IRQ is
the cost for interrupt handling or polling; TxCopy/Translate
is the overhead spent on preparing the payload in the send
path. This component includes either the pinning and trans-
lation overheads or the data copy; RxCopy/SetupRmap is
the overhead of packet processing in the receive path, in-
cluding copying, where appropriate. This component does
not include the actual overhead for remapping, which is mea-
sured separately; Remapping is the page remapping cost in
the receive path; Packet is the packet processing overhead.



operation time (µ s)

ioctl 0.28 - 0.35
alloc buffer 0.1 - 0.3
pin page 2.2 - 7.6
remap page 0.1 - 1.0

Table 2: Basic kernel costs.
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Figure 6: Memory copy throughput.

This includes header preparation, ordering of packets, and
flow control; Device is the cost for communicating with the
NIC both at the send and receive paths.

In our experiments we use the following protocol config-
urations: CP: This is our base version, where the protocol
uses one copy in the send and one copy in the receive path.
Map: This is the protocol version with copies eliminated
in the send and receive path using address translation and
page remapping. NoCP: This is an“ideal”version with both
copies artificially removed, showing the maximum achiev-
able performance without copy, remapping, or translation
overheads. In all experiments, we report the average of five
measurements for each data point. Finally, in the paral-
lel protocol we indicate the number of send, receive threads
with nRT: and nST: respectively.

4.2 System Costs and Memory Subsystem
Table 2 shows the overhead of certain basic kernel oper-

ations we use in our design. An empty ioctl costs about
0.3 µs. Allocating a kernel buffer (MTU size) costs about
0.2 µs. This cost could be higher if we had memory frag-
mentation. In addition to both pinning and remapping costs
increase almost linearly with the number of pages. Pinning
is fairly expensive as it requires locating the corresponding
virtual memory area, walking the page table to locate the re-
quested physical pages, and finally increasing their reference
count. Pinning the first page is more expensive than the rest,
because consecutive virtual pages are placed in consecutive
locations in the page table. For page remapping the aver-
age overhead is about 0.5 µs. The overhead is lower than
pinning because the virtual memory area for each page is
stored in a protocol cache during receive buffer registration.
This allows us to walk directly the page table, find the table
entry, and update it.

Figure 6 shows memory copy throughput in each node.
The knees at 32 KBytes, 256 KBytes, and 1 MByte corre-
spond to the L1, L2, and L3 cache sizes. In all these runs
each core accesses only memory attached to its CPU. Sus-
tained memory copy throughput for a single core is about

local memory remote memory
cores 1+1 2+2 4+4 1+1 2+2 4+4
read 4008 7760 14344 3724 6680 9536
write 5200 7480 8336 4000 5240 5280

Table 3: Memory throughput(Mbytes/s) when cores
access data located on local or remote memory.

920 MBytes/s, while for all 8 cores it is about 4.56 GBytes/s.
With 2 and 4 cores, throughput is significantly higher when
cores are split between the two CPUs (memories) rather
than placed in a single CPU (memory).

Table 3 shows the aggregate throughput when we use one,
two, or four cores from each processor for memory read and
write. For one core accesses to local memory have a sus-
tained rate of about 1.95 and 2.5 GBytes/s for reads and
writes respectively, but it drops significantly when accessing
remote memory.

Finally, we see that the maximum memory throughput
with local memory accesses for concurrent reads and writes
for all the cores is around 10 Gbytes/s, while for remote
memory accesses throughput is 33% lower. This indicates
that NUMA placement should be taken into consideration
when interpreting our results.

4.3 NUMA Affinity Issues
The NUMA architecture of recent multicore processors,

such as the ones we use (Figure 5), results in possible varia-
tions in memory throughput depending on the relative place-
ment (affinity) between host and NIC buffers as well as be-
tween application and protocol threads. The main types of
affinity are between:

• Application threads and cores;

• Interrupt handlers and cores;

• Protocol receive threads and cores;

• Memories and NICs;

• DMA transfer direction and memory modules;

We obtain all our results with application threads running
on separate CPUs, interrupt handlers running on any core
of the CPU where the NIC is attached, and protocol receive
threads running on different cores of the CPU where the
NIC is attached. Memory-NIC and DMA direction-memory
affinities are more involved. Memory-NIC affinity means
that each NIC performs DMAs only to the memory on the
same CPU where the NIC is attached. DMA direction affin-
ity means that the protocol operates in a manner such that it
performs only read (write) DMAs from (to) a specific mem-
ory module. Our protocol configuration so far does not try
to exploit affinities to a significant degree, as such tuning
cannot be expected from typical applications.

We statically map the running threads as follows: The
interrupt handlers and protocol receive threads run on the
CPU to which the device they handle is attached. We don’t
specify statically where application threads run, but we use
fewer application threads than the system cores and each
thread runs on a separate core avoiding contention between
application threads.
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Figure 7: Impact of copy avoidance on throughput and CPU utilization. For CPU utilization (b) we show
one bar per protocol configuration (left to right): CP, Map, NoCP.

5. RESULTS
We structure results around the following questions: (a)

The benefits from page remapping in the range of 40-80 Gbits/s;
(b) Protocol scaling with multiple CPUs and protocol threads;
(c) The impact of different TLB invalidation schemes and
buffer alignment; and (d) Affinity issues.

5.1 Benefits of Page Remapping
Figure 7(a-b) shows throughput and CPU utilization when

using copy (CP) vs. page remapping (Map) and contrasts
them with the ideal version that artificially avoids both
(NoCP). We see that CP, which uses one copy on the send
and one copy on the receive path, is limited by CPU in both
one-way and two-way, reaching a maximum bi-directional
throughput of about 1.5 GBytes/s over all NICs. Moreover,
copy overhead dominates in all cases, except for the smaller
message sizes. CPU utilization for CP in two-way reaches
up to 180% for larger messages, saturating both the send
and receive path CPUs.

Replacing copies with remapping in Map results in a large
performance improvement: Throughput increases by almost
a factor of three in one-way and two-way and by a fac-
tor of two in ping-pong. In one-way we see that receiver
path utilization is almost 100% and throughput reaches up
to 3.5 GBytes/s. Results are similar in two-way where bi-
directional throughput is about 4.5 GBytes/s, however, CPU
utilization is about 150%, reflecting the saturation of the re-
ceive path. Any further improvement in throughput can
mainly come from better distributing receive path protocol
processing to multiple cores in future CPUs.

Figure 7(a) shows the performance improvement when us-
ing context-independent remapping (Map) vs. remapping
that uses per-connection threads (MapSimple). We see that
especially in one-way and two-way, throughput improves by
up to 34%. In the rest of our evaluation, we use only the
context-independent remapping technique.

Overall, delivering end-to-end wire throughput can be lim-
ited by two factors: (a) maximum memory throughput in
our systems or (b) high CPU requirements for protocol pro-
cessing and especially the receive path. If we artificially
remove data copies and remapping (NoCP) throughput in-
creases in all benchmarks to saturate either available link
(one-way) or (single) memory bandwidth (two-way).

Figure 9(a) shows system latency for one-way and ping-
pong. In one-way, the overhead of posting a write request
is about 2 µs for small messages, increasing slightly with
message size, for all configurations. In ping-pong, latency
is 11.7(NoCP)-13.4(CP) µs for 4 Bytes messages, reaching
14.2(NoCP)-17.5(CP) µs for 1 KByte messages. Our results
show that Map outperforms CP in all cases. We thus reserve
the use of copying only in cases where our network hardware
forces us to fit the Ethernet packet within a single hardware
descriptor (for messages less or equal to 12 Bytes).

5.2 Protocol Scaling
Now we examine the scaling of the network protocol with

increasing number of processing threads. Figure 8 shows
throughput and CPU utilization for different protocol con-
figurations. First, we consider the case of a single send
thread with an increasing number of receive threads. In
this case, one-way throughput scales from 3.5 GBytes/s to
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Figure 8: Protocol scaling with the number of protocol threads. For CPU utilization we show one bar per
configuration (left to right): 1RT, 2RT, 4RT, 4RT-NoCP, 2ST-4RT.

about 4.9 GBytes/s (Figure 8(a)) reaching the maximum
one-way throughput achievable on four NICs. We see that
two receive threads are almost adequate for achieving this
maximum throughput. Figure 8(b) shows that CPU utiliza-
tion on the receive path for 1RT, 2RT, and 4RT is about
100%, 200%, and 300%, respectively. Thus, 2RT saturates
two cores while managing to service all four NICs at link
speed. In two-way, throughput scales from 4.5 GBytes/s to
about 6.0 GBytes/s, with 2RT almost reaching maximum
throughput. Similarly to one-way, in 2RT CPU utilization is
about 280%, indicating that the two receive threads saturate
two cores with the rest of the CPU utilization attributed to
the sending thread. In 4RT, although there are spare CPU
cycles available, throughput does not increase significantly
beyond 6.0 GBytes/s since the bottleneck is the single mem-
ory throughput when using a single send thread.

Increasing the send threads to two for two-way (2ST-4RT-
Map) results in a maximum throughput of about 7.2 GBytes/s
at similar CPU utilization levels as in 4RT-Map. The in-
creased throughput is a result of using both memories the
system as opposed to mostly one memory when using a sin-
gle send application thread. We discuss this issue further in
the following subsection.

5.3 Affinity Issues
Our protocol configuration used so far does not try to ex-

ploit affinities to a significant degree, as such tuning cannot
be expected from typical applications. Our highest achieved
throughput of 7.2 GBytes/s in configuration 2ST-4RT-Map
uses essentially send memory-NIC affinity but no receive
memory-NIC affinity.

To explore further the impact of affinity we consider two
additional configurations: one featuring DMA-direction and
memory affinity and another featuring (both send and re-
ceive) memory and NIC affinity. First, we note that these
types of affinity are mutually exclusive if one desires the si-
multaneous use of all available NICs and memories. For
instance, DMA-direction and memory affinity, where the
protocol performs only read or write DMAs to each of the
two memories in the system, requires that send and receive
buffers of all NICs be located in separate memory mod-
ules, breaking memory and NIC affinity. DMA direction-
memory affinity results in maximum bidirectional through-
put of about 6 GBytes/s, similar to single-memory perfor-
mance, while memory-NIC affinity results in maximum bidi-
rectional throughput of about 7 GBytes/s showing a measur-
able improvement to overall performance. A more detailed
evaluation of different affinity types and configurations as
well as dynamic protocol adaptation is beyond the scope of
this work and we leave it for future work.

5.4 Impact of TLB Invalidation Mechanism
After remapping a receive buffer, TLB entries may be in-

validated either selectively or by flushing the full TLB. In
addition, TLB entries may be invalidated eagerly as soon
as a page is remapped, or lazily, only after all pages related
to a single packet or message are remapped. Our previous
results use lazy-full TLB invalidations. Figure 9(b) shows
two additional cases, eager-full and eager-selective TLB in-
validations for two-way. Lazy-selective invalidations are not
interesting as eager-selective would always result in less or
equal overheads. We also include a curve where we artifi-
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Figure 9: Message latency (a), impact of TLB invalidation mechanisms (b), and impact of data alignment
(c).

cially do not flush any TLB entries, to illustrate the best
possible case.

We see that the overhead when flushing the entire TLB
depends on message size. Eager-full and eager-selective TLB
invalidations are 16% and 25% worse than the ideal through-
put with no invalidations. Lazy-full TLB invalidations scale
better as message size increases, and for messages larger
than 32 KBytes reach the same throughput as the ideal case.
Also, it is important to note that when flushing the full TLB,
although it appears to incur a lower CPU overhead, it may
have an impact on overall application performance as the
TLB may need to be refilled with flushed entries, especially
for compute intensive applications.

5.5 Impact of Buffer Alignment
Finally, until now we have presented results using appro-

priate data alignment for send and receive buffers, such that
page remapping is possible on the receive path for messages
equal to or larger than 4 KBytes. Also, message size is a
power of two, resulting in full page remappings for large mes-
sages. When send and receive buffers are not page-aligned,
there is a need to copy part of the data and to use a larger
number of packets. To fix alignment the first packet is used
to align data appropriately and the last one to transmit the
remaining, non-aligned data. These two packets have a to-
tal payload of 4 KBytes for messages larger than 4 KBytes,
since the transfer size is a multiple of 4 KBytes. Figure 9(c)
shows throughput for one-way and two-way when source
and destination buffers are not aligned. For unaligned ad-
dresses, throughput increases with messages size, as more
packets use remapping on the receive path, asymptotically
reaching the maximum throughput of aligned buffers.

6. RELATED WORK
The last two decades there has been extensive research on

communication subsystems for building cost-effective, high-
performance clusters. To a large extent this research has fo-
cused on examining issues in the host-NIC interface, such as
eliminating data copies, system call overhead in the commu-
nication path, and context switches [7, 16, 23]. Through this
work, NIC architectures have evolved dramatically to low-
latency, high-throughput designs that are decoupled from
the processor-memory architecture [2]. Similarly there has

been extensive work in evaluating various aspects of cluster
interconnects and in different contexts [1, 13]. Our work in
this paper differs from these efforts in that (a) we assume
no protocol-specific support from the network interface, (b)
we target 100 Gbits/s Ethernet-based networks, and (c) we
take advantage of multicore CPUs in protocol design.

In [12], MultiEdge has been evaluated on a cluster of 32
nodes, using multiple 1-Gbit/s and single 10-Gbits/s Eth-
ernet links, running an optimized software shared memory
protocol and real applications. The emphasis there is on ex-
amining the impact of the lack of protocol support from the
network switches on out-of-order delivery and packet loss.
In [17] we examine the scalability of MultiEdge up to eight
1-Gbit/s links and present a detailed evaluation on the im-
pact of different protocol costs on CPU utilization. In this
work we design a protocol that avoids copying overheads
without breaking existing APIs and scales on multiple cores
to achieve a maximum bidirectional end-to-end transfer rate
of more than 7 GBytes/s out of a maximum bandwidth of
about 10 GBytes/s.

Address translation and page remapping have been pro-
posed previously for eliminating the cost of crossing the
user-kernel boundary in various contexts [3, 6]. The au-
thors in [6] present a mechanism for transferring data over
this boundary and deals with alignment issues and concur-
rent accesses. We use a similar technique in our receive path
design. In addition we deal with alignment issues that are
induced by Ethernet and the lack of protocol support at the
NIC. Copy offloading is also achieved using hardware sup-
port in some processors [9]. While this approach results in
delivering wire-speed for 10 Gbits/s link rates, CPU utiliza-
tion remains high.

The packet re-shuffling technique we use is similar to header
patching proposed in [3]. The main difference is that a
scatter-list mechanism can be used on the receive buffers
used by the hardware and each segment of this list can be
transfered to a user buffer. However, this doesn’t work in
our case because we can only avoid copies using page-sized
scatter list buffers. Moreover, we evaluate the effectiveness
of this technique at much higher network speeds.

Distributing packet processing over multiple cores has been
examined in [25]. The authors present the design of a net-
work interface that uses multiple CPUs for 10 Gbits/s Eth-



ernet processing. However, they focus on NIC design rather
than the host CPU communication stack. In contrast, our
work do not rely on NIC support and we examine communi-
cation rates up to 100 Gbits/s. We believe that our approach
is inline with current technology trends of using multicore
CPUs as host processors.

Previous efforts that are related to our work in terms of
the underlying platform include [20, 24]. The authors in [24]
provide a communication protocol, UNet, on top of Fast
Ethernet and ATM interconnects. Their goal is to provide
high-bandwidth, low-latency communication on top of com-
modity interconnects. They focus on data transfers and de-
scribe how they can be performed directly from user space
when the NIC provides a programmable CPU and what sup-
port is required at the kernel-level for less aggressive NICs.
The authors in [20] present a user-level, zero-copy protocol
design and implementation on top of 1 Gbit/s Ethernet, us-
ing a programmable Ethernet NIC. They achieve a minimum
latency of 23 µs and a maximum bandwidth of 880 Mbits/s,
close to our kernel-level protocol over a single 1 Gbit/s link.
In our work, our goal is not to bypass the kernel. Instead,
we are interested in eliminating the copy overheads while
crossing the user-to-kernel boundary for transparency pur-
poses.

The concept of end-to-end multi-link communication chan-
nels is similar to inverse multiplexing [8]. Inverse multiplex-
ing has previously been applied to wide area network com-
munication [4]. Moreover, this concept has been explored
in the context of cluster interconnects: Multi-rail communi-
cation tries to take advantage of spatial parallelism and has
been examined by previous work. The authors in [5] examine
rail allocation methods for multi-stage cluster interconnects.

Finally, there are recent efforts to build multi-stage inter-
connects out of Gigabit Ethernet switches and NICs. The
authors in [22] build a multi-dimensional hyper crossbar
network using multiple Gigabit Ethernet interfaces in each
node. They find that for a set of micro-benchmarks the sys-
tem delivers more than 90% of the peak throughput. This
work is orthogonal to our work in this paper as it focuses on
the impact of the multi-stage interconnect rather than the
degree of spatial parallelism.

7. CONCLUSIONS
In this work we design a parallel protocol for high-speed

communication protocols over Ethernet-based interconnects.
We examine how copies can be eliminated using page remap-
ping and how protocol processing on the receive path can
scale over multiple cores, taking advantage of current tech-
nology trends without at the same time imposing restrictions
on existing APIs and buffer management semantics. We
use a page-remapping technique that is context-independent
to reduce the number of protocol threads and related over-
heads. We also discuss and optimize synchronization issues
for parallelized protocol data structures.

We find that our page remapping results in 2-3x improve-
ment and allows reaching a maximum of about 70% of avail-
able throughput in one-way and two-way respectively. Af-
ter copy avoidance, the bottleneck is mainly receive path
processing. Interrupt processing, page remapping, packet
processing, and NIC accesses are all important to the ex-
tent that they are essential processing steps in the receive
path and cannot be eliminated. Distributing receive proto-
col processing over multiple cores and optimizing the syn-

chronization points, allows the protocol to scale to a maxi-
mum end-to-end throughput of 7.2 GBytes/s (57.6 Gbits/s
or 72% of maximum bidirectional bandwidth of 80 Gbits/s).
To our knowledge this is the highest throughput achieved
with commodity systems and transparent, kernel-level com-
munication protocols.

Overall, we believe that our approach of using multiple
NICs (and network links ) for increasing end-to-end through-
put matches well the current technology trends in building
multicore CPUs and that our protocol design is effective
for delivering high throughput through standard and well-
defined kernel-level APIs. We believe that the main issue
remaining for future work is a more detailed examination of
buffer and thread affinity issues and techniques for dynam-
ically adapting protocol behavior to deal with application
locality issues over heterogeneous multicore CPUs.
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