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Abstract—HBase is a prominent NoSQL system used widely
in the domain of big data storage and analysis. It is structured
as two layers: a lower-level distributed file system (HDFS)
supporting the higher-level layer responsible for data distri-
bution, indexing, and elasticity. Layered systems have in many
occasions proven to suffer from overheads due to the isolation
between layers; HBase is increasingly seen as an instance of
this. To overcome this problem we designed, implemented, and
evaluated HBase-BDB, an alternative to HBase that replaces
the HDFS store with a thinner layer of a log-structured B+ tree
key value store (Berkeley DB) operating over local volumes.
We show that HBase-BDB overcomes HBase’s performance
bottlenecks (while retaining compatibility with HBase appli-
cations) without losing on elasticity features. We evaluate the
performance of HBase and HBase-BDB using the Yahoo! Cloud
Serving Benchmark (YCSB) and online transaction processing
(OLTP) workloads on a commercial public Cloud provider. We
find that HBase-BDB outperforms a tuned HBase configuration
by up to 85% under a write-intensive workload due to HBase-
BDB’s reduced background-write activity. HBase-BDB’s novel
elasticity mechanisms operating over local volumes are shown
to be as performant as HBase’s equivalent features when stress-
tested under TPC-C workloads.
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I. INTRODUCTION

In the Big Data era, continuously produced information

in the fields of social networks, biology, physics, and the

Internet of Things results into massive volumes of data

that must be stored and processed, primarily for knowledge

mining and decision making. Storing and processing such

data sets effectively requires novel distributed systems, many

of which have been introduced and in everyday use in

recent years. In designing such systems, layered architectural

approaches [1] are often chosen to reduce complexity, reuse

existing code, and achieve lower time-to-market. However,

layering is often responsible for performance penalties due

to the lack of integration inherent in such designs [2].

HBase [3], a NoSQL data store for semi-structured data

deriving in many ways from Google’s BigTable [4], has

achieved ”reference point” status in the space of Big Data

technologies. The HBase design follows a layered architec-

ture, in the spirit of previous systems [5] [6], stacked in

two layers. In the bottom layer, HBase uses HDFS [7] as

a storage back-end. HDFS exposes to its client applications

a shared namespace and implements scalability and fault

tolerance mechanisms at the file layer. Having solved those

issues in its storage back-end, HBase focuses in the logic

and elasticity features of the database.

While HBase has been deployed and used widely in recent

years, its power-users have been hinting at performance

issues under specific workloads, as highlighted in a recent

study of a large-scale deployment at Facebook [8]. In this

study, Facebook analyzed HBase performance serving its

popular Facebook Messages (FM) [9] application. Their

traces from a large-scale cluster shed light to interesting

results: FM, just like other popular Internet applications

such as e-mail, SMS, and Chat, diverge from HBase’s initial

design goals of high sustained bandwidth (rather than low

latency [10]). While HBase is by design a good fit for

streaming workloads with a lot of sequential I/O such as

MapReduce, it is not optimal for a wide range of workloads

that are dominated by random reads (often including a small

share of short (order of KBs) range-queries). In order to

achieve high sustained bandwidth, HBase (which we will

also refer to as HBase-HDFS1) performs aggressive storage

reorganization. Performing key value reorganizations on top

of an append-only distributed file system results in high

network load and significant write amplification, impacting

read performance. HBase additionally performs write-ahead

logging for durability which further amplifies writes.

In this paper, we propose an alternative architecture to

HBase, named HBase-BDB, to overcome the aforemen-

tioned problems. We show that the replacement of HDFS

with a thinner layer of a local key-value store implemented

over local volumes benefits performance without requiring a

major re-engineering effort. Since there are several local key-

value store engines with different properties available, we

decided to leverage one of them (BerkeleyDB (BDB) [11]

Java Edition2) that fits well our design goals. BDB-JE is a

robust, efficient, widely deployed integrated database engine.

1We use the term HBase-HDFS to refer to a standard, off-the-shelf
software distribution of HBase.

2http://www.oracle.com/technetwork/products/berkeleydb/overview/index-
093405.html



Figure 1: HBase architecture [3]. See Figure 2 for a high-level comparison with the architecture of HBase-BDB

It implements a B+ tree index, known to perform well for

random read workloads and provide good support for range

queries. The entire database is implemented as a log [12]

avoiding the need for a separate write-ahead (commit) log.

Since BDB-JE is available in a replicated high-availability

edition we inherit those properties in HBase-BDB. Remov-

ing HDFS from the picture takes away several convenient

mechanisms that underlie HBase’s elasticity architecture. To

make up for this loss we design and implement new efficient

elasticity mechanisms suitable for HBase-BDB. Overall, our

key contributions in this paper are

• Design and implementation of a distributed key-value

store architecture maintaining HBase’s front-end and

replacing HDFS with log-structured B+-trees over

direct-attached file systems, improving performance

and eliminating overheads due to HBase layering

• Novel, efficient elasticity mechanisms for splitting and

moving data regions over the direct-attached filesystems

The rest of the paper is organized as follows: in Sec-

tion II we present a brief overview of HBase, performance

challenges, and work that relates to ours. In Section III we

describe the architecture of HBase-BDB focusing on the

mapping of the HBase data model to the B+-tree indexed

storage manager and the elasticity mechanisms whose effi-

ciency is key to adapting to growing volumes of data. In

Section IV we present our extensive evaluation focusing on

both performance and elasticity using Yahoo! YCSB and

OLTP (TPC-C) benchmarks and in Section V we conclude.

II. BACKGROUND

Apache HBase [3] is a column-oriented database manage-

ment system modeled after Google’s BigTable [4] and run-

ning over the Hadoop Distributed File System (HDFS) [7]. It

is a distributed store whose primary objective is the hosting

of very large data sets on clusters of commodity hardware.

HBase supports a lightweight schema for semi-structured

data. It consists of a set of associative arrays, named tables.

Its data model, depicted in Figure 3, comprises

• Row: Each table comprises of a set of rows. Each row

is identified through a unique row key.

• Column family: The data in a row are grouped by col-

umn family. Column families also impact the physical

arrangement of data stored in HBase.

• Column qualifier: Data within a column family is

addressed via its column qualifier. Column qualifiers

are added dynamically in a row and different rows can

have different sets of column qualifiers.

The basic quantum of information in HBase is a cell

addressed by row key, column family and column qualifier.

Each cell is associated with a timestamp. In this way HBase

is able to keep different versions of HBase cells.

Figure 1 ([3]) shows the overall architecture of HBase.

HBase consists of a master node named HMaster, respon-

sible for keeping the catalogue of the database and also

managing Region servers. Region servers are responsible for

horizontal partitions of each table called regions. Each region

contains a row-key range of a table. Clients initially contact

HMaster, which directs them to the appropriate Region

server(s) currently hosting the targeted region(s). HBase

uses the Apache Zookeeper [13] coordination service for

maintaining various configuration properties of the system.

HBase uses a log structured storage organization with

the LSM-trees [14] indexing scheme at its core, a good

fit for the HDFS append-only file system [7] it operates

on. Log-structured storage organization goes back to the

log-structured file system (LFS) [12] and POSTGRES [15].

It is a popular design choice in a variety of systems to

this day [16][17][18][19] for achieving high performance

and availability. Records inserted in an LSM-Tree are first

pushed into a memory buffer; when that buffer exceeds a

certain size, it is sorted and flushed to a disk segment in a

log fashion, named HFile. Read or range queries examine the



(a) Distributed key-value store with B+ tree backend (b) Berkeley DB B+ tree structure

Figure 2: (a): HBase vs. HBase-BDB; (b): BerkeleyDB Java Edition index structure [11]

Figure 3: HBase data model (unchanged by HBase-BDB)

memory buffer and then the set of HFiles of the region. For

improving indexing performance, the number of HFiles for

a region can be reduced by periodic merging of HFiles into

fewer and larger HFiles through a process called compaction

(similar to a merge sort). As the data set grows, HBase scales

by splitting regions dynamically and eventually moving

regions between region servers through move operations.

A move in HBase transfers management responsibility. The

actual data transfer takes place through future compaction

operations. Since HDFS always creates a local replica at the

node initiating the write to a new file, the process maintains

data locality. For durability, HBase keeps a write-ahead-log

(WAL) in each region server. A WAL is an HDFS file to

which all mutations are appended.

The compaction operations necessary to maintain accept-

able read performance and the need to have a separate

WAL in HBase lead to performance issues observed in

large-scale HBase installations. A key cause is the fact that

a lot of the HBase-HDFS machinery operates at the file

level: Compaction for example, is a file-level operation,

leaving database state intact. Replication is also done at

file level. As a consequence each compaction operation

triggers replication, typically involving three hosts, for the

newly created files. This results in large amounts of network

traffic and especially write activity reaching the devices [8].

Since HDFS is an append-only file system, reorganizing and

merging files requires whole-file copies and is not amenable

to known optimizations such as VTree [20]. Previous stud-

ies [20] [21] [22] have pointed out to the overheads of

compaction in LSM trees. bLSM [22] proposes a scheduler

that bounds write latency by appropriate scheduling of com-

pactions. It does not however address the network load and

write amplification issues of HDFS. VT-tree [20] proposes

a heuristics-based approach that reduces merge operations

but cannot be applied on top of an append-only file system.

LogBase [21] focuses on the impact of the write-ahead-log

and data approach followed in HBase and suggests a B+-

tree based design on top of HDFS. Our approach relates to

LogBase in that we also propose an alternative layering of

HBase. Not being reliant on HDFS however, means that we

had to design new elasticity mechanisms for our architecture.



III. DESIGN AND IMPLEMENTATION

HBase-BDB is the result of re-engineering HBase to

replace its LSM-Tree implementation over an HDFS back-

end with the use of a collection of Berkeley Database

(BDB) Java Edition (JE) [11] storage managers over local

file systems. This design leverages the log structured [12]

B+ tree implementation at the core of BDB-JE. Since data

at each node are stored and organized as a full log there

is no need for a distinct WAL, eliminating one cause of

write amplification in HDFS. Additionally, the aggressive

storage reorganization needed in HBase-HDFS to improve

random read performance is not needed in HBase-BDB.

BDB-JE still needs to reorganize its storage layout to reclaim

space; however this is a far less aggressive operation com-

pared to HBase-HDFS. Furthermore, HBase-BDB maintains

elasticity properties (which HBase-HDFS achieves through

the use of HDFS) by re-implementing two key operations

(split, move) with minimum service disruption. The use of

local file systems allows any node to reorganize its data

without affecting any other node or any of its replicas. In

the following sections we describe more details on the design

of HBase-BDB.

Figure 2b depicts the structure of the BDB B+ tree, which

consists of Internal Nodes (IN), Bottom Internal Nodes

(BIN), and Leaf Nodes (LN) which hold the (key, offset-to-

disk for value) pair. A single instance of BDB can manage

multiple databases (a BDB database maps to an HBase

region in HBase-BDB) writing everything to a logical (per

database) log, which is the only on-disk structure. A log is

implemented as a number of physical files of configurable

size. Below we present the schema mapping of HBase in

HBase-BDB and its basic operations.

A. Schema mapping and basic operations

HBase-BDB currently supports the full range of the

HBase client API (read, insert, update, scan) on the HBase

schema. Below we present the mapping mechanism.

Mapping each cell to a key/value pair would increase

significantly the key space, introducing significant overhead.

For this reason we map each row to a key/value pair. In

more detail the key comprises the row key concatenated

with the row timestamp, so multi-version control is still

supported in HBase-BDB. For example if the row with

key Key1 is created at timestamp T1 and later modified at

timestamp T2, two different tuples (with keys Key1T1 and

Key1T2) are stored in BDB. To store rows with the same

key prefix in reverse chronological order (useful in scan

operations), the actual timestamp stored is (MaxLongValue

– timestamp). Data payload of the value pair consists of

column qualifiers with their corresponding data. HBase-

BDB maintains a separate database for each column family,

just as standard HBase does. This means that in the general

case each region, which can have multiple column families,

maps to a set of BDB databases.

In the current version of HBase-BDB partial updates to

a row (e.g., changing a single column qualifier) need to be

performed as full row updates (read, modify, write) due to

BDB API restrictions. Since targeted workloads have a low

write percentage [8], we believe that this is a manageable

cost for row sizes of practical interest. However, if even this

is not the case appropriate modifications to BDB internals

can optimize the update operation. A get operation over a

time range retrieves all values stored for the requested key

in that range. Scans specify a range of keys in addition to a

time range. A delete erases all versions of the specified key.

B. HBase-BDB write and read path

For efficiency BDB uses a log buffer for writing to disk

(default size 3MB), issuing periodically sync to disk opera-

tions. BDB writes all put requests into a log buffer. When

that buffer fills up a writeToFile() operation is issued which

copies its content to the OS buffer cache. Put operations

issued while a writeToFile takes place do not block; instead

they are written to a write queue which is flushed to the

log buffer after completion of the writeToFile. A check-

pointer thread periodically issues sync-to-disk operations.

The checkpointer thread wakes up after a configurable num-

ber of bytes are written to the buffer cache or a configurable

number of seconds have passed since its last sync operation.

Sync-to-disk operations are also issued after the writing of

the header in a physical file or after the close operation in

a physical file.The write path of a put(key, value) operation

consists of the following steps (for simplicity we assume

transactions are disabled):

1) Find the appropriate BIN for key.

2) Take ownership of the latch (physical lock) for this

BIN

3) Create the LN, Serialize key,value pair

4) Lock the LogBuffer

5) Append to the LogBuffer the modifications (LN and

modified BINs and INs)

6) If Log Buffer is full writeToFile()

7) Unlock LogBuffer

8) Update BIN

9) Release latch

On receiving a put request, an HRegion server first dese-

rializes the request into an application buffer. We modified

the deserialization method on the server side (the HBase

client remains unaffected) to produce an appropriate byte

format for storing it directly to BDB, in order to avoid

unnecessary byte-manipulation overhead. Next, each row

key is concatenated with a timestamp to be able to store

multiple versions of a row. As an example of ordering a

valid key sequence is: [user1 |3], [user1 |2], [user1 |1],

[user2 |3], [user2 |2], [user2 |1], [user3 |3], [user3 |2],

[user3 |1]. The put operation writes to the log buffer of BDB

and then the region server responds to the HBase client.



Read and scan operations use BDB cursor objects for

retrieving rows. BDB cursors provide extensive search sup-

port for fetching rows based on a criterion in addition

to exact matches. This feature is very useful for fetching

different versions of a row. For each read/scan request the

row key is concatenated with the request timestamp and the

corresponding rows are fetched.

C. Elasticity mechanisms

Distributed key-value data stores must be designed with

elasticity in mind to rapidly adapt to growing (or shrinking)

datasets. Key operations for elasticity are the splitting of

data regions and their movement between servers. HBase

takes advantage of properties of the underlying storage layer

(HDFS) to achieve rapid region splits and moves as follows:

A region in HBase is stored as a group of sorted HDFS

files. At split time HBase performs a virtual split by creating

two daughter regions corresponding to the two halves of the

region (but point to the same HDFS files) and defers data

movement to the next compaction operation. At that time

it performs the actual data movement operation separating

the data files of the newly created regions. Re-assignment

of regions to region servers (a move) is again performed

virtually through HDFS file close and open operations: The

region server responsible for the transferred region receives a

close-region command from the HMaster and the destination

region server receives an open-region command. Future

compaction operations will ensure locality of the data.

The HBase master maintains the mapping between tables

and their regions. The master has no knowledge of the

physical location of region HFiles since they are managed

by HDFS. Since HBase-BDB replaces HDFS, the shared

named space abstraction used for handling regions (e.g.,

keeping track of the last host that managed any region) is

implemented by the RegionMap structure, maintained by a

Zookeeper instance. Before opening a region, region servers

consult this structure to locate and fetch region files.

D. Split operation

In HBase-BDB, we use HBase’s strategy for splitting a

region based on size. When a region, which maps to BDB

database, exceeds a certain size and is about to split, the mid-

point (Middle-row-key) in the region’s key space [Start-row-

key, End-row-key] is determined. Subsequently the region is

broken into a daughter region A, which contain keys [Start-

row-key, Middle-row-key], and another daughter region B

that holds the key space [Middle-row-key, End-row-key]. For

calculating the ”middle-row-key” we initiate a BDB cursor

which points to the start of the region. Then, through the

B+ tree index we efficiently skip half the number of rows in

the region and thus get to the middle-row-key of the region.

Then we create a new copy of the entire region on disk

by closing the database and copying all of its underlying

log files. The original copy is renamed to ”region A” and

Figure 4: BTRFS copy-on-write operation copying file P to

Q [23]

the new copy to ”region B”. The copy operation on files of

size of hundreds of MB to a few GBs, can be an expensive

operation in conventional file systems (such as Linux ext4).

To address this problem we leverage the copy-on-write

features available in the Linux BTRFS (B-tree) file sys-

tem [23] to avoid eager in-place updates, replacing them

with deferred writes only when the need arises (i.e., when a

write actually takes place, if ever). BTRFS has the ability to

implement a file copy as a pure metadata operation, just by

cloning the root as shown in Figure 4), without eager data

movement on the disk device. An actual data copy is issued

if and when a data block needs to be updated. In addition to

avoiding physical copy of BDB log files to other locations

on disk, this methodology reduces disk space usage.

The two daughter regions produced by a copy operation

contain several keys that are outside the key ranges and for

which they are no longer responsible. Removing those keys

is the responsibility of a garbage collector thread, called

GBCollector, that is executed periodically, and whose sole

task is to delete out-of-range rows. Delete operations issued

by GBCollector at the BDB level translate into tomb stoning

keys (that is marking them for deletion, without actually

deleting them) in BDBs underlying log files. Removing the

physical file space of those keys is the responsibility of the

Berkeley DB cleaner process. When a physical’s log file

valid data drops under a configurable threshold, its data are

appended to the end of the log and space is reclaimed by

deleting the file. The efficiency of the BDB cleaner is a

key performance parameter: Fewer and/or smaller log files

backing regions means lower cost in moving (transferring)

those log files over the network, reducing the cost of future

region movement operations.

The above procedure describes a failure-free scenario. To

handle failures during a split operation we record informa-

tion about ongoing such operations in a Zookeeper structure

(directory) called split transactions. A split transaction starts

by recording the names of the involved regions (parent,

daughterA, dayghterB) as 3 records (znodes in ZooKeeper

terminology) under /split transactions. On successful com-

pletion these records are erased. In the case of failure, a

recovery operation examines this structure; if information

about an interrupted transaction is found, a recovery action



Figure 5: Move operation protocol shown in steps

(undo or redo) can bring the regions to a consistent state.

E. Move operation

In HBase-BDB a region move operation is implemented

via network data transfer between two region servers, as

shown in Figure 5. A brute force implementation could result

to long unavailability of the region during data transfer.

To minimize the window of unavailability we introduce a

mechanism that prefetches region data at the target server

prior to closing it at the source server. The mechanism is safe

by exploiting the immutability of BDB logs: log segments

that are closed (and thus only to be read in the future)

can be transferred without blocking. The protocol proceeds

as follows (Figure 5): When the master decides to move

a region it sends a PRE-CLOSE command to the region

server currently handling the region (RegionServerA). On

receiving the command, RegionServerA disables split and

cleaning operations for the specific region while continuing

to serve read and write operations for it. Split and clean

operations are disabled for ensuring log immutability in

case of log reorganization. On successful reply from Region-

ServerA, the master sends a PRE-OPEN command to the

target region server (RegionServerB). On successful reply

from RegionServerB it sets a watcher (request for notifi-

cation upon a change) on a Zookeeper instance on a node

called /MOVE/RegionName that contains RegionServerA

hostname. RegionServerB then contacts RegionServerA to

ask for a list of the region’s physical log files. The log

file names follow the format (LogIDNumber).jdb, where

LogIDNumber is an increasing counter of the physical log

files kept internally by BDB. RegionServer B then fetches

all log files except the current working file (the one with the

maximum LogIDNumber). After fetching successfully all the

log files it notifies the Master through the watcher previously

set in Zookeeper. When the Master receives the notification it

issues a CLOSE region command to RegionServerA which

will sync and close the region. Then the master sends an

OPEN command to RegionServerB. RegionServerB consults

RegionMap structure. Continuing, it will get any log files

that were not already part of the prefetch stage. Since the

majority of operations are reads we expect this time to be

minimal. To optimize network throughput and leverage core

parallelism we use a number of concurrent connections with

a dedicated thread per connection. Additionally we reduce

CPU overhead during the actual log transfer by exploiting

the sendFile() system call via the transferTo()

method of the Java nio package3 at RegionServerA. Fault

tolerance during a move is handled similarly to a split. As

a move does not modify state (other than creating data files

at the destination), it is possible to easily abort or complete

a move transaction (we currently opt for the latter).

Finally, support for replication is built into HBase-BDB

via use of BDB-JE’s high-availability option and HBase-

BDB makes straightforward use of it. HBase-BDB manages

replicas by extending RegionMap to maintain replica groups

of each region. Full management of replica groups by

HBase-BDB is still ongoing work. In this paper we con-

centrate on non-replicated configurations as a full exposition

would require far more space than available in this paper.

IV. EVALUATION

A. Platform tuning

Appropriate configuration of HBase is known to be key to

achieving good performance 4. In particular, long stop-and-

halt garbage collection (GC) periods in a default configura-

tion typically arise from (1) delaying to start GCs, and; (2)

memory fragmentation caused mainly by memstore flushes.

To address (1) we start a GC when occupied heap exceeds

60% of available space which is typically higher than the

default; we also use the Parallel New collector for the young

generation objects and the Concurrent Mark-Sweep collector

for the old generation objects in the heap. We address (2) by

allocating contiguous regions of memory for memstores (set-

ting the hbase.hregion.memstore.mslab.enabled property),

thus reducing memory fragmentation. We thus ensure that

best practices in HBase configuration are followed to avoid

interference with our evaluation.

B. HBase vs. HBase-BDB: YCSB benchmarks

To determine the performance tradeoffs between standard

HBase (referred as HBase-HDFS) and HBase-BDB we

compare the two systems on a two-machine client server

setup using the YCSB [24] benchmark. The machines used

in these experiments have 4 core Intel Xeon processors

at 2 GHz with 6GB of memory and support 8 hardware

threads. The server machine hosts a single region server,

3http://docs.oracle.com/javase/7/docs/api/java/nio/package-
summary.html

4http://blog.cloudera.com/blog/2011/02/avoiding-full-gcs-in-hbase-with-
memstore-local-allocation-buffers-part-1/



an HBase master, a single HDFS namenode (HBase-HDFS

only), a single HDFS datanode (HBase-HDFS only) and a

Zookeeper node. The server machine dedicates a Western

Digital WD5001AALS disk rotating at 7200 RPM (including

a 32 MB cache) for storage. The file system used is

ext4. Note a difference from the setup used in elasticity

experiments, which has an additional disk per server with the

Linux BTRFS file system. The client machine is dedicated

to running the YCSB benchmark. The versions of Hadoop

and HBase used are 1.2.1 and 0.94.13 respectively. To ensure

HBase-HDFS and HBase-BDB are at an equal footing we

set both the HBase block cache and BDB cache to 1GB.

The setting is small (1/15th of the dataset) to ensure I/O

intensive workloads. We use variations of HBase-HDFS

setups with Bloom Filters enabled and disabled to value their

impact on read performance. YCSB supports different types

of operations (write, read, or scan) on a single table with

rows of size 1KB. YCSB populates a uniformly balanced

database with 8 pre-created regions with 10 million rows

resulting in a 15GB dataset in all cases. Read requests follow

also uniformly random distribution. Finally scan operations

requests are also uniformly distributed and fetch on average

64KB of data.

Write workload. For HBase-BDB we use the EVICT LN

cache policy instead of the default LRU, which gives priority

to retaining index blocks in the cache over data blocks.

We set the BDB log segment size to 32MB so that a sync

operation is issued per 32MB. We have tuned HBase-HDFS

memstore size to create HFiles5 of over 70MB in size and

set HDFS block size to 256 MB. This was done so that

a newly created HFile fits within an HDFS block. Finally,

we have disabled splits since they are going to be studied

in the next experiments. In the following graphs we depict

the operations per sec observed during the population of the

database. Since the database size is the same for all setups

time for completion of each setup varies.

We consider the default version of HBase-HDFS that

performs compactions with the default settings (minimum

and maximum thresholds 3 and 5 HFiles respectively)

and throttles writes when the number of HFiles reaches

7 per region. The latter limit is set to ensure that HBase

eventually matches the speed of writing processes with its

ability to compact HFiles so that read and scan latency

remains bounded. We call this version HBase-HDFS-actual

and represents a typical real world setup of HBase. We also

consider a version of HBase-HDFS that does not perform

compactions (HBase-HDFS-write-optimal). While this setup

is optimal for writes, this version will in time result into

unboundedly high read latencies as it is shown in later read

experiments. However, it provides an upper bound of what

write throughput would be possible if compactions had no

resource impact. In figure 6a we depict the write opera-

5HFiles are HDFS files resulting from HBase compactions.
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Figure 6: YCSB throughput for random write, read and scan

workloads

tions/sec during a database population. In all of the three

setups CPU load is close to saturation at the server node.

As we can see from 6a HBase-BDB performs about 80%

(average 36000 ops/sec) better than HBase-HDFS-write-

optimal (20000 ops/sec). HBase-BDB operates at nearly disk

speed due to its log structure. On the other hand, HBase-

HDFS optimal and actual write at least twice to HDFS (once

to a write-ahead log (WAL) and then to HFiles) resulting in



extra overhead in the write path. Moreover, the additional

work caused by compactions drops the overall performance

of HBase-HDFS-actual 30% compared to optimal. We thus

conclude that the need to be proactive on compaction for

maintaining acceptable levels of read performance and the

use of a WAL can be a limiting factor compared to a log-

structured B+-tree where cleaning is also eventually needed

but does not stand on the critical path.

Read workload. In this experiment we run a random

read workload on HBase-BDB and three versions of

HBase-HDFS: HBase-HDFS-SingleHFile, in which the en-

tire dataset has been compacted into a single HFile; HBase-

HDFS-BF-23HFiles, in which we have approximately 23

HFiles per region; and HBase-HDFS-NoBF-23HFiles, which

differs from the latter in that row key Bloom Filters are

disabled. HBase-HDFS block size is set to minimal value

of 32KB as suggested6 to best match YCSB key/value

size. In Figure 6b we observe that HBase-BDB has about

30% better throughput than HBase-HDFS-SingleHFile, both

limited by disk’s random read I/O. Bloom filters for HBase-

HDFS have a high hit ratio which leads to an almost

identical performance between HBase-HDFS-SingleHFile

and HBase-HDFS-BF-23-HFiles. Disabling bloom filters

lead to a dramatic drop in read performance as we can

see from HBase-HDFS-NoBF-23HFiles. As we conclude,

HBase-BDB random read operation performs better than

HBase-HDFS. It is benefit by its B-tree dense indexing

which results to more efficient IO with the device.

Scan workload. In this experiment we study a scan work-

load with sizes drawn from a uniform distribution fetching

on average 64KB of data per scan). Figure 6c depicts

performance of the HBase-BDB, HBase-HDFS-SingleHFile,

and HBase-HDFS-23-HFiles configurations. HBase-HDFS-

SingleHFile scan performance is an order of magnitude

better than the two other setups. This is because the storage

layout of HBase-HDFS is particularly optimized for scans:

in each scan, HBase-HDFS position the cursor to the correct

position in the HFile and reads consecutive data blocks. As

the number of HFiles increases (which will be a common

case in an actual deployment), scan performance drops. This

is because contrary to reads, scans do not benefit by the use

of Bloom filters: fetching the next N rows starting from

row r requires finding the starting position in all HFiles

and memstore and bring to memory the N consecutive

blocks from all HFiles that are needed by the query. HBase-

BDB exhibits comparable performance to HBase-HDFS-23-

HFiles as it generally produces a non-linear I/O pattern to

disk for fetching data blocks for each row due to the non-

uniform storage of consecutive row keys. In conclusion,

scan performance is better for HBase-HDFS than HBase-

BDB only when HFiles number is limited to small number.

6http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/io/hfile/HFile.
html

Performance is comparable in all other cases. However this

comes to the cost of frequent compactions that stand in the

critical path. Also scans consist a small portion of the read

workloads [8]. HBase-BDB scan performance could also

benefit by improved cleaning.

C. TPC-C experiments on a Cloud platform

Our experimental setup consists of 6 Ubuntu-12.04 virtual

machines (VMs) provided by Flexiant and managed by

Flexiant Cloud Orchestrator (FCO). All VMs have 4 virtual

cores, 4GB of memory and an additional disk with a BTRFS

filesystem for storing data. Each VM runs Linux Ubuntu-

12.04 with kernel 2.5.0-24-generic-pae. One VM hosts the

HBase Master, Zookeeper and Namenode. Derby [25] and

the TPC-C benchmark are hosted in separate VMs. Each

region server uses 1GB of memory as a shared cache across

all underlying region instances. The experimental setup is

depicted in Figure 7.

Figure 7: Experimental setup

TPC-C database consists of 11 hbase tables as it is shown

in descending order of accesses in table I. Derby maps each

sql tuple into an HBase row. The transaction mix consists of

45% NewOrder, 43% Payment, 4% of StockLevel, 4% Or-

derStatus, and 4% Delivery transactions generated by a total

of 100 threads. The TPC-C workload consists mostly of read

operations: 88% of the workload consists of transactions

with SELECT and INSERT SQL operations based on primary

key, mapping to get and put HBase operations (80%-20%

respectively); the remaining 12% of the transactions include

range queries, which map to HBase scan operations of

average length 15.

Split operation In the first experiment we study the

characteristics of region split operations during the TPC-

C population process, with a 6GB dataset load balanced

across three region servers. During population no move

operations take place. HBase load balancer is disabled so

no move operations take place. The split operation includes

the following stages:

http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/io/hfile/HFile.html
http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/io/hfile/HFile.html


HBase Table Read ops Write ops

ORDER LINE 98% 2%

STOCK 95% 5%

NEW ORDER 94% 6%

ITEM 100% 0%

CUSTOMER 81% 19%

DISTRICT 61% 39%

OORDER 74% 26%

WAREHOUSE 76% 24%

IDX CUSTOMER NAME 100% 0%

HISTORY 100% 0%

IDX OORDER 9% 91%

Table I: TPC-C workload characterization

1) Disable write/read operations for region and wait

outstanding operations to finish (Wait time)

2) Close and sync underlying database of region to be

splitted (Close/Sync time)

3) Perform a copy of database log files in a different

location on the same device creating two Daughter

Regions, A and B (CopyRegion time)

4) Open and rebuild state for Daughter Region A (Open-

DaughterA time)

5) Open and rebuild state for Daughter Region B (Open-

DaughterB time)

A split operation is triggered when the number of valid

keys in a region exceeds 131,072. In the population phase

we observe a total of 37 split operations, separated in

two groups according to the relative size of their physical

logs: 28 splits of 142MB (SMALL) and 9 splits of 244MB

(LARGE).Figure 8 depicts the total split time and the break-

down for each stage (including wait time for outstanding

operations to finish) in the case of SMALL and LARGE

regions. We observe that locally copying a region’s physical

log files (CopyRegion) is an efficient operation and nearly

independent of region size due to BTRFS’s indirect copy

feature, taking time comparable to the time spent for opening

and closing a database.

Figure 8: Time duration breakdown of split operation stages

Move operation In this experiment we study TPC-C per-

formance during intensive elasticity actions occurring during

data redistribution in a growing cluster. In our initial setup

(same for both HBase-BDB and HBase-HDFS) we have two

region servers with an equal share of data regions. Each

region in the case of HBase-HDFS has previously undergone

a major compaction down to a single HFile and is collocated

with the corresponding datanode server of HDFS. We have

disabled the default load balancer and implemented a custom

region moving policy in both cases. At 300 sec a new region

server is added to the cluster and we move 1/3 of the total

number of regions (initially hosted in the two servers) to the

newly added server, initiating a new move every 4 sec. Data

movement in the case of HBase-HDFS takes place after a

move operation by means of a major compaction, causing

region HFiles to move to the newly added server. Figures 9a

and 9b depict TPC-C performance over a 20 min period.
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Figure 9: TPC-C average throughput and response time

In Figures 9a and 9b we can identify three phases: a stable

phase in which no move operations take place (0-300 sec),

an elasticity phase (300-500 sec) where data is moved to the

newly added server, and finally another stable phase after

500 sec. HBase-BDB performance during the stable phase

is limited by the CPU of the Derby server; during the elastic

phase the bottleneck moves to the CPU of the region servers

(which are then engaged in network transfers). HBase-HDFS

performance is always limited by the region server CPUs,



mainly due to the large number of random reads on small

(200-300 byte) rows. Both systems are impacted during

the elasticity phase (300-500 sec). HBase-HDFS (being the

more CPU bound system at the region servers) is seen to

benefit more from the addition of a third server.

V. CONCLUSIONS

In this paper we presented HBase-BDB, a distributed key-

value store that shares HBase’s data model and data distri-

bution mechanisms but departs from it in the use of a log-

structured B+-tree indexed storage back-end over locally-

attached files systems. With the use of a log structured

key value store combined with novel elasticity mechanisms

HBase-BDB is able to improve over HBase in random read

and write YCSB workloads by 30% and 85% respectively.

HBase-BDB lags behind HBase only in random scans; these

however are only a small share of overall operations in

popular workloads such as e-mail, SMS, Chat, etc. Support

for elasticity in HBase-BDB is shown to be effective in TPC-

C experiments yielding similar availability and performance

impact to what is achievable with HBase-HDFS.
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