
Galapagos: Automatically Discovering Application-
Data Relationships in Networked Systems

Kostas Magoutis, Murthy Devarakonda, Kiran Muniswamy-Reddy
IBM T. J. Watson Research Center, Hawthorne, NY 10532

{magoutis, mdev} at US dot IBM dot COM, kiran at CS dot HARVARD dot EDU

Abstract: In large networked systems, relationships between
applications and the data that they use through multiple tiers of
middleware systems are often invisible. While the benefits of
knowing such relationships are clear from a systems management
perspective, discovery of such relationships is complicated by the
widespread adoption of virtualization technologies and the
tendency to view each middleware tier as an independent
“domain” from a systems management perspective. In this paper
we present a methodology and a system for automatic discovery
of end-to-end application-data relationships. The key to the
methodology is the modeling of data locations from which
applications use data and of how middleware systems make data
available to software layers above them.

Keywords- Component; Networked Systems, Systems
Management, Storage Management, Information Management

I. INTRODUCTION
Today large-scale applications follow a tiered architecture

and run as large and complex distributed systems consisting of
hundreds of hardware and software components [1]. Although
there are well known techniques for discovering [1][2][5] and
representing [3][4] dependencies between hardware and
software components in such systems, there is no previous
work on establishing end-to-end relationships between
applications and data that they use or vice-versa. The
knowledge of such application-data relationships has a number
of important benefits: it can be used to derive application-
driven information lifecycle management policies, improve the
accuracy of root-cause analysis in case of failures, account for
storage use on a per-application basis, and establish the desired
connectivity between servers and backend storage.

The methodology and the system, called Galapagos,
described in this paper is based on the following concepts: 1)
Data location and data “export” models of individual software
components; 2) Runtime code (mostly scripts) to extract data-
specific information from the software components; 3) A
distributed crawling algorithm that uses the models and runtime
code to collect and build the end-to-end application-data
associations.

II. GALAPAGOS OVERVIEW
The Galapagos system described in this paper is designed to

discover usage of data in a large distributed system. In other
words, it enriches basic infrastructure discovery with how data
is used by applications (e.g., business objects, tables, files, etc.)
in addition to information about data providers (e.g., enterprise

information systems, database systems, etc.). Galapagos
discovers and represents all end-to-end, multi-tier dependencies
between applications and data in an n-tiered distributed system.
Moreover, it does so in an easily extensible fashion: adding a
new (n+1th) middleware tier in an n-tiered system
automatically includes the new tier in its representation of end-
to-end relationships. Galapagos does not rely on (but can
leverage) active discovery methods; it is thus less intrusive than
systems that require them.

 Figure 1 Galapagos methodology, architecture

The Galapagos system architecture and methodology
Figure 1) is driven by two models, the System Configuration
(SC) and a set of Data Locations Templates (DLTs). The SC
model describes the IT infrastructure, in a CIM-compliant way
[3], and is provided by IT infrastructure discovery systems [4]
or manually. A DLT model describes data-specific aspects of a
software component, in particular its data locations and data
“export” characteristics. Only one DLT is required for each
software component type (e.g. one DLT for a DB2 version
9.0). An instance of a DLT is required for each application or
middleware component instance in the SC model. Each DLT is
extended to a Data Locations Instance (DLI), a superset of the
DLT), to capture installation-specific details of the system
configuration, such as references to physical or logical assets
and pointers to data. DLIs can be automatically derived from
the corresponding DLTs by discovering system configuration
information through script executions. Following creation of
the DLIs, a distributed crawling algorithm performs a traversal
of the SC model to generate end-to-end application-data
relationships. Starting at the root elements in the SC model
(applications and the data they use) and for each application
data entity, the algorithm maintains a stack that grows with
each visit to an underlying data-providing software component
in the SC model. Data entities in a stack are related through

data mappings performed by the underlying data-providing
software components. The crawling algorithm uses information
in the DLIs along the way as well as system information
discovered during the crawling process through execution of
scripts. Although the core logic of the crawling algorithm is
executed at a central location, script execution often requires
the invocation of remote management APIs. Where
management APIs cannot be remotely invoked, Galapagos
agents are required in remote administrative points to exercise
those APIs. Automatic installation of these agents (assuming
appropriate credentials) reduces intrusion to the managed
environment.

III. DLT AND DLI MODELS
DLTs are specified in terms of a meta-model, which is a

precise definition of the constructs and rules needed for
creating DLTs. The DLT meta-model, which is shown in the
UML diagram of Figure 2, describes data consumption and
transformation by a software component (application or
middleware). A DLT for a specific software component does
not contain any installation-specific information. It may,
however, contain pointers to information sources (e.g., scripts)
that can be used at a later time to discover such information.
The DLT meta-model consists of two sections: Data
Consumption and Data Transformation.

Data consumption of a software component (application or
middleware) is expressed as a list of the datasets used by the
component. Each dataset is associated with a data type and a
namespace whose format is specified in the model. Dataset lists
can be either hand-crafted by the creator of the DLT model (if
these names do not change across installations of the software
components) or can be automatically discovered through the
stated information sources. In general, the namespace format
used to describe datasets in Galapagos is:

PROVIDER : (TYPEi ; NAMEi) i

In the above naming scheme, PROVIDER points to the
software component whose DLT describes the data types
TYPE1 through TYPEi. The index i can run from one to a finite
number. A dataset name in the above format may also contain
variables which are bound at a later time to the output of
scripts, as well as wildcards (e.g., the equivalents of *, % in
UNIX).

Examples of namespace formats used in the case of (1) a
relational database, (2) a file system, (3) an enterprise
information system (e.g., SAP) are:

1. dbinstance : dbtype ;dbname / table ; tablename

2. fsinstance : (file-or-directory ; file-or-directory-name) i

3. eisinstance : repository ; rname / businessobject ; boname

Figure 2 Data Locations Template (DLT) meta-model.

The expression of data consumption is a requirement for all
types of software components, whether they are applications or
middleware systems. Middleware systems, however,
additionally require the expression of the way that they
“export” data to software in tiers above them. In Galapagos, we
refer to middleware components as data providers as they
implement and export data abstractions to tiers above them. In
addition to defining exported data types, data providers also
describe corresponding mappings between two levels of data
abstractions. In general, a data mapping between a (high-level)
data abstraction A and a (low-level) data abstraction B relates
data entities between two namespaces, and is represented in
DLT as:

PROVIDERA : (TYPEA
i ; NAMEA

i) i

 PROVIDERB : (TYPEB
i ; NAMEB

i) i

The above expression means that an instance of the high-
level data abstraction (A) maps to one or more instances of the
low-level data type (B). Details of such a mapping are
discovered by executing scripts that invoke middleware
management APIs during the crawling phase of the Galapagos
system. The expression of the data mapping and the associated
dynamic scripts are typically written by middleware developers
or experts with intimate knowledge of the particular data
mapping mechanics. This is a one-time effort for a given major
version of a middleware system, amortized over repeated uses
of it by the Galapagos system. In general, the complexity of
creating DLTs varies depending on whether the software
component represents a simple application or a more complex
middleware component. Simpler DLTs can be automatically
created by software modeling tools [8].

DLT models do not include installation-specific
information. Instead, they contain variables whose values are
discovered after software installation and stored in the Data
Locations Instance (DLI). Additional information in a DLI
includes absolute pathnames of datasets, machine names, and
other installation-specific information such as references to
instances of installed software and hardware components
described in the SC model of the distributed system.

The process of extending DLTs to DLIs uses runtime
support such as scripts to mine and extract information from
various information sources such as the operating system
registries, application server APIs and so on in a distributed
system. For example, one way to discover data consumption is
by looking at the application container that provides runtime

services (e.g., a J2EE application server or an operating
system) or application packaging and registry systems (e.g.,
J2EE .ear/.rar files, Linux RPMs, Windows registry, etc.).
Once created, DLIs are placed in a centralized repository
corresponding to a particular distributed system.

IV. APPLICATION-DATA RELATIONSHIP DISCOVERY - THE
CRAWLER ALGORITHM

The following algorithm describes the distributed discovery
process used in Galapagos. For simplicity we assume that the
lowest data abstraction of interest is a file. We also assume the
existence of Galapagos agents on administrative points in the
network. Remote procedure calls (RPC) refer to
communication with Galapagos agents.

Inputs

 System configuration (SC) model

 DLI models for applications and middleware components

Algorithm

1. For each application Ar in the SC model, consider the
datasets { Di } listed in the application’s DLI

2. For each such dataset Di, create an empty stack (associated
with the application Ar) and push Di into it

2.1 if Di is a file, record application-file relationship
(contained in the stack) and backtrack

2.2 if Di is not a file and Di has not been seen before,
visit the data provider of Di (represented by a
node P in the SC model); get a handle on the DLI
of P

• use a mapping rule in that DLI to map Di to a
list of datasets { D’j }; the rule may require
RPC to agent on remote administrative point

• for each D’j

• push D’j to the stack

• Go to step 2.1 and repeat for D’ j

2.3 if Di is not a file but Di has been seen before,
retrieve relationships between Di and files and
add them to stack, then backtrack

 Output: Application-data relationships stored in repository.

The complexity of the Galapagos discovery process is that
of depth-first search (DFS) of the SC model graph, multiplied
by the number of datasets considered. The cost of visiting each
node in the graph depends on the delay of invoking scripts that
exercise management APIs associated with the particular node
type. For example, accessing the API of a database
management system may be a slow process in certain cases. As
a result, the overall cost of the Galapagos discovery process
could be dominated by the number of such calls (i.e., related to
the number of database tables Galapagos needs to resolve).

V. PROTOTYPE AND EVALUATION
The current Galapagos prototype is implemented as a stand-

alone Java-based system consisting of the following
components (Figure 1): Converter of DLT models to DLI
models; Crawling Algorithm for discovery of application-data
relationships; User interface (UI). The SC model input to
Galapagos is provided either by infrastructure discovery
systems or composed manually after interviewing system
administrators. DLT models are either automatically produced
by modeling tools or composed manually by developers or
application experts. The overall discovery process, which
combines a full SC graph traversal with distributed system
infrastructure information, is completed when the data usage of
all applications has been drilled down and related to the lowest
level of storage hierarchy. End-to-end application-data
relationships are stored in a repository (currently a relational
database) and retrieved via SQL queries through a command-
line interface. Visual inspection of the SC model and
application-data relationships is available through an Eclipse-
based UI (Figure 3). The discovery process lasts about ten
minutes on a system configuration involving two J2EE
applications accessing a database of about a thousand tables.
Re-discovery can be triggered either periodically or each time
installation of a new application or creation of new data is
detected.

1) Impact of automation on practice of storage
administration

The automated discovery and visual representation
provided by Galapagos improves over the current state of
manual and thus time-consuming and error-prone
methodologies. Any systems administrator can testify to the
high complexity of manually identifying all data owned by an
application. Galapagos however, can automatically discover
and provide the list of all datasets (files, tables, etc.) belonging
to a particular application (Figure 3). A typical use of end-to-
end application-data relationships is in migration of
applications across IT infrastructure for the purpose of asset
consolidation. In our experimental setup, overall evaluation of
all discovered application-data relationships yielded zero “false
negatives”-- all files owned by the application and middleware
modeled were accounted for-- as well as zero “false positives.”

Similarly, Galapagos simplifies the process of identifying
the ownership of a dataset. For example, consider the file
C:\DB2\NODE0000\SQL00002\SQLT0002.0\SQL00002.DAT
stored on a particular computer system. Given the heavily
encoded name of the file, it is evident that manual
identification even by experts in system administration is
difficult and error-prone. A query at the Galapagos repository
reveals that the file is managed by DB2, it is part of a table
(whose name is QUOTEEJB), and is mapped to a particular
J2EE application (Trade3).

2) Challenges
 The accuracy and efficiency of the Galapagos approach

depends on several factors. First, an important issue is the
creation of DLTs for software components, as well as the
accuracy and completeness of these models. A DLT that does
not fully describe all uses and transformations of data by a
software component, will cause some application-data

relationships to be missed by the discovery process (“false
negatives”). DLT models are easier to create, manually or
automatically, in the case of execution environments with well-
defined installation and data-access interfaces, such as J2EE,
SAP, etc. Discovery of data use is harder in less structured
application containers. Particularly challenging cases include
unstructured applications running “bare-bone” on standard
operating systems and placing data in shared directories (e.g.,
/tmp), shared libraries (e.g., in windows\dll), and so on. Such
data use however, will have to be discovered for creating the
corresponding DLI model, e.g., by looking at the relevant
installation logs.

Figure 3 Snapshot from Eclipse-based Galapagos UI.
Graph depicts SC model, highlighted datasets in the data
view belong to a particular application.

Another important challenge is the speed at which
Galapagos adapts to new state being created in the distributed
system. Examples of new state are the installation of new
applications or middleware, the creation of new data by
existing applications, etc. Two possible choices are to
periodically re-start the discovery process, or when possible,
initiate it in response to a notification of a change (new
application installed, new data created, etc.) in the system.

Finally, the fine level of data granularity examined by
Galapagos (e.g., files) raises scalability issues. The use of
summarization of filenames (mapping all files with the same
ownership under a given directory to the pathname of that
directory) is one way to address these issues. For example, all
files under C:\Program Files\DB2\SQLLIB\ belong to DB2 and
thus need not occupy more than a single row in the Galapagos
repository.

VI. RELATED WORK
Previous studies of discovering dependencies between

distributed systems tiers using online system monitoring of
network traffic and statistical heuristics [1] are potentially
applicable to discovering application-data relationships.
However, such systems generally have several drawbacks: (a)
being based purely on heuristic rules, they cannot eliminate the
possibility of missing some application-data relationships
(“false negatives”); (b) they can not be generalized easily to
multi-tiered distributed systems. We believe however, that a

heuristic approach is useful (particularly when modeling
information is not available) and is thus complementary to the
approach described in this paper.

Various systems have investigated building distributed
system dependency graphs using passive (e.g., trace collection
and offline analysis [1]) or active (e.g., fault injection [5])
methods. Some of the uses of a dependency graph include
problem determination, performance analysis, and
visualization. Galapagos relates to these approaches in that it
also focuses on discovering dependency information; however,
it differs in that it expresses dependency specifically as it
relates to applications’ use of data, which has a finer grain
scope than dependency between software components. Systems
tracing the provenance of data [6][7] are also related to our
work in that they establish a history of changes to data, and the
history may include the applications that made the changes.
However, the provenance concept is evolving and distributed
multi-tiered systems are way beyond the scope of present
provenance prototypes.

VII. SUMMARY
In this paper we presented a novel approach to

automatically discovering application-data relationships in
multi-tiered distributed systems, based on modeling the
consumption and transformation of data by software
components. We showed that our models are general enough to
encompass a wide range of middleware systems and
applications. Intellectual energy is invested once (typically by
the application developers) to create these models and then the
models are used again and again (in every instance of the
application deployment) to leverage the investment. We
described a distributed crawling algorithm that uses the model
information to automatically construct application-data
relationships.

REFERENCES
[1] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, A. Muthitacharoen,

“Performance Debugging for Distributed Systems of Black Boxes”,
in Proc. of the 19th ACM Symposium on Operating Systems Principles
(SOSP 2003), Lake George, NY, October 2003.

[2] V. Machiraju, M. Dekhil, K. Wurster, J. Holland, M. Griss, P. Garg,
“Towards Generic Application Auto-Discovery”, HP Labs Technical
Report 1999-80.

[3] Common Information Model (CIM), Data Management Task Force
(DMTF), http://www.dmtf.org/standards/cim/

[4] Configuration Management Database (CMDB), IT Infrastructure Library
(ITIL), http://www.infra.com.au/Solutions/ConfigurationMgnt.asp

[5] A. Brown, G. Kar, A. Keller, “An Active Approach to Characterizing
Dynamic Dependencies for Problem Determination in a Distributed
Environment”, in Proc. of the Seventh IFIP/IEEE International
Symposium on Integrated Network Management (IM 2001), Seattle,
WA, May 2001.

[6] K. Muniswamy-Reddy, D. Holland, U. Braun, M. Seltzer, “Provenance-
Aware Storage Systems”, in Proc. of the 2006 USENIX Annual
Technical Conference, Boston, MA, June 2006.

[7] P. Groth, M. Luck, L. Moreau, “A Protocol for Recording Provenance in
Service-Oriented Grids”, in Proc. 8th Int. Conf. on Principles of
Distributed Systems, December 2004, Grenoble, France.

[8] IBM Rational; Unified Modeling Language, http://www-
306.ibm.com/software/rational/uml/

http://www.cs.rochester.edu/sosp2003/
http://www.cs.rochester.edu/sosp2003/
http://www-306.ibm.com/software/rational/uml/
http://www-306.ibm.com/software/rational/uml/

	I. Introduction
	II. Galapagos OverView
	III. DLT and DLI models
	IV. Application-Data Relationship Discovery - the Crawler Algorithm
	V. Prototype and evaluation
	1) Impact of automation on practice of storage administration
	2) Challenges

	VI. Related Work
	VII. Summary
	References

