
Cross-layer Management of Distributed
Applications on Multi-Clouds

Antonis Papaioannou, Damianos Metallidis and Kostas Magoutis
Institute of Computer Science (ICS)

Foundation for Research and Technology – Hellas (FORTH)
Heraklion 70013, Greece

Email: {papaioan,metal,magoutis}@ics.forth.gr

Abstract—Existing cloud provisioning and deployment frame-
works do not yet provide sufficient support for multi-cloud setups.
In this paper we improve on the state of the art by adapting
the SmartFrog framework to handle multi-cloud setups during
the lifecycle (provisioning, deployment, change management,
termination) of distributed applications. An administrator of
a private cloud additionally needs to be aware of cross-layer
dependencies between application components and the physical
infrastructure to efficiently carry out a range of administration
tasks. In this paper we propose an information repository and
system to discover and store such cross-layer dependencies and
use it to answer questions such as ”which physical machines are
hosting particular application components (through hypervisors)”
and vice versa. We demonstrate the use of our system in two cases
of service-instance (SI) migration and replication on federated
multi-cloud setups using the SPEC jEnterprise2010 application
benchmark: a) migration of a SI from a private to a public
cloud to support the need for maintaining service availability
during downtime of physical hardware at the private cloud; b)
replication of a SI from a large cloud provider to a regional (or
”near”) cloud provider to improve response time of clients that
are geographically closer to the latter.

I. INTRODUCTION

The provisioning and deployment of distributed applica-
tions in increasingly decentralized global infrastructures is
an important challenge today. A typical web-based multi-tier
application serving Internet clients operates off of one or more
(private or public) cloud computing infrastructures. During the
course of its lifetime, a large-scale distributed application can
be re-deployed several times to adapt to conditions such as
downtime of physical infrastructure or to improve availability
and performance (e.g., moving the service closer to the physi-
cal location of the user). While several application deployment
tools have emerged in recent years [1], [2], [3], the advent of
cloud computing has introduced new sources of complexity:
the need to take into account cross-layer relationships between
infrastructure (physical, virtual) and application components
and the need to effectively deploy applications on hetero-
geneous multiple cloud (or multi-cloud) platforms. Existing
deployment tools are limited in their support for both features.

In this paper we advance the state of the art in both
directions by extending HP SmartFrog [4], a declarative ap-
proach to distributed application deployment, to take into
account cross-layer relationships and to handle multi-clouds.
Prior to our work, SmartFrog was able to configure and
deploy distributed application components on already provi-
sioned resources, typically drawn from a homogeneous re-

source pool. We extended SmartFrog to dynamically provision
virtual machines (VMs) from different types of private of
public cloud infrastructures, based on resource specifications
listed in the application description. We further extended
SmartFrog to be able to discover dependencies between VMs
and the underlying infrastructure and use them in performing
re-deployments based on conditions involving the physical
infrastructure (such as planned downtime). While the focus
of our implementation in this paper is on SmartFrog, our
proposed framework is more general and can be adapted to
use other deployment and orchestration tools such as those
based on the TOSCA standard [5]. To ensure that one can
provision VMs of comparable grade across cloud providers
we incorporate into our system the ability to rate and compare
VM types based on a benchmarking methodology [6].

Our contributions are particularly applicable in the case
of cloud federations where private and public cloud providers
partner up and enable cloud bursting (i.e., the use of additional
external resources) across each other. Bursting is especially
useful in private cloud providers who may occasionally face
resource shortage due to limited in-house infrastructure. In this
paper we address the following challenges:

• Lack of support for seamlesss multi-cloud provision-
ing and deployment in existing frameworks

• Discovery of application components that are affected
(may need to be replicated/migrated) when a private
cloud provider faces issues with physical infrastructure

• Dynamic provisioning of resources on another cloud
provider (resulting in multi-cloud setups) and re-
deployment of affected application components there

The paper addresses research challenges in lifecycle man-
agement of multi-cloud deployments combining private and
public clouds. While there are existing solutions in the areas
of (I) deployment of multi-cloud applications (e.g., using APIs
such as jClouds [7]); (II) lifecycle management of distributed
applications [4], [5]; (III) configuration management of multi-
cloud applications [6]; (IV) cross-layer dependencies manage-
ment [8], [9], currently there is no solution that addresses all
four of these challenges together. This paper addresses the
research question of how to provide lifecycle management
(beyond deployment) of multi-cloud applications achieving
user goals on properly characterized public and private clouds.
Addressing this research question requires the combination
of state-of-the-art solutions to (I)-(IV) integrated into a novel



system architecture. Our architecture addresses an important
open problem, offers functionality not currently achievable by
any single system, and is supported by an evaluation featuring
real-world use-cases combining private and public clouds.

We evaluate our system in two bursting scenaria under the
well-known SPEC jEnterprise2010 application benchmark: (1)
migration of application components from a private cloud to a
public cloud to maintain service capacity when the former is
facing infrastructure shortages; (2) replication of application
components from a large public cloud provider to a smaller
regional cloud provider to improve response time for specific
clients whose geographic position is close to the regional cloud
provider. In both cases, the distributed application deployed
over the two clouds is using virtual private network (VPN)
technology to isolate and protect its cross-cloud traffic.

II. ARCHITECTURE

Figure 1 depicts the architecture of our system. At the
core is a deployment and management framework, such as
SmartFrog [4] or OpenTOSCA [11], [5], used to deploy and
manage multi-cloud application resources. We base our imple-
mentation on SmartFrog and contribute a novel use of it to
dynamically provision heterogenous resources over the course
of the execution of SmartFrog scripts rather than requiring the
provisioning of resources beforehand. A metadata database (or
MDDB, Section II-B), an extended form of configuration and
management repository, collects information from different
sources, including SmartFrog (application components and
VMs they are deployed on) and private cloud management
systems (VMs and physical machines (PMs) they are deployed
on). The MDDB derives cross-layer relationships between
application components and PMs (as well as other such rela-
tionships) where possible (e.g., in a private cloud environment).

An IT manager can utilize this system to adapt the place-
ment of application components to the evolving status of the
physical infrastructure. Such a task requires combining the
automation provided by frameworks such as SmartFrog with
knowledge of cross-layer relationships. A specific use-case we
focus on in this paper is the migration of certain application
components away from physical servers slated for maintenance
soon (e.g., PMx of the private cloud in Figure 1) and into
public-cloud resources (a scenario commonly referred to as
bursting). In this case, the MDDB relationships are used to
determine which application components should be moved and
a specific SmartFrog workflow executed to realize the plan. To
maintain service capacity, a public-cloud VM type equivalent
or better than the private-cloud VM(s) being decommissioned
is needed – this information is also provided by the MDDB [6].
Another use case we focus on in this paper is the migration (or
replication) of application components from a public cloud to
a private cloud to take advantage of proximity to clients (thus
better data locality and lower response time).

In the remainder of this section we provide more details on
the SmartFrog framework (II-A), the MDDB (II-B), and the
role of the IT manager (II-C) within the scope of our work.

A. SmartFrog

The SmartFrog framework comprises an object-oriented
language, runtime, and toolset supporting the deployment of

IT
Manager

Migrate Apps
running on PMX

Private CloudPublic Cloud

Load Bursting

Metadata DB

Derive
App - VM - PM
relationships

App - VM
relationships

Equivalent
VM types

Pr
ov
isi
on

 / D
eploy

Provision / Deploy
              VM

 - PM
  relationships

Move closer
to clients

PMX

PMY

PMZ

Application
Manager

Fig. 1: System architecture

distributed applications and the handling of their lifecycle
events. In SmartFrog, each software component is modeled as
an object whose state represents a set of configuration param-
eters and whose lifecycle events correspond to specific actions
(expressed in Java methods sfDeployWith, sfDeploy, sfStart,
sfTerminate). SmartFrog programs (descriptions of component
configuration, deployment, and workflows) are included in .sf
files and accompanied by Java implementations of the lifecycle
action methods. The latter have access to component configu-
ration attributes via calls to a special sfResolve() method. The
location where a specific component is deployed and started
is specified in the .sf file as the address of a server in the
sfProcessHost attribute of the component.

SmartFrog links the lifecycle of different components by
grouping them together in constructs such as compound (start
and terminate components together), parallel (start compo-
nents concurrently but let them evolve independently), se-
quence (a component starts after its previous component in
the sequence terminates), etc. The SmartFrog runtime consists
of a collection of daemons (called sfDaemons) present in
each managed system and responsible for components de-
ployed there. Application components may cross-reference
each other’s attributes. Some attributes may be lazily bound
at deployment or execution time.

To date we are only aware of uses of SmartFrog to deploy
distributed applications in homogeneous environments where
resources (VMs) are provisioned and known in advance. In
this paper we extend the applicability of SmartFrog to on-
demand provisioning of cloud VMs and dynamic deploy-
ment of software components on them. We model VMs as
SmartFrog component objects, similar to any other application
component. Each of these VM objects has its own lifecycle,
state, configuration parameters, and management events.

The execution of SmartFrog descriptions of applica-



Fig. 2: Subset of the MDDB schema relating to modeling of applications and their underlying resources.

tions originates at a management machine and may involve
other SmartFrog-enabled machines. The IPs of dynamically-
provisioned VMs are typically not known until they are up
and running. A specially created PublicCloudVM or Private-
CloudVM SmartFrog component encapsulates the require-
ments of provisioned VMs (type of VM, name of VM image,
etc.) and (late-bound) attributes such as the allocated IP address
of the VM. VM requirements must be set by component meth-
ods through invocation of sfResolve() prior to provisioning of
the VM. Actual provisioning of the VMs takes place within
the sfDeployWith method of the PublicCloudVM or Private-
CloudVM component. This ensures that a VM is provisioned
prior to the sfDeploy method of depending components (which
require access to the VM’s attributes) being executed. The
sfProcessHost attribute is late bound to the allocated IP address
ensuring the object is deployed onto the provisioned VM.

In this work we have leveraged SmartFrog support for a
workflow system [12] and event framework. The framework
provides a distribution mechanism for events hiding the details
of where events are generated or consumed. Our main use
of the SmartFrog workflow framework in this paper concerns
communicating requests for adaptation between the IT Man-
ager and components responsible for reconfiguration actions.

B. Metadata Database

The MDDB [6] stores a variety of information. In the
remainder we focus on the subset of information that is
relevant to our work in this paper (Figure 2). For refer-
ence, the full schema is avalable online [13]. Applications
are modeled using the SOFTWARE COMPONENT (abstract
descriptions of software components, e.g., a generic servlet)
and APPLICATION COMPONENT classes depicted in Rectangle
1 of Figure 2. A software component can be deployed on
another software component or on a VM INSTANCE, which
represents a provisioned VM resource. The deployment rela-
tionship (DEPLOYMENT class) is shown in Rectangle 3.

The characteristics of the VMs on which an application
is deployed along with the cloud providers they are sourced
from are depicted n Rectangle 2. Each VM instance is of a
particular CD (cloud dependent) VM type as well as a CI
(cloud independent) VM type. A CD VM type describes a
real-world VM type whereas CI VM types are the result of
(periodic) classifications into cloud-agnostic categories with
similar VM capabilities [6]. The MDDB additionally models
the underlying physical nodes as well as the association
between them and the VMs they host shown in Rectangle 4).

The MDDB receives information about application com-
ponents and the VMs they are deployed on from deploy-
ment management systems (e.g., the SmartFrog runtime) or
infrastructure discovery probes [8], [9]. It receives information
about VMs and the PMs they are hosted on from private
cloud managers or other infrastructure management systems.
In case of public clouds, the topology can be inferred from
measurements or exported to interested parties by the cloud
provider via special management APIs [14]. The MDDB
builds on this information by producing derivative cross-layer
relationships between application components and physical
servers. For example, if the MDDB contains the associations
pi → vj and vj → ak, where pi, vj , and ak are a PM, a VM,
and an application component respectively, then we infer that
pi → ak (see Section III, Listing 1 for an example query).

C. IT Manager

The IT Manager is concerned with traditional IT man-
agement tasks (which are often human driven or supervised)
aiming to best align applications with their underlying infras-
tructure. In this paper we specifically focus on management
tasks involving private and public clouds. Since resources in
private clouds are typically limited, demand for extra resources
may require outsourcing from public providers (a process also
known as load bursting). A scheduled maintenance on the
physical resources of the private Cloud platform may disturb



the normal operation of the application. The IT Manager
component can take as input this kind of information (e.g.
the physical nodes that will stop operating) and query the
MDDB to identify the affected VMs and the corresponding
applications they host. It can then schedule the migration of
the appropriate software components to an alternative public
Cloud provider without any manual effort.

III. IMPLEMENTATION

SmartFrog code and runtime support. In this paper we
have SmartFrog-enabled the software stack of a representative
enterprise application, the SPEC jEnterprise2010 benchmark.
The software stack includes the JBoss application server,
MySQL database server, application logic packaged in an
enterprise archive file (specj.ear), and a load balancer inter-
posed between load-generating clients and application servers
(the inclusion of a load balancer is an enhancement over
the standard version of SPEC jEnterprise, which supports a
single application server instance). The SmartFrog version of
SPEC jEnterprise2010 operates as follows: Each component
(JBoss, MySQL, load balancer) includes a sfStart() method
that triggers the installation and deployment of the respective
component. Components terminate via the sfStop() function.

The SmartFrog management code for SPEC jEnter-
prise2010 comprises the following four main components

• Virtual machine, dynamically provisioned in a public,
private or hybrid cloud

• Database server

• Application server

• Load balancer, responsible for spreading client load
over multiple application servers

To respect provisioning and deployment dependencies we
use SmartFrog’s Compound statement to link the lifecycles
of the above components. Within a Compound components
are first deployed in the stated sequence prior to being started
in the same sequence, as shown graphically in Figure 3. The
AS VM, DB VM, and LB VM components are responsible for
allocating and starting the VMs that will host the application
server (AS Instance), application logic (Application Instance),
and load balancer (LB Instance) respectively. Furthermore,
our implementation extends the EventSend and OnEvent com-
ponents (part of SmartFrog’s workflow [12] architecture) to
throw and handle load-balancer adaptation events (add a VM,
remove a VM). Due to space constraints, the full details of our
implementation (.sf and .java files) can be found online [].

MDDB and queries to discover cross-layer relationships.
The MDDB [6] is used as a central repository to collect
information about the Cloud infrastructure topology (VM-
to-PM relationships) in case of private cloud platforms and
information regarding the deployment of an application (appli-
cation components-to-VM relationships). The MDDB is also
a provider of information regarding cross-layer dependencies,
such as which application components are hosted on a specific
PM. The MDDB exposes an API through which clients such as
SmartFrog can obtain the necessary relationships. The MDDB
executes queries like the one described in Listing 1 to derive
the cross-layer information on demand. We decided not to

introduce all possible cross-layer relationships explicitly in its
schema by explicit new classes that model this information
as these relationships may change over time and this could
result in unnecessarily high complexity. Instead we support the
modeling and discovery of specific relationships when needed
and let the client decide on when or how frequently to execute
queries against the MDDB to store the results.

Listing 1: Query identifing cross-layer dependencies
SELECT s c i .∗
FROM s o f t w a r e c o m p o n e n t i n s t a n c e s c i
WHERE s c i . i d IN

(SELECT c o m p o n e n t i n s t a n c e
FROM dep loyment
WHERE on vm ins t ance IN

(SELECT i n s t . i d
FROM v m t o p m a s s o c i a t i o n assoc , v m i n s t a n c e

i n s t
WHERE a s s o c . vm= i n s t . i d AND a s s o c .

p h y s i c a l n o d e i d IN
(SELECT i d
FROM p h y s i c a l n o d e
WHERE i p = ’ xx . xx . xx . xx ’ )

)
)

The multi-cloud provisioning logic we embedded in Smart-
Frog uses Cloudify [2] and the dasein [15] and boto [16]
libraries to operate across different cloud architectures.

IV. EVALUATION

We evaluate our system using the distributed SPEC jEn-
terprise2010 benchmark [18] as a case study. SPEC jEn-
terprise2010 is a full system benchmark that allows perfor-
mance measurement of Java EE 5.0 servers and supporting
infrastructure. The SPEC jEnterprise2010 application requires
a Java EE 5.0 application server and a relational database
management system (RDBMS). The primary metric of the
SPECjEnterprise2010 benchmark is throughput measured as
jEnterprise operations per second (EjOPS). A load generator
(referred to as a Driver) produces a mix of browse, manage,
and purchase business transactions at the targeted EjOPS. The
Driver measures and records the response time (RT) of the
different types of business transactions. At least 90% of the
business transactions of each type must have a RT of less than
the constraint threshold (set to 2 seconds for each transaction
type). The Driver checks and reports whether the response time
requirements are being met during a run.

We model the SPEC jEnterprise2010 application using
three software components corresponding to the business logic
of the application, the application server, and the RDBMS [6].
These components are instantiated as specj.ear and emula-
tor.war files, a JBoss 6.0 application server, and a MySQL
5.5. We deploy SPEC jEnterprise2010 in our in-house Cloud
platform running Eucalyptus 3.1.2 (the latest version that
supported Xen and the AMD processors used in our servers).

A. Scenario 1

In this scenario we demonstrate our system handling the
migration of a SPEC jEnterprise2010 service instance from
our private in-house cloud platform to a public cloud provider
(Amazon EC2) to guarantee service availability and capac-
ity during scheduled downtime of the underlying physical



AS_VM
Component

AS_Instance
Component

DB_VM
Component

Application_
Instance

Component

LB_VM
Component

LB_Instance
Component

Deploy Sequence

Start Sequence

1 2 3 4
5

6 7 8 9 10

Fig. 3: Solid (red) arrows denote deployment sequence (”happens before”); Dashed (blue) arrows denote start action sequence.

Eucalyptus private Cloud Amazon public Cloud

Internet

Load BalancerApp Server
App Server

DB Server

X

1. Provision / Deploy

2. Provision / Depoy

6. Terminate

4. Provision / Deploy

Sma
rtF

rog

5
. Recon�g

Management

3
. Provision / D

eploy

Server

Sma
rtF

rog

Sma
rtF

rog

Sma
rtF

rog

Sma
rtF

rog

Driver - Clients

Fig. 4: Scenario 1 deployment procedure

infrastructure in the private cloud. In this scenario, the IT
Manager wants to move all activities away from a specific
physical machine so that it can perform maintenance to it. To
achieve this it queries the MDDB (Listing 1) for the cross-
layer relationships between the physical machine and software
components that depend on it. Normally, a cloud provider
will be able to satisfy the needs of migrating the software
components off of the targeted physical machine from internal
resources. However, in times of resource strain the IT Manager
needs to use external resources in order to maintain service
capacity. In this scenario, the IT Manager uses SmartFrog
to migrate the identified components (application servers) to
Amazon EC2. The VM allocated on Amazon should have
equivalent or better performance compared to the replaced VM
in order to maintain service capacity. We use previous work
on cloud-independent classification of VM types [6] (whose
results are stored in the MDDB) to achieve this.

The application traffic between Clouds is routed through
a VPN in order to federate the two Cloud platforms and
isolate and protect the communication. From a deployment
procedure viewpoint, Figure 4 shows the sequence of actions
when deploying and migrating the SPEC jEnterprise2010
application. Steps 1-4 in Figure 4 show the provisioning of
VMs and deployment of the application servers, the database
and the load balancer in our private cloud. Steps 5-7 show the

 0

 1

 2

 3

 4

 5

 6

 50  100  150  200  250  300  350  400  450  500  550  600

9
0

th
%

 R
e

s
p

. 
T

im
e

 (
s
e

c
)

Time (sec)

Response Time

Purchase
Manage
Browse

Fig. 5: Transaction response time in scenario 1.

migration process. In step 5, SmartFrog creates a m1.small
VM instance on the Amazon EC2 (EU) cloud platform and
deploys the application server. In step 6 the load balancer is
reconfigured to direct the load to the new application server
instance. Finally in step 7 an application server VM instance
in the private cloud is terminated as the migration procedure
is completed and the traffic is directed to the new application
server. Our system supports full automation in this scenario.

Figure 5 shows response time (RT) of the application
before and after the migration. The load balancer reconfig-
uration (step 6 in Figure 4) is complete at 340 sec, at which
point traffic is directed to the new application instance. RT is
observed to increase as the new application server instance is
now hosted at a public cloud provider, which is typically at a
significant distance from the load balancer and database and
the communication among them is routed over the Internet.
The good news however is that the service is still available
at acceptable levels (within the RT SLO of 2 sec (avg)). The
impact on RT could be further reduced if we can opt for a
public cloud provider with a data center closer to the private
cloud or if a larger number of application servers were involved
(reducing the fraction of accesses using the remote instance).

B. Scenario 2

The second scenario focuses on the case where a service
deployed on a public cloud is replicated to a regional (typi-
cally private) cloud to achieve better response time by taking



Near Cloud Amazon public Cloud

Internet
Http RedirectorApp Server

App Server

DB Server

1. Provision / Deploy

2. Provisio
n / D

epoy

3
. Provision / D

eploy

Sma
rtF

rog

Sma
rtF

rog

Sma
rtF

rog

Sma
rtF

rog

Sma
rtF

rog

Management
Server

6
. Recon�g

DB Server

Sma
rtF

rog

4. Provision / Deploy

5. Provision / Deploy

ClientsClients

Fig. 6: Scenario 2 deployment procedure

advantage of proximity to clients. The application deployed on
two cloud operators, initially on an Amazon EC2 data center
(eu-west-c1) and later replicated to a regional cloud provider
(our local cloud) to improve response time. Figure 6 shows
the SmartFrog procedure of achieving the initial deployment
and replication tasks. The MDDB was used to determine the
type of VMs that should be allocated on the private cloud (of
equal or better grade compared to those the service is already
running on Amazon) to achieve a comparable level of service.

Figure 7 depicts SPEC jEnterprise2010 transaction re-
sponse time when clients close to our geography are accessing
the service instance deployed on the Amazon eu-west-c1 cloud
(0-300sec) and the significant drop in response time in the 300-
600sec time interval when a service instance (the full stack,
including application server and database) are replicated to
a cloud provider near the clients (such a regional cloud is
often called a near cloud). This is an important scenario in the
emerging field of federated clouds that combine major cloud
providers and smaller regional players, demonstrating the ease
with which our architecture can support such use cases.

V. RELATED WORK

We discuss related work in two major areas: application de-
ployment and cross-layer relationships in distributed systems.

Application deployment systems. Automating the provision-
ing of VMs and the deployment of distributed applications
on them has been a longstanding goal of management systems
such as Tivoli Provisioning Manager (TPM) [19]. Cloudify [2]
is a recently introduced open source tool whose main goal
is to provision resources from a single cloud and then de-
ployment, monitor and management the lifecycle entity of
applications. Cloudify tasks are expressed in recipes that
describe in detail the deployment and execution aspects of
an application. Chef [3], another open-source framework, lan-
guage, and toolset has recently become a popular platform for
the deployment and management of distributed applications. A
growing set of Chef cookbooks and recipes (akin to Cloudify

 0

 1

 2

 3

 4

 5

 6

 7

 100  200  300  400  500  600

9
0

th
%

 R
e

s
p

. 
T

im
e

 (
s
e

c
)

Time (sec)

Response Time

Purchase
Manage
Browse

Fig. 7: Transaction response time in scenario 2

recipes) are available in a publicly accessible repository [20].
SmartFrog [4] is a declarative approach to application deploy-
ment and management that is used in this work. In SmartFrog,
the configuration and deployment details of components are
described using a Java-like domain-specific language and sup-
ports the execution of workflows [12]. Section II-A provides
a brief introduction to SmartFrog.

Cross-layer relationships. The discovery of cross-layer rela-
tionships in distributed systems has been a topic of significant
interest in the past. Several systems used online system moni-
toring and analysis of traces [21], [22], [23] while others used
input from discovery sensors to build cross-layer relationships
over multiple IT domains [9], [8]. The system described in this
paper is closer in principle to the latter approach combining
input from sensors from the domain of infrastructure clouds
and application deployment systems. Our contributions in this
paper focus on the use of cross-layer relationships in managing
multi-cloud deployments, including private clouds.

VI. CONCLUSION

In this paper we highlight the value of cross-layer relation-
ships in the domain of application deployment and adaptation
in multi-cloud environments including private clouds. Our aim
in this paper is to demonstrate that distributed application
deployment engines can extend their scope and applicablity
by taking into account relationships between software com-
ponents, virtual infrastructure, and the underlying physical
infrastructure. We support our aim by describing an application
deployment system with multi-cloud capability and with the
ability to handle adaptation events taking into account cross-
layer relationships. We evaluate our system in two use-cases of
practical interest involving service-instance migration between
clouds. We show that (unlike existing systems that have
no access to such information) they can support both with
efficiency achieving the desired results.

ACKNOWLEDGMENT

We thankfully acknowledge the support of the PaaSage
(FP7-317715) EU project.



REFERENCES

[1] K. Bhargavan, A. Gordon, T. Harris, and P. Toft, “The Rise and Rise
of the Declarative Datacentre,” Microsoft Research, Tech. Rep. MSR-
TR-2008-61, May 2008.

[2] “Cloudify.” [Online]. Available: http://getcloudify.org/
[3] “DevOps Chef.” [Online]. Available: http://www.getchef.com/
[4] P. Goldsack, J. Guijarro, S. Loughran, A. Coles, A. Farrell, A. Lain,

P. Murray, and P. Toft, “The smartfrog configuration management
framework,” SIGOPS Oper. Syst. Rev., vol. 43, no. 1, pp. 16–25, Jan.
2009. [Online]. Available: http://doi.acm.org/10.1145/1496909.1496915

[5] “OASIS: OASIS Topology and Orchestration Specification for Cloud
Applications (TOSCA) Version 1.0 Committee Specification 01 (2013).”

[6] A. Papaioannou and K. Magoutis, “An architecture for evaluating
distributed application deployments in multi-clouds,” in Proceedings
of the 2013 IEEE International Conference on Cloud Computing
Technology and Science - Volume 01, ser. CLOUDCOM ’13.
Washington, DC, USA: IEEE Computer Society, 2013, pp. 547–554.
[Online]. Available: http://dx.doi.org/10.1109/CloudCom.2013.79

[7] “jClouds library.” [Online]. Available: http://jclouds.apache.org/
[8] K. Magoutis, M. Devarakonda, N. Joukov, and N. G. Vogl, “Galapagos:

Model-driven discovery of end-to-end application-storage relationships
in distributed systems,” IBM J. Res. Dev., vol. 52, no. 4, 2008.

[9] “IBM Tivoli Application Dependency Discovery Manager,” Accessed
3/2014. [Online]. Available: http://www-03.ibm.com/software/products/
en/tivoliapplicationdependencydiscoverymanager

[10] “SmartFrog,” Accessed 4/2014. [Online]. Available: http://www.
smartfrog.org/display/sf/SmartFrog+Home

[11] T. Binz, U. Breitenbücher, F. Haupt, O. Kopp, F. Leymann, A. Nowak,
and S. Wagner, “OpenTOSCA – a runtime for TOSCA-based cloud
applications,” in 11th International Conference on Service-Oriented
Computing, ser. LNCS. Springer, 2013.

[12] “SmartFrog Workflow,” Accessed 3/2014. [On-
line]. Available: http://www.hpl.hp.com/research/smartfrog/releasedocs/
smartfrogdoc/sfWorkflow.html

[13] “MDDB Design,” http://users.ics.forth.gr/∼papaioan/projects.html.
[14] I. Kitsos, A. Papaioannou, N. Tsikoudis, and K. Magoutis, “Adapt-

ing data-intensive workloads to generic allocation policies in cloud
infrastructures,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE, 2012, pp. 25–33.

[15] “Dasein Cloud API,” Accessed 5/2014. [Online]. Available: http:
//dasein-cloud.sourceforge.net/

[16] “Boto - Python interface to Amazon Services,” Accessed 5/2014.
[Online]. Available: http://boto.readthedocs.org/

[17] “AWS SDK.” [Online]. Available: https://aws.amazon.com/sdkforjava/
[18] “SPEC jEnterprise2010 Benchmark,” Accessed 5/2014. [Online].

Available: http://www.spec.org/jEnterprise2010/
[19] “IBM Tivoli Provisioning Manager,” Accessed 3/2014. [Online].

Available: http://www-01.ibm.com/software/tivoli/products/prov-mgr/
[20] “OpsCode Chef Cookbooks,” Accessed 5/2014. [Online]. Available:

http://community.opscode.com/cookbooks
[21] M. Aguilera, J. Mogul, J. Wiener, P. Reynolds, and A. Muthitacharoen,

“Performance Debugging for Distributed Systems of Black Boxes,” in
19th ACM Symposium on Operating Systems Principles, October 2003.

[22] A. Kind, D. Gantenbein, and H. Etoh, “Relationship Discovery with
NetFlow to Enable Business-Driven IT Management,” in 1st IEEE/IFIP
International Workshop on Business-Driven IT Management, 2006.

[23] H. Kashima, T. Tsumura, T. Ide, T. Nogayama, R. Hirade, H. Etoh,
and T. Fukuda, “Network-Based Problem Detection for Distributed
Systems,” in 21st International Conference on Data Engineering, 2005.

http://getcloudify.org/
http://www.getchef.com/
http://doi.acm.org/10.1145/1496909.1496915
http://dx.doi.org/10.1109/CloudCom.2013.79
http://jclouds.apache.org/
http://www-03.ibm.com/software/products/en/tivoliapplicationdependencydiscoverymanager
http://www-03.ibm.com/software/products/en/tivoliapplicationdependencydiscoverymanager
http://www.smartfrog.org/display/sf/SmartFrog+Home
http://www.smartfrog.org/display/sf/SmartFrog+Home
http://www.hpl.hp.com/research/smartfrog/releasedocs/smartfrogdoc/sfWorkflow.html
http://www.hpl.hp.com/research/smartfrog/releasedocs/smartfrogdoc/sfWorkflow.html
http://users.ics.forth.gr/~papaioan/projects.html
http://dasein-cloud.sourceforge.net/
http://dasein-cloud.sourceforge.net/
http://boto.readthedocs.org/
https://aws.amazon.com/sdkforjava/
http://www.spec.org/jEnterprise2010/
http://www-01.ibm.com/software/tivoli/products/prov-mgr/
http://community.opscode.com/cookbooks

	Introduction
	Architecture
	SmartFrog
	Metadata Database
	IT Manager

	Implementation
	Evaluation
	Scenario 1
	Scenario 2

	Related Work
	Conclusion
	References

