Design And Implementation of a Direct Access File System
(DAFS) Kernel Server for FreeBSD!

Kostas Magoutis
Division of Engineering and Applied Sciences, Harvard University
magoutis@eecs.harvard.edu

Abstract

The Direct Access File System (DAFS) is an
emerging commercial standard for network-attached
storage on server cluster interconnects. The DAFS
architecture and protocol leverage network interface
controller (NIC) support for user-level networking,
remote direct memory access, efficient event noti-
fication, and reliable communication. This paper
describes the design of the first implementation of
a DAFS kernel server for FreeBSD, using existing
interfaces with minor kernel modifications. We ex-
perimentally demonstrate that the current server
structure can attain read throughput of more than
100 MB/s over a 1.25 Gb/s network even for small
(i.e. 4K) block sizes when prefetching using an
asynchronous client API. To reduce multithreading
overhead and integrate the NIC with the host vir-
tual memory system, our forthcoming system will
incorporate new FreeBSD kernel support for asyn-
chronous vnode 1/0 interfaces, integrating network
and disk event notification and handling, and VM
support for remote direct memory access. We be-
lieve our proposed kernel support is necessary to
scale event-driven file servers to multi-gigabit net-
work speeds.

1 Introduction

The emergence of network transports enabling
low-overhead access to the network interface from
user or kernel address space, remote direct memory
access (RDMA), transport protocol offloading, and
hardware support for event notification and deliv-
ery, has given rise to new applications and services
that take advantage of these capabilities. The Di-
rect Access File System [6] (DAFS) is a new com-
mercial standard for file access over this new class
of networks. DAFS grew out of the DAFS Collab-

T Appears in proceedings of USENIX BSDCon 2002 Con-
ference, San Franscisco, CA, February 11-14, 2002.

orative, an industrial and academic consortium led
by Network Appliance and Intel. DAFS file clients
are usually applications that link with user-level li-
braries that implement the file access API. DAFS
file servers are implemented in the kernel.

This paper describes the first implementation
of a DAFS kernel server for FreeBSD. It is also as far
as we know the first implementation in any general-
purpose, demand-paged operating system. Section
2 summarizes the characteristics of network trans-
ports DAFS is designed to work with. Section 3.1
describes our prototype DAFS implementation us-
ing existing kernel interfaces. Section 3.2 introduces
Optimistic DAFS, a new design we propose with
potentially better performance but requiring addi-
tional kernel support. Section 4 outlines the kernel
structure issues one is faced with in order to effi-
ciently support DAFS kernel servers in FreeBSD.
These include the need for asynchronous vnode in-
terfaces to map and lock file pages in the buffer
cache, integrating network and disk I/O event de-
livery, virtual memory support for network inter-
face controller (NIC) memory management hard-
ware, the need to revisit buffer cache locking as-
sumptions, and a new BSD device driver model.
Section 5 presents the performance of the current
DAFS kernel prototype implementation and Sec-
tion 6 summarizes our conclusions.

2 Memory-to-Memory Transports

DAFS [6] is a file access protocol specifica-
tion deriving from NFS version 4 [22]. It is tai-
lored for network transports (often referred to as
memory-to-memory networks) providing user-level
access to the network interface, remote direct mem-
ory access, efficient asynchronous event delivery
mechanisms, and reliable communication seman-
tics. Examples of memory-to-memory transports
are Virtual Interface (VI) [5] and InfiniBand [11].
Current commercially available memory-to-memory

network intercace have a long research heritage be-
hind them [4, 23, 15]. The potential of advanced
memory management features has also been consid-
ered [21, 24].

In this section we describe the characteristics
of commercially available memory-to-memory net-
works that are relevant to a DAFS kernel server im-
plementation.

Remote direct memory access (RDMA).
Memory-to-memory networks are capable of data
transfer between virtually addressed buffers in user
process or kernel address space over the network.
Hosts have to register virtual address mappings of
buffers with the NIC prior to RDMA but are not
involved in the actual data transfer. The program-
ming interface to RDMA (except for buffer registra-
tion which is handled by the device driver) is usually
through access to a memory-mapped data structure
of transfer descriptors. Read, write (and sometimes
atomic) remote memory access is allowed.

Registration of memory buffers with the
NIC. The NIC includes a memory management
unit in order to translate host virtual addresses to
physical (bus) addresses to use in setting up DMA
transfers. Most current commercially available NIC
do not handle translation miss faults. The host
needs to register (i.e. fill in mappings) with the NIC
for all virtual memory regions the NIC is expected
to access.

VM pages that have their mappings registered
with the NIC have to be prevented from pageout at
least while RDMA with them is in progress. Kernel
interfaces that lock pages for the duration of an 1/0O
suffice to prevent pageout when RDMA is locally
initiated. With remotely initiated RDMA transfers
that may happen at any time (as described in Sec-
tion 3.2), only the NIC knows exactly when these
transfers take place. To avoid excessive page locking
by the host CPU, the NIC should have the ability to
trigger or carry out page locking when needed. Sup-
port for integrating the NIC with the VM system is
described in Section 4.3. Such support will enable
a server to export large buffers (i.e. the entire VM
cache) without underutilizing physical memory.

Efficient asynchronous event delivery mecha-
nism. Memory-to-memory networks offer the com-
pletion group abstraction for scalable event notifica-
tion and delivery. Completion groups simplify the
task of simultaneously polling a large set of connec-
tions by aggregating their event notification and de-

disk I/O.—driven Block
state diagram on
bread

bio—done
bp’s locked
Data not in cache
Process
request
recv—done Data in cache,
Request queued start RDMA

send-done
network I/O—driven

state diagram bp’s released

Figure 1: Event-Driven DAFS Server. Blocking
is possible with existing interfaces.

livery into a single structure. Events such as receipt
of a client request, or completion of a data transfer,
can be efficiently detected and handled.

Connection-oriented and reliable transport.
Data transfer is usually over peer-to-peer trans-
port connections (or channels). Reliable, exactly-
once transport semantics are expected to be offered.
Such semantics are usually implemented with hard-
ware support in the network (as in the case of Fi-
bre Channel [3]) or with end-to-end protocols im-
plemented on the NIC (as in the case of VI/IP [9]).
In either case, the host is not involved.

3 Direct Access File Systems

Direct access file systems are providing net-
work file service over memory-to-memory trans-
ports. Section 3.1 introduces DAFS [6], an emerging
commercial standard, and describes its prototype
server implementation for FreeBSD. Section 3.2 in-
troduces Optimistic DAF'S, an improved design that
relies more on RDMA and less on RPC for commu-
nication but requires special kernel support, partic-
ularly in the virtual memory subsystem.

3.1 DAFS

DAFS clients use lightweight RPC to commu-
nicate file requests to servers. In direct read or write
operations the client provides virtual addresses of its
source or target memory buffers and data transfer
is done using RDMA operations. RDMA operations
are always issued by the server. In this paper we fo-
cus on server structure and I/O performance.

3.1.1 Server Design and Implementation

This section describes our current DAF'S server
design and implementation using existing FreeBSD
kernel interfaces with minor kernel modifications.
Our prototype DAFS kernel server follows the event-
driven state transition diagram of Figure 1. Events
are shown in boldface letters. The arrow under an
event points to the action taken when the event oc-
curs. The main events triggering state transitions
are recv-done (a client-initiated transfer is done),
send-done (a server-initiated transfer is done) and
bio-done (a block I/O request from disk is done).
Important design characteristics of the DAF'S server
in the current implementation are:

1. The server uses the buffer cache interface to do
disk I/O (i.e. bread(), bwrite(), etc.). This is
a zero-copy interface that can be used to lock
buffers (pages and their mappings) for the du-
ration of an RDMA transfer. RDMA transfers
take place directly from or to the buffer cache.

2. RDMA transfers are initiated in the context of
RPC handlers but proceed asynchronously. It
is possible that an RDMA completes long after
the RPC that initiated it has exited. Buffers in-
volved in RDMA need to remain locked for the
duration of the transfer. RDMA completion
event handlers unlock those buffers and send
an RPC reply if needed.

3. The kernel buffer cache manager is modified
to register/deregister buffer mappings with the
NIC on-the-fly, as physical pages are added or
removed from buffers. This ensures that the
NIC never takes translation miss faults and
pages are wired only for the duration of the
RDMA.

Each of the network and disk events has a cor-
responding event handler that executes in the con-
text of a kernel thread.

1. recv-done is raised by the NIC and triggers pro-
cessing of an incoming RPC request. For ex-
ample, in the case of read or write operations
the handler may initiate block I/O with the
file system using bread(). After data is locked
in buffers (hereafter referred to as bp’s) in the
buffer cache, RDMA is initiated and the bp’s
remain locked for the duration of the transfer.

2. send-done is raised by the NIC to notify of
completion of a server-initiated (read or write)
RDMA operation. The handler releases locks
(using brelse()) on bp’s involved in the transfer
and sends out an RPC response.

3. bio-done is raised by the disk controller and
wakes up a thread that was blocking on disk
I/0O previously initiated by bread(). This event
is currently handled by the kernel buffer cache
manager in biodone().

The server forks multiple threads to create con-
currency in order to deal with blocking conditions.
Kernel threads are created using an internal rfork()
operation. One of the threads is responsible for lis-
tening for new transport connections while the rest
are workers involved in data transfer. All trans-
port connections are bound to the same completion
group. Message arrivals on any transport connec-
tion generate recv-done interrupts which are routed
to a single interrupt handler associated with the
completion group. When the handler is invoked, it
queues the incoming RPC request, notes the trans-
port that was the source of the interrupt, and wakes
up a worker thread to start processing. After pars-
ing the request, a thread locks the necessary file
pages in the buffer cache using bread(), prepares
the RDMA descriptors and issues the RDMA op-
erations. The RPC does not wait for RDMA com-
pletion. A later send-done interrupt (or success-
full poll) on a completed RDMA transfer descrip-
tor starts clean up and release of resources that
the transfer was tying up (i.e. bp locks held on file
buffers for the duration of the transfer), and sends
out the RPC response. Threads blocking on those
resources are awakened.

Event-driven design requires that event han-
dlers be quick and not block between events. Our
current server design deviates from this requirement
due to the possibility of blocking under certain con-
ditions:

1. Need to wait on disk I/O initiated by bread().
It is possible to avoid using the blocking bread()
interface by initiating asynchronous I/O with

the disk using getblk() followed by strategy().
We opted against this solution in our early de-
sign since disk event delivery is currently dis-
joint from network event delivery, complicating
event handling. Integrating network and disk
I/O event delivery in the kernel is discussed in
Sections 4.1 and 4.2.

2. Locking a bp twice by the same kernel thread
or releasing a bp from a thread other than the
lock owner causes a kernel panic (Section 4.4).
Solutions are to (a) defer any request processing
by a thread while past transfers it issued are
still in progress, to ensure that a bp is always
released by the lock owner and a thread never
locks the same bp twice, or (b) modify the buffer
cache so that these conditions no longer cause
a kernel panic. To avoid wider kernel changes
in the current implementation, we do (a). (b)
is addressed in Section 4.4.

An important concern when designing an
RDMA-based server is to minimize response latency
for short transfers and maximize throughput for
long transfers. In the current design, notification
of incoming messages is done via interrupts and no-
tification of server-initiated transfer completions via
polling. Short transfers using RDMA are expected
to complete within the context of their RPC request.
In this way, the RPC response immediately follows
RDMA completion, minimizing latency. Through-
put is maximized for longer transfers by pipelin-
ing them as their RDMA operations can be con-
currently progressing.

The low cost of DAFS RPC, the efficient event
notification and delivery mechanism, and the ab-
sence of copies due to RDMA help towards low re-
sponse latency. Maximum throughput is achievable
even for small block sizes (as shown in Section 5) as-
suming the client is throwing requests at the server
at a sufficiently high rate (i.e. doing prefetching
using asynchronous I/O). The DAFS kernel server
presently runs over the Emulex cLAN [8] and GN
9000 VI/IP [9] transports and is currently being
ported to Mellanox InfiniBand [10].

3.2 Optimistic DAFS

In DAFS direct read and write operations, the
client always uses an RPC to communicate the
file access request along with memory references to
client buffers that will be the source or target of
a server-issued RDMA transfer. The cost associ-
ated with always having to do a file access RPC is

manifested as unnecessarily high latency for small
accesses from server memory. A way to reduce this
latency is to allow clients to access the server file
and VM cache directly rather than having to go
each time through the server vnode interface via a
file access RPC.

Optimistic DAFS [14] improves on the exist-
ing DAFS specification by reducing the number of
file access RPC operations needed to initiate file
I/0 and replacing them with memory accesses using
client-issued RDMA. Memory references to server
buffers are given out to clients or other servers that
maintain cache directories, and they are allowed to
use those references to directly issue RDMA oper-
ations with server memory. To build cache direc-
tories, the server returns to the client a description
of buffer locations in its VM cache (we assume a
unified VM and file cache, as in FreeBSD). These
buffer descriptions are returned either as a response
to specific queries (i.e. client asks: “give me the
locations of all your resident pages associated with
file foo”), or piggybacked in the response to a read
or write request (i.e. server responds: “here’s the
data you asked for, and by the way, these are their
memory locations that you can directly use in the
future”).

In Optimistic DAF'S, clients use remote mem-
ory references found in their cache directories but
accesses succeed only when directory entries have
not become stale, for example as a result of actions
of the server pageout daemon. There is no explicit
notification to invalidate remote memory references
previously given out on the network. Instead, re-
mote memory access exceptions [14] thrown by the
target NIC and caught by the initiator NIC can be
used to discover invalid references and switch to the
slower access path using file access RPC.

Maintaining the NIC memory management
unit in the case where RDMA can be remotely ini-
tiated by a client at any time is tricky and needs
special NIC and OS support. Section 4.3 describes
the design of our forthcoming implementation that
views the NIC as another processor in an asymmet-
ric multiprocessor system and is based on the fol-
lowing design choices:

1. To make sure that exported pages have valid
NIC mappings for as long as they are resident
in physical memory and that these mappings
are invalidated when pages are swaped to disk,
paging activity on-the-fly adds or invalidates
NIC mappings.

2. Being able to initiate DMA to and from main

memory, the NIC (or the driver, in the absence
of NIC support) has to synchronize and inte-
grate with the VM system. To do that, it has
to be able to manipulate lock, reference, and
dirty bits of vm_pages in main memory.

3. To manage NIC mappings in servers with enor-
mous physical memory sizes, the NIC address
translation table is viewed as a cache of transla-
tions (i.e. a TLB). Translation misses are han-
dled by the NIC (or the driver, in the absence of
NIC support) and require access to page tables
in main memory.

Previous research [21, 24] has looked at memory
management of network interfaces but has not fo-
cused on kernel modifications or virtual memory
system support. In Section 4.3 we address such
support for the FreeBSD VM system. Finally, Op-
timistic DAFS requires maintainance of a directory
on file clients (in user-space) and on other servers
(in the kernel).

4 Kernel Support for DAFS Servers

Special capabilities and requirements of net-
working transports used by DAFS servers expose a
number of kernel design and structure issues. In
general, a DAFS file server needs to be able to

1. Do asynchronous file I/O

2. Integrate network and disk I/O event delivery
3. Lock file buffers while RDMA is in progress
4. Avoid memory copies

In what follows we describe our proposals for new
kernel support in the FreeBSD kernel. Work on im-
plementing these proposals is currently in progress.
Section 4.1 argues for kernel asynchronous file 1/0
interfaces presently lacking in FreeBSD, and inte-
grating network and file event notification and de-
livery. Section 4.2 presents a wnode interface de-
signed to address these needs. Section 4.3 exam-
ines kernel support for memory management of the
asymmetric multiprocessor system that consists of
the NIC and the host CPU. Finally, Section 4.4 ar-
gues for modifications to buffer cache locking and
Section 4.5 outlines device driver requirements of
memory-to-memory NIC.

4.1 Event-Driven Design Support

An area of considerable interest in recent
years [2, 18, 19] has been that of event-driven appli-
cation design. Event-driven servers avoid much of
the overhead associated with multithreaded designs
but require truly asynchronous interfaces coupled
with efficient event notification and delivery mech-
anisms integrating all types of events. The DAFS
server requires such support in the kernel.

FreeBSD presently lacks an internal asyn-
chronous interface to the buffer cache although it
does provide an asynchronous I/O (AIO) system
call API. AIO is an implementation of the POSIX
1003.1B standard and can be found in other systems
such as Solaris [16]. It is implemented as a mul-
tithreaded interface to the filesystem over regular
files, or using asynchronous device I/O over device-
special files. The latter mechanism is more efficient
as it avoids overhead associated with multithread-
ing but can only be used for applications using raw
device access, such as relational databases.

To integrate disk events with memory-to-
memory NIC event handling, a generalization of
the network-specific completion group abstraction
is needed. Events from network and disk sources
can be uniformly handled using kqueue [13], a re-
cently introduced FreeBSD kernel abstraction for
scalable event handling. Kqueue can be used to ag-
gregate event sources such as a) completed network
I/O, b) completed disk I/O, and ¢) process syn-
chronization signals. A kqueue structure can han-
dle all event types a DAFS server is interested in.
Posting asynchronous operations requires register-
ing kevents with the kqueue. Network and disk event
handlers notify the server kqueue using appropriate
event filters (i.e. EVFILT_KAIO for disk, and EV-
FILT_RDMA for network events). Notification can
either be via polling (using kqueue_scan()) or, with a
minor addition to the kqueue implementation, via a
direct or delayed kernel upcall to a handler routine.

4.2 Vnode Interface Support

Vnode/VFES is a kernel interface that separates
generic filesystem operations from specific filesys-
tem implementations [20]. It was conceived to pro-
vide applications with transparent access to ker-
nel filesystems, including network filesystem clients
such as NFS. The vnode/VFS interface consists of
two parts: VFS defines the operations that can
be done on a filesystem. Vnode defines the oper-
ations that can be done on a file within a filesys-

Table 1: Vnode ops (Sandberg et al.[20]).

Vnode operation Description

VOP_ACCESS Check access permission
VOP_BMAP Map block number
VOP_BREAD Read a block
VOP_BRELSE Release a block buffer
VOP_CLOSE Mark file closed
VOP_CREATE Create a file
VOP_FSYNC Flush dirty blocks of a file

Return file attributes
Mark vnode inactive

VOP_GETATTR
VOP_INACTIVE

VOP_IOCTL Do I/O control operation
VOP_LINK Link to a file
VOP_LOOKUP Lookup file name
VOP_MKDIR Create a directory
VOP_OPEN Mark file open
VOP_RDWR Read or write a file
VOP_REMOVE Remove a file

VOP_READLINK
VOP_RENAME
VOP_READDIR
VOP_RMDIR
VOP_STRATEGY
VOP_SYMLINK
VOP_SELECT
VOP_SETATTR
VOP_GETPAGES
VOP_PUTPAGES

Read symbolic link

Rename a file

Read directory entries
Remove directory
Read/write fs blocks

Create symbolic link

Do select

Set file attributes

Read and map pages in VM
Write mapped pages to disk

tem. Table 1 lists the vnode operations originally
defined [20] to support NFS along with a number of
local filesystems as well as later additions introduced
into BSD systems with a unified file and VM cache
to transfer data directly between the VM cache and
the disk.

Existing wnode I/O interfaces are all syn-
chronous. VOP_READ and VOP_WRITE take
as an argument a struct uio buffer description
and have copy semantics. VOP_GETPAGES and
VOP_PUTPAGES are zero-copy interfaces transfer-
ing data directly between the VM cache and the
disk. VM pages returned from VOP_GETPAGES
need to be explicitly wired in physical memory
to be used for device I/O. An interface for stag-
ing I/O should be designed to return buffers in a
locked state. We believe that a wnode interface
modeled after the low-level buffer cache interface
with new support for asynchronous operation natu-
rally fits the requirements of a DAFS server as out-

lined earlier. Such an asynchronous interface is eas-
ier to implement than an asynchronous version of
VOP_GETPAGES, VOP_PUTPAGES, while being
functionally equivalent to it in FreeBSD’s unified
VM and buffer cache.

Central to this new interface (summarized in
Table 2) is a VOP_AREAD call which can be used
to issue disk read requests and return without block-
ing. VOP_AREAD internally uses a new aread()
buffer cache interface (described below) integrated
with the kqueue mechanism. It takes as one of its ar-
guments an asynchronous I/O control block (kaiocb)
used to keep track of progress of the request.

aread(struct vnode *uvp, struct kaioch *cb)
{
derive block I/O request from cb;
bp = getblk(vp, block request);
if (bp not found in the buffer cache) {
register kevent using EVFILT_KAIO;
register kato_biodone handler with bp;
VOP_STRATEGY (vp, bp);

}

On completion of a request issued by aread(),
the data is in a bp, in a locked state, and
kaio_biodone() is called to deliver the event:

kaio_biodone(struct buf *bp)
{
get kaioch from bp;
deliver event to knote in klist of kaiocb;

}

To unlock buffers and update filesystem state
if necessary, VOP_BRELSE is used. Local filesys-
tems would implement the interface of Table 2 in
order to be efficiently exported by a DAFS server.
For lack of this or another suitable interface, a lo-
cal filesystem could always be exported by a DAFS
server using existing interfaces, albeit with higher
overhead mainly due to multithreading.

Network event delivery can be integrated with
that of disk I/O as described earlier through the
kevent mechanism. Each time an RDMA descrip-
tor is issued, a kevent is registered using the EV-
FILT_RDMA filter and recorded in the completion
group (CG) structure. Completion group handlers
need to deal with kqueue event delivery:

send_event(CG *cq, Transport *vi)

{
}

deliver event to knote in klist of CG,

Table 2: Vnode Interface to Buffer Cache.

Vnode operation Description

VOP_BREAD Lock all buffers needed for
I/0; read from wvp.

VOP_AREAD Lock all buffers needed for

I/O; read from wp; don’t
block .

Mark dirty entries; delayed
write to vp; update state if
requested.

Block writing to vp; update
state if requested.

Mark dirty entries; async
write to vp; update state if
requested.

Unlock buffers; update file
state if requested.

VOP_BDWRITE

VOP_BWRITE

VOP_BAWRITE

VOP_BRELSE

The DAFS server is notified of new events by
periodically polling the kqueue. Alternatively, a
common handler is invoked each time a network or
disk event occurs.

We illustrate the use of the proposed vnode in-
terface to the buffer cache by breaking down and
describing the steps in read and write operations
implemented by a DAFS server. For comparison
with existing interfaces, we describe the same steps
implemented by NFS. Without loss of generality we
assume an FFS underlying filesystem at the server.

Read. With DAFS, a client (direct) read request
carries the remote memory address of the client
buffers. The DAFS server issues a VOP_AREAD
to read and lock all necessary file blocks in the
buffer cache. VOP_AREAD starts disk operations
and returns without blocking, after registering with
kqueue. When pages are resident and locked and the
server notified via kqueue, it issues RDMA Write
operations to client memory for all requested file
blocks. When the transfers are done, the server does
VOP_BRELSE to unlock the file buffer cache blocks.

With NFS, on a client read operation the server
issues a VOP_READ to the underlying filesystem
with a uio parameter pointing to a gather/scatter
list of mbufs that will eventually form the response
to the read request RPC. In the FFS implementa-
tion of VOP_READ and without applying any opti-
mizations, a loop reads and locks file blocks into the

buffer cache using bread(), subsequently copying the
data into the mbufs pointed to by uio. For page-
aligned, page-sized buffers, page-flipping techniques
can be applied to save the copy into the mbufs.

Write. With DAFS, a client (direct) write re-
quest carries only client memory addresses of data
buffers. The DAFS server uses VOP_AREAD
to read and lock in the buffer cache all nec-
essary file blocks. When pages are resident
and locked, it issues RDMA Read requests to
fetch the data from the client buffers directly
into the buffer cache blocks. When the transfer
is done, the server uses one of VOP_BWRITE,
VOP_BDWRITE, VOP_BAWRITE, depending on
whether this is a stable write request or not, to issue
a disk write I/O and unlock the buffers. Addition-
ally, a metadata update is effected if requested.

With NFS, a client write operation carries the
data to be written inline with the RPC request. The
NFS server prepares a uio with a gather/scatter
list of all the data mbufs and calls VOP_WRITE.
Apart from the uio parameter that describes the
transfer, an ioflags parameter is passed signify-
ing whether the write to disk should happen syn-
chronously. With NFS version 2 all writes and meta-
data updates are synchronous. NF'S versions 3 and
4 allow asynchronous writes. In the FFS implemen-
tation of VOP_WRITE, a loop reads and locks the
file blocks to be written into the buffer cache us-
ing bread(), copies into them the data described by
uio, then uses one of bwrite (synchronous), bdwrite
(delayed), or bawrite (asynchronous) writes depend-
ing on whether this is a stable write request (see
ioflags) or not. Finally, a metadata update is ef-
fected if requested.

An interesting note on the ability of the DAFS
server to implement file writes using RDMA Read
(instead of client-initiated RPC or RDMA Write) is
that this enables it to read data from client memory
no faster than dirty buffers can be written to disk.
This bandwidth matching capability becomes very
important in multi-gigabit networks when network
bandwidth is often greater than disk bandwidth.

4.3 VM System Support

In systems deriving from 4.4BSD [17], main-
taing virtual/physical address mappings and page
access rights used by the main CPU memory-
management hardware is done by the machine-
dependent physical mapping (pmap) module. Low
level machine-independent kernel code such as the

TLB [v]Acc
v|Acc

PhysPage [~
PhysPage [©

3
mi V][ACC|PhysPage ‘-'i
1S
CPU 5
=
|
|
TPT [W |Ptag|PhysPage é
;= | W | Ptag | PhysPage 5
9
g : <o
g
T
mi LW ‘Ptag‘PhysPage <
NIC

vm_page
PG_RDMA
0]

pv_entry
PG_RDMA

oot 1

pv_entry

Figure 2: CPU and NIC Memory Management Hardware.

buffer cache, kernel malloc and the rest of the VM
system are using pmap to add or remove address
mappings and alter page access rights. Symmetric
multiprocessor (SMP) systems sharing main mem-
ory can use a single pmap module as long as transla-
tion lookaside buffers (TLB) on each CPU are kept
consistent. Pmap operations apply to page tables
shared by all CPU. TLB miss exceptions thrown by
a CPU result in a lookup for mappings in the shared
page tables. Invalidations of mappings are applied
to all CPU.

Memory-to-memory NIC store virtual-to-
physical address translations and access rights for all
user and kernel memory regions directly addressable
and accessible by the NIC. Figure 2 shows a system
combining both CPU and NIC memory manage-
ment hardware: Main CPU use their on-chip trans-
lation lookaside buffer (TLB) to translate virtual
to physical addresses. A typical TLB page entry
includes a number of bits such as V and ACC sig-
nifying whether the page translation is valid, and
what the access rights to the page are, along with
the physical page number. A miss on a TLB lookup
requires a page table lookup in main memory.

NIC on the PCI (or other I/O) bus have
their own translation and protection (TPT) [5] ta-
bles. Each entry in the TPT includes bits enabling
RDMA Read or Write (i.e. the W bit in the di-
agram) operations on the page, the physical page
number, and a Ptag value identifying the process
that owns the pages (or the kernel). Whereas the

TLB is a high-speed associative memory, the TPT
is usually implemented as a DRAM module on the
NIC board. To accelerate lookups on the TPT, re-
mote memory access requests carry a Handle index
that helps the NIC find the right TPT entry.

This section focuses on operating system sup-
port to integrate NIC memory management units in
the FreeBSD VM system. The main benefits of this
integration are

1. VM pages exported for RDMA are wired in
physical memory only for as long as RDMA
transfers from or to them are in progress, re-
sulting in better utilization of physical memory.

2. The entire VM cache (i.e. potentially all file
VM objects) can be safely exported in the face
of paging activity.

We consider the NIC as a processor (with spe-
cial I/O capabilities [12]) in the asymmetric mul-
tiprocessor system of Figure 2 and allow sharing of
kernel VM structures in main memory between NIC
and main processors. We assume that access to VM
structures on behalf of the NIC is done by the CPU,
executing driver handlers in response to interrupts.
Direct access by the NIC to VM structures in main
memory is considered later in this section.

In FreeBSD (and other systems deriving from
44BSD), a physical page is represented by a
vm_page structure and an address space by a vm_map
structure. A page may be mapped on one or

Table 3: Low-level NIC VM primitives.

Function
tpt_init()
tpt_enter()
tpt_remove()
tpt_protect()

Description
Initialize

Insert mapping
Remove mapping
Protect mapping

more vm-maps with each mapping represented by a
pv-entry structure. Figure 2 shows a vm_page with
two associated pv_entry structures in main mem-
ory.

In our design, the VM system maintains the
NIC MMU via the OS-NIC interface. The NIC ac-
cesses VM structures via the NIC-OS interface.

OS-NIC Interface. The OS needs to interact with
the NIC to add, remove and modify VM mappings
stored on its TPT. A mapping of a VM page ex-
pected to be used in RDMA has to be registered
with the NIC. Registering the mapping with the
NIC happens in pmap, right after the CPU map-
ping with a vm_map is established. The NIC exports
low-level VM primitives (Table 3) for use by pmap
to add, remove and modify TPT entries. NIC map-
pings may later be deregistered (when the original
mapping is removed /invalidated), or have their pro-
tection changed.

To keep an account of VM mappings that have
been registered with the NIC, we add a PG.RDMA
bit in the pv_entry structure to be set whenever a
pv-entry has a NIC as well as a CPU mapping. In
Figure 2, the pv_entry with the PG_RDMA bit set
has both a CPU and a NIC mapping. In all pmap
operations on VM pages, the pmap module interacts
with the NIC only if the PG_.RDMA flag is set on
the pv_entry.

Higher-level code can trigger registration of a
virtual memory region with the NIC by propagat-
ing appropriate flags from higher to lower-level in-
terfaces and eventually to the pmap. For exam-
ple, the DAFS server sets an IO_RDMA bit in the
ioflags parameter of the vnode interface (Table 2)
when planning to use the buffer for RDMA. This
eventually translates into a VM_RDMA flag in the
pmap_enter() interface that results in mappings be-
ing registered with the NIC.

A problem with invalidating pv_entry map-
pings that have also been registered with the NIC

Table 4: VM interface used by the NIC.

Function
vm_page_io_start()
vm_page_io_finish()
vm_nic_fault()
vm_page_reference()
vm_page_dirty()

Description
Lock page
Unlock page
Handle NIC fault
Reference page
Dirty page

is that NIC invalidations may need to be delayed
for as long as RDMA transfers using the mappings
are in progress. Pmap_remove_all() is complicated
by this fact as (for atomicity) it has to try to re-
move pv_entry structures with NIC mappings first
and may eventually fail if NIC invalidations are not
possible within a reasonable amount of time.

Another problem is with VM system policies
that are often based on architectural assumptions
that do not hold with NIC characteristics. For ex-
ample, the FreeBSD VM system unmaps pages from
process page tables when moving them from an ac-
tive to inactive or cached state. This is because
the VM system is willing to take a reasonable num-
ber of reactivation faults to determine how active a
page actually is, based on the assumption that re-
activation faults are relatively inexpensive [7]. NIC
reactivation faults are significantly more expensive
compared to CPU faults due to lack of integration
between the NIC and the host memory system. To
reduce that cost, it would make sense to apply the
deactivation policy only to CPU mappings, leaving
NIC mappings intact for as long as VM pages are
memory resident. However, full integration of the
NIC memory management unit into the VM system
argues for this policy to be equally applied to NIC
page accesses.

NIC-OS Interface. The NIC initiates interaction
with the VM system in the following occasions using
the interface of Table 4.

1. The NIC can be the initiator of DMA from
or to VM pages in main memory for incom-
ing RDMA Read or Write requests, and thus
has to be able to lock (busy) VM pages for the
duration of the transfer. The interface is sim-
ilar to the kernel interface used to busy pages
during pagein or pageout activity.

2. On a translation miss, the NIC needs to do a
page table lookup for the missed virtual ad-

dress. A new translation is loaded in the NIC
TPT if the page is found to be resident in mem-
ory. If not, pagein may be initiated by the miss
handler but the NIC may choose not to wait
for it and report an RDMA exception instead.

3. The NIC updates reference, dirty bits whenever
it accesses or writes to VM pages.

All this handling can be done by the host CPU
in response to interrupts thrown by the NIC. For
efficient access to vm_page bits in main memory
without interrupting the host CPU, the NIC should
share definitions of VM structures and store di-
rect references to vm_pages. These references could
either be physical (bus) addresses, or virtual ad-
dresses that are translated using the NIC TPT. In
cases where a simple bit flip on a vm_page is needed,
the NIC should be able to do that by a direct atomic
memory access. Complicated page table lookups
(i.e. in translation miss handling) are better han-
dled by the host CPU.

4.4 Buffer Cache Locking

In our first implementation of a DAFS server,
we chose to directly use the buffer cache for block
I/O. In an RDMA-based data transfer, the server
sets up the RDMA transfer in the context of the re-
questing RPC. Once issued, the RDMA proceeds
asynchronously to the RPC. The latter does not
wait for RDMA completion. To serialize concur-
rent access to shared files in the face of asynchrony,
the vnode (vp) of a file needs to be locked for the du-
ration of the RPC. However, the data buffers (bp’s)
transfered need to be locked for the full duration
of the RDMA. Locking the vp (i.e. the entire file)
for the duration of the RDMA would also work but
would limit performace in case of sharing since re-
quests for non-overlapping regions of a file would
have to serialize. Our decision to lock at a finer
granularity than the vp for the duration of a transfer
conflicts with current FreeBSD buffer cache locking
assumptions:

1. Locking a buffer in the cache requires a process
to acquire an exclusive lock on that buffer. A
buffer lock can only be released by the same
process that locked it or by the kernel.

2. Before an asynchronous disk I/O (i.e. an asyn-
chronous write, or readahead), lock ownership
has to be transfered to the kernel so that the
block can later be released by the kernel (in
biodone()).

A multithreaded event-driven kernel server that di-
rectly uses the buffer cache and does event process-
ing in kernel process context faces problems in the
following circumstances:

1. When a thread tries to lock a buffer it is al-
ready locking (because a transfer is in progress
on that buffer) expecting to block until that
lock is released by some other thread.

2. When a buffer is released from a different
thread than the one that locked it.

Transfering lock ownership to the kernel during
asynchronous network I/O does not help since lock
release is done by some kernel process (whichever
happens to have polled for that particular event)
rather than by the kernel itself. The solution
presently used is for the kernel process that issued
an RDMA operation to wait until the transfer is
done in order to release the lock. This also pro-
hibits that process from trying to lock the same
buffer again, thus causing a deadlock panic. A bet-
ter solution is to enable recursive locking and allow
lock release by any of the server threads.

4.5 Device Driver Support

Memory-to-memory network adapters virtual-
ize the NIC hardware and are directly accessible
from user space. One such example is VI [5] where
the NIC implements a number of VI contexts. Each
VI is the equivalent of a socket in traditional net-
work protocols, except that a VI is directly sup-
ported by the NIC hardware and usually has a
memory-mapped rather than a system call interface.
The requirement to create multiple logical instances
of a device, each with its own private state (sepa-
rate from the usual device softcopy state) and to
map those devices in user address spaces requires
new support from BSD kernels.

Network driver model. Network drivers in BSD
systems are traditionally accessed through sockets
and do not appear in the filesystem name space
(i.e. under /dev). User-level libraries for memory-
to-memory network transports require these devices
to be opened and closed multiple times with each
opened instance appearing as a separate logical de-
vice maintaining private state, and be memory-
mapped. FreeBSD until recently provided rudimen-
tary support for this through the deuvfs file system
which is being abandoned. Deufs allows logical in-
stances of a device to be dynamically created but

120 -

100 -

80 A

60 1

40 A

read throughput (MB/s)

20 A

4 8 16 32 64 128 256 512
block size (KB)

Figure 3: DAFS Read Throughput. From left
to right: asynchronous API; synchronous API.

still associates a single vnode with that device. Our
current drivers rely on a hack to associate a sepa-
rate vnode and store private state with each logical
instance of a device.

Device driver models under other operating
systems have different ways for logical device in-
stances to maintain private state. Linux associates a
vnode with each opened instance of a device file, and
Solaris keeps private per-instance state via DDI [1].

5 Performance

We evaluate performance of the prototype
DAFS server with a synthetic benchmark that in-
volves a client fetching random blocks from warm
server cache (no disk I/O). We measured perfor-
mance for both the synchronous and asynchronous
API. In the asynchronous case, the client issues read
I/O maintaining up to 64 outstanding requests at
any time. The server was configured to run with 64
kernel threads. In the synchronous case, the client
was blocking waiting for completion on each request.

The experiment runs over two Pentium III 800
MHz systems with the ServerWorks LE chipset and
1GB RAM, connected via 1.25 Gb/s cLAN [8] VI
cards on 64-bit/66MHz PCI over a cLAN switch.
The network has been measured to yield 113 MB/s
with a VI one-way throughput benchmark (using
32K packets and polling) provided by Giganet. We
measured the effect of the block size used in read
requests varying it from 4KB to 512KB and report
results in Figure 3. We see that even for small
block sizes, performance using the asynchronous in-
terface is close to wire throughput by being able to
pipeline server responses. Low DAFS overhead and
the absence of copying reduces the memory bottle-
neck that would otherwise be a limiting factor. Per-
formance using the synchronous interface converges

to almost wire throughput for block sizes of about
128KB when the per-I/O overhead is fully amor-
tized.

6 Conclusions

This paper focused on the kernel issues in-
volved in building Direct Access File System servers.
A range of issues was addressed drawing from our
experience in building such a kernel server for
FreeBSD. We described the current server structure
using existing interfaces with minor kernel modifi-
cations. Performance results show that our current
DAFS server prototype implementation can offer
high performance file service for memory workloads
over a 1.25 Gb/s network.

A problem with existing blocking kernel inter-
faces is that DAFS and other kernel servers using
them experience the overhead of having to asso-
ciate a process context with each I/O request. This
overhead is expected to become more pronounced in
multi-gigabit networks. Our proposed additions to
the vnode interface offer support for asynchronous
file I/O with integrated network and disk event no-
tification and delivery.

We presented design possibilities for integrat-
ing a programmable RDMA-capable NIC with the
FreeBSD VM system. This support will allow a
DAFS server to export its entire VM cache over
the network in the face of client-initiated RDMA
operations and server paging activity. We are cur-
rently planning an implementation that embodies
such a design and can be used to support Optimistic
DAFS.

Finally, we have found that the existing BSD
network driver model is inadequate to support the
needs of memory-to-memory NIC devices and a new
model is needed.

7 Acknowledgments

The author would like to thank Donn See-
ley, the shepherd for this paper, and Alexandra Fe-
dorova and Salimah Addetia for helpful feedback.

8 Software Status and Availability

The current prototype runs as a kernel load-
able module for FreeBSD 4.3-RELEASE and im-
plements a large subset of the DAFS specification
including all basic file access, performance enhance-
ments, locking, and client caching support opera-

tions. Besides the server, we have ported device
drivers to FreeBSD for a number of VI NIC, includ-
ing the Giganet/Emulex ¢cLAN 1000 and GN 9000
VI/IP which use ATM and gigabit Ethernet respec-
tively as their link layer transport. We anticipate
to measure the performance benefits of Optimistic
DAFS as soon as the transport support is imple-
mented. Source code for the server and associated
FreeBSD kernel patches can be obtained from http:
//www.eecs.harvard.edu/vino/fs-perf/dafs.

References

[1] Writing Device Drivers. Sun Microsystems,

Inc., 2000.

[2] G. Banga et al. Better Operating System Fea-
tures for Faster Network Servers. In Proceed-
ings of the Workshop on Internet Server Per-
formance (WISP), June 1998.

[3] A. Benner. Fibre Channel: Gigabit 1/0
and Communications for Computer Networks.
McGraw-Hill, 1996.

[4] M. Blumrich et al. A Virtual Memory Mapped
Network Interface for the SHRIMP Multicom-
puter. In Proceedings of the 21st Annual Sym-

posium on Computer Architecture, pages 142—
153, April 1994.

[5] Compagq, Intel, Microsoft. Virtual Interface Ar-
chitecture Specification, Version 1.0, December
1997.

[6] DAFS Collaborative. Direct Access File System
Protocol, Version 1.0, September 2001. http:
//www.dafscollaborative.org.

[7] M. Dillon. Design Elements of the FreeBSD
VM System. http://wuw.daemonnews.org/
200001/freebsd_vm.html.

[8] Emulex/Giganet Inc. ¢cLAN 1000 VI adapter.

http://wwwip.emulex.com.

[9] Emulex/Giganet Inc. GN 9000 VI adapter.
http://wwwip.emulex.com.

[10] Mellanox Inc. Sleek 1X InfiniBand Channel
Adapter. http://www.mellanox.com.

[11] InfiniBand Trade Association. InfiniBand Ar-
chitecture Specification, Release 1.0, October
2000.

[12] Intel Inc. I/O Processors. http://developer.
intel.com/design/iio/80310.htm.

[13]

[15]

[21]

J. Lemon. Kqueue: A Generic and Scalable
Event Notification Facility. In 2001 USENIX
Technical Conference - FREENIX Track, June
2001.

K. Magoutis. The Optimistic Direct Access File
System. Submitted for publication at the Work-
shop on Nowvel Uses of System Area Networks
(SAN 2001), Cambridge, MA, February 2002.

E.P. Markatos and M. G. H. Katevenis. Tele-
graphos: High-Performance Networking for
Parallel Processing on Workstation Clusters. In
Proceedings of the Second International Sympo-
sium on High-Performance Computer Architec-
ture, San Jose, CA, pages 144-153, February
1996.

J. Mauro and R. McDougall. Solaris Internals:
Core Kernel Architecture. Prentice Hall, 2000.

M. Kirk McKusick et al. The Design and Im-
plementation of the 4.4BSD Operating System.
Addison-Wesley, 1996.

J. Ousterhout. Why Threads are a Bad Idea
(For Most Purposes). Invited Talk at the 1996
USENIX Technical Conference, January 1996.

V. Pai, P. Druschel, and W. Zwaenepoel. Flash:
An Efficient and Portable Web Server. In 1999
USENIX Technical Conference, June 1999.

R. Sandberg et al. Design and Implementa-
tion of the Sun Network Filesystem. In Pro-
ceedings of the Summer 1985 USENIX Techni-
cal Conference, Portland, OR, pages 119-130,
June 1985.

I. Schoinas and M. D. Hill. Address Trans-
lation Mechanisms in Network Interfaces. In
Proceedings of the Fourth International Sym-
posium on High-Performance Computer Archi-
tecture (HPCA), February 1998.

S. Shepler et al. NFS Version 4 Protocol. RFC
3010, December 2000.

T. von Eicken, A. Basu, V. Buch, and W. Vo-
gels. U-Net: A User-Level Network Inter-
face for Parallel and Distributed Computing.
In Proceedings of the Fifteenth ACM Sympo-
stum on Operating Systems Principles, Decem-

ber 1995.

M. Welsh, A. Basu, and T. von Eicken. Incor-
porating Memory Management into User-Level
Network Interfaces. In Proceedings of the 1997
Hot Interconnects Symposium, August 1997.

