
C2C: An Automated Deployment Framework for
Distributed Applications on Multi-Clouds

Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

Institute of Computer Science (ICS)
Foundation for Research and Technology – Hellas (FORTH)

Heraklion 70013, Greece
{karniav,papaioan,magoutis}@ics.forth.gr

Abstract. The Cloud Application Modeling and Execution Language
(CAMEL) is a new domain-specific modeling language (DSL) targeted
to modeling applications and to supporting their lifecycle management
on multiple (heterogenous) cloud providers. Configuration management
tools that provide automated solutions to application configuration and
deployment, such as Opscode Chef, have recently met wide acceptance
by the development and operations (or DevOps) community. In this pa-
per, we describe a methodology to map CAMEL models of distributed
applications to Chef concepts for configuration and deployment on multi-
clouds. We introduce C2C, a tool that aims to automate this process and
discuss the challenges raised along the way suggesting possible solutions.

Keywords: Cloud computing, Application modeling, Configuration man-
agement

1 Introduction

In the era of cloud computing, applications are benefitting from a virtually in-
exhaustible supply of resources, a flexible economic model, and a rich choice
of available providers. Applications consisting of several software components
or services typically need to be deployed over multiple underlying technologies,
often across different cloud providers. To bridge across different cloud environ-
ments, tools based on model-driven engineering principles are recently gaining
ground among developers and operations engineers. TOSCA [1], CloudML [5]
and CAMEL [18] are three recently introduced model-driven approaches used
to express application structures and requirements, and to manage application
deployments over time.

An important tool in the hands of application developers and operations
engineers is the ability to maintain a detailed recording of software and hard-
ware components and their interdependencies in an infrastructure, in a process
known as configuration management (CM) [13]. An effective CM process provides
significant benefits including reduced complexity through abstraction, greater
flexibility, faster machine deployment and disaster recovery, etc. There are nu-
merous configuration management tools from which the most widely known are:

2 Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

Bcfg2 [3], CFEngine [6], Chef [7], and Puppet [17]. Each of these tools has its
strengths and weaknesses [20] [9]. A CM solution is often combined with provi-
sioning and deployment tools.

In this position paper we bridge the gap between application models (which
are typically declarative expressions of application state) and configuration man-
agement tools (imperative procedures for carrying out CM actions) using CAMEL
and Chef as specific instances of the two approaches. We introduce CAMEL-to-
Chef (or C2C for short), a new methodology for the deployment and configura-
tion of applications expressed in CAMEL across multi-cloud environments.

2 Background

2.1 CAMEL

Cloud Application Modeling and Execution Language (CAMEL) [18] is a family
of domain-specific languages (DSLs) currently under development in the PaaSage
EU project [15]. CAMEL encompasses DSLs covering a wealth of aspects of
specification and execution of multi-cloud applications. CloudML, one of the
DSLs comprising CAMEL, is used to describe the application structure and
specify the topology of virtual machines and applications components. Below we
describe key modeling elements that CAMEL shares with CloudML.

– Cloud : a collection of virtual machines (VMs) offered by a cloud provider
– VM type, VM instance : a VM type refers to a generic description of a VM,

while an instance of a VM type refers to a specific instantiation of a VM,
including specific configuration information.

– Internal component : a reusable type of application component, whereas an
internal component instance represents an instance of an application com-
ponent. The description of an application component stays at a generic level
while the specification of its respective instances involves particular config-
uration information.

– Hosting, Hosting Instance : a hosting relationship between a host VM and a
component of the application, or between two application components.

– Communication, Communication Instance : a dependency relationship be-
tween two application components or component instances.

CAMEL is under development at this time and thus constantly evolving. The
changes that have been brought into CAMEL since we started the C2C project
have so far been dealt with with just minor changes at the model parsing phase
and have not resulted in drastic changes in the fundamentals of our approach.
Future changes in CAMEL could be dealt with existing technologies that address
the co-evolution of models [14].

2.2 Opscode Chef

Chef is a configuration management tool created by Opscode [7]. Following an
infrastructure-as-code approach, Chef uses Recipes, configuration files written in

C2C: Automated Deployment for Distributed Applications on Multi-Clouds 3

Ruby that describe the actions that should be performed on a node in order
to bring it to its desired state. Related recipes are stored in Cookbooks. Users
can store and write Cookbooks at the Chef repository in their local workstation,
from where they can also interact with the Chef server. Every machine-node
that is managed by Chef has a run-list, which is the list of recipes that will run
on it at the time of the next Chef client run. We should note that dependencies
between cookbooks are handled automatically by the Chef server, which is also
responsible for various other tasks like run-list and cookbook storing.

Chef brings in a number of benefits. It offers automated and reusable solutions
for the configuration and deployment of applications and a lot of ready-to-use,
publicly available Cookbooks via the Chef repository, also known as Chef su-
permarket [8]. One of the strongest aspects of Chef is its active and constantly
evolving community. The Chef community consists of people of various back-
grounds and expertise that contributes to the creation and improvement of a
large set of Cookbooks covering a wide range of software components.

3 Related work

Application modeling is becoming increasingly popular nowadays due to the
complexity and increased needs of distributed applications. A recently intro-
duced modeling approach covering the description, deployment, and lifecycle
management of distributed applications is TOSCA [1]. Perhaps closest to our
approach is a recent paper on cloud service orchestration using TOSCA, Chef
and openstack [11] uses Chef as a deployment tool for applications defined as
TOSCA models. “Deployment artifacts” are defined at the time of model cre-
ation for each component, stating which Cookbook recipe(s) should be used
to deploy them. Deployments take place on openstack and various Chef func-
tions are triggered using the knife-openstack client [12]. The differences between
this work and ours are (1) the fact that we use CAMEL instead of TOSCA
to model our applications, and (2) we automatically derive information from
CAMEL models to achieve deployment with Chef in multi-cloud environments.
The CAMEL model does not need to contain information about the recipes
needed for each component, although we describe this as an alternative tech-
nique in Section 6.

CloudML [5] also offers a deployment and lifecycle management mecha-
nism [4] by associating each deployable component with a pointer code respon-
sible for its deployment. The deployment process is restricted to scripted com-
mands and does not involve the usage of Chef.

4 The C2C methodology

4.1 Architecture

Figure 1 depicts the overall architecture of our system. C2C comprises of three
major modules: i) the model parser ii) the VM manager and iii) the Chef in-
structor. The model parser analyses the input application model, extracts the

4 Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

necessary information and prepares the input for the other C2C modules. In more
details, it forms a list containing the VMs that will be used for the application
deployment. In addition it prepares the input of the Chef instructor module
which is a list containing the software components that comprise the application
along with their hosting and communication relationships. The VM manager
module is responsible for the provisioning of the VMs and the installation of the
Chef client in each one. The Chef instructor manages the deployment of the ap-
plication software components on the appropriate VM, indicated by the hosting
instances. As a first step, it collects all the necessary Cookbooks by searching at
the Chef workstation or on the Chef’s community repository [8]. Next it forms
the run-list of each node in order to install the application components. The
Chef instructor derives the order in which the components should be installed
as well as the node that will host each one by analysing the communication and
hosting relationships among the components.

CAMEL
App Model

Chef Repo

VM list

VM
Provisioner

Cloud X Cloud Z

provision

provision

run-list

run-lis
t

Cookbook
List

Fig. 1. System architecture

We follow this modular approach because it allows us to split the functional-
ity of our tool and minimize the amount of effort needed in case of a component
update (e.g. if we want to support more Cloud providers we just update the VM
manager component). The model parser was implemented using the Java com-
patible CAMEL API library. The multi-Cloud provisioning logic we embedded
in VM manager uses the third party library of Apache JClouds [10] and the of-
ficial Azure Java sdk [2] API to operate across the different Cloud architectures
of Openstack, Flexiant, Amazon EC2 and Microsoft Azure.

4.2 Mapping of concepts

In this section we describe the necessary CAMEL attributes that are used by
the model parser in order to prepare the input of the other C2C modules. The

C2C: Automated Deployment for Distributed Applications on Multi-Clouds 5

VM instance properties contain all the necessary information for the VM man-
ager to provision the required resources for the application deployment. The
Chef instructor uses the names of the Component instances in order to identify
the corresponding cookbooks. The hosting instance relationship between a (soft-
ware) component instance and an VM instance indicates that the corresponding
cookbook should be added to the run-list of the node. On the other hand if a
component instnace A is hosted in component instance B, then the cookbook
corresponding to B should also be included in the run-list of node that will host
component A. The deployment order of the components is derived based on the
the hosting instances and the communication instance between component in-
stances. For example if component X communicates with component Y then the
deployment of Y should precced the deployment of X.

5 Use case

We demostrate our systems functionality using the distributed SPEC jEnter-
prise2010 benchmark [19] as a case study. SPEC jEnterprise2010 is a full system
benchmark that allows performance measurement of Java EE servers and sup-
porting infrastructure. The SPEC jEnterprise2010 application requires a Java
EE application server and a relational database management system.

DB_VM
m3.medium

mySQL

Server_VM
A1

JBoss

specj.ear

Amazon EU Microsoft Azure EU

Hosting

Communication

Application
Component

Virtual
Machine

Fig. 2. Spec jEnterprise2010 application structure

We model the SPEC jEnterprise2010 application using three software com-
ponents corresponding to the business logic of the application, the application
.ear, the application server and the RDBMS [16]. These components are instan-
tiated as a specj.ear, a JBoss application server and a MySQL database. Figure 2
presents the application structure and the deployment scenario of SPEC jEn-
terprise2010. The solid line arrows indicate the hosting relationships between
VMs and application components as well as the communications among soft-
ware components. The dashed line arrows represent the communications between
the application components. In this scenario we demonstrate a cross-Cloud de-
ployment of the application (different application components are deployed on
different Cloud platforms).

6 Flora Karniavoura, Antonis Papaioannou, and Kostas Magoutis

At the first step the model parser instructs the VM manager to provision
a m3.medium VM on Amazon EC2 platform and an A1 VM on Azure. Then
the Chef instructor fetches the necessary cookbooks of MySQL and JBoss from
the Chef supermarket. On the other hand we provide our custom cookbook for
the deployment of the application logic (specj.ear) in our local workstation. The
hosting and communication relationships between software components and VMs
suggest the run-lists of Chef nodes. The run-list corresponding to the DB VM
contains the cookbook of MySQL while the run-list of Server VM contains the
cookbooks of and specj.ear. The deployment of DB node precedes the server
node according to the Chef instructor logic described in section 4.

6 Challenges

Our aim for the C2C methodology is to be as automatic as possible, however
there are challenges to achieve this that we discuss in this section along with
possible solutions.

A key challenge in the C2C methodology is to decide automatically what is
the correct Chef cookbook to use for a particular software component. In our
automatic implementation we assume that there is a match between a compo-
nent’s name and the name of the suitable cookbook for it – however this need
not always be true.

If we assume that components in CAMEL models are named using some
variation of the name of the software component that they model, C2C could map
them to cookbooks whose names most closely match the name of the software
component (e.g., exhibit minimal lexicographical distance from it). This solution
could be error-proof if the creator of a CAMEL model is aware of the Chef
cookbook it wants to map the component to and thus names the component
using the exact name of the Chef cookbook.

However even if the right cookbook for a component is discovered, the prob-
lem has not been solved. The difficulty now lies in distinguishing the right recipe
for the desired task, between all recipes in the cookbook. In most cases the
“default” recipe, present in all cookbooks, is responsible for the basic cookbook
task (in most cases, installation) but this does not apply to every cookbook.
Usually, recipe names are quite descriptive but not to an extent that could lead
to efficient recipe selection.

A solution to this problem could be an appropriate naming scheme for cook-
book recipes. Firstly, unique keywords such as “install”, “update” or “start”
should be used for basic tasks implemented by recipes. Cookbook recipes could
simply include annotations stating which of these tasks each one of them im-
plements. Current recipes do not provide this kind of information but it could
be retrofitted or overlaid on recipe metadata based on user feedback: cookbook
users could report on the task each recipe they use performs, and this informa-
tion could later be used to help C2C automatically choose the right recipe.

Finally, a simple way to address these issues is by declaring the exact cook-
book recipes to use in each application component within the CAMEL model

C2C: Automated Deployment for Distributed Applications on Multi-Clouds 7

(similar to what was proposed in [11]). This solution eliminates the risk of choos-
ing the wrong recipe, albeit at the cost of reduced flexibility.

7 Conclusion

In this position paper we introduced C2C, an automated deployment framework
for distributed applications on multi-clouds. We showed that the configuration,
deployment and lifecycle management of CAMEL applications leveraging the
large base of Chef cookbooks is achievable in an automated fashion. We discussed
the challenges that stand in the way of full automation with this methodology
and proposed different ways to overcome them. Finally, we demonstrated the
usability of C2C using the SPEC jEnterprise2010 application as a case study.

References

1. Oasis: Oasis topology and orchestration specification for cloud applications (tosca)
2. Azure SDK (Accessed 1/2015), https://github.com/Azure/azure-sdk-for-java
3. Bcfg2: (Accessed 2/2015), http://www.bcfg2.org/
4. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42(10) (2009)
5. Brandtzg, E., Parastoo, M., Mosser, S.: Towards a Domain-Specific Language to

Deploy Applications in the Clouds. In: CLOUD COMPUTING 2012: 3rd Interna-
tional Conference on Cloud Computing, GRIDs, and Virtualization (2012)

6. CFEngine: (Accessed 2/2015), http://www.cfengine.com/
7. Chef: (Accessed 1/2015), http://www.getchef.com/
8. Chef Supermarket: (Accessed 1/2015), https://supermarket.chef.io/
9. Delaet, T., Joosen, W., Vanbrabant, B.: A survey of system configuration tools.

In: Proceedings of the 24th International Conference on Large Installation System
Administration. pp. 1–8. LISA’10 (2010)

10. JClouds: (Accessed 1/2015), https://jclouds.apache.org/
11. Katsaros, Menzel, L.: Cloud service orchestration with tosca, chef and openstack

pp. 1–8 (2014)
12. Knife-Openstack client: (Accessed 2/2015), https://docs.chef.io/plugin_

knife_openstack.html
13. Lueninghoener, C.: Getting started with configuration management. ;login: 36(2),

12–17 (2011)
14. Nikolov, N.: Integration and Co-evolution of Domain Specific Languages in Het-

erogeneous Technical Spaces. Master’s thesis, Tilburg University, University of
Stuttgart and University of Crete (Jul 2014)

15. PaaSage EU FP7 project: (Accessed 2/2015), http://www.paasage.eu/
16. Papaioannou, A., Magoutis, K.: An architecture for evaluating distributed appli-

cation deployments in multi-clouds. In: Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Conference on. vol. 1 (Dec 2013)

17. Puppet: (Accessed 2/2015), http://www.puppetlabs.com/
18. Rossini, A., Nikolov, N., Romero, D., Domaschka, J., Kritikos, K., T., K., Solberg,

A.: Paasage project deliverable d2.1.2 - cloudml implementation documentation.
Public deliverable (2014)

19. SPEC jEnterprise2010: (Accessed 2/2015), https://www.spec.org/

jEnterprise2010/
20. Tsalolikhin, A.: Configuration management summit. ;login: 35(5), 104–105 (2010)

